1. KIT Biomedical Research Koninklijk Instituut voor de Tropen, 1105 AZ Amsterdam, The Netherlands.
2. RIVM, Tuberculosis Reference Laboratory, Bilthoven 3730 BA , The Netherlands

Abstract

Background: Simple and rapid species identification from mycobacterial culture is critical especially when liquid culture is used.

The recent availability of antibody based lateral flow tests to confirm the presence of a member of the M. tuberculosis complex (MTBC) is a valuable advance but these strips do not currently allow other mycobacterial species to be identified. A method with the potential to allow a range of non-tuberculous mycobacteria (NTMs) to be simply and rapidly identified in addition to M. tuberculosis is appealing. Here we explore the possibility of directly capturing and detecting unamplified rRNA from lysed cells using a liquid array system (Luminex corporation). The liquid bead array is composed of a series of magnetic micro-beads internally labeled with a ratio of two dyes which allows them to be identified in a dedicated reader (flowcytometer or CCD camera flow cell). In our proposed assay the beads are covalently coupled to oligonucleotides designed to capture specific mycobacterial rRNA molecules. This method has the advantage of avoiding an enzymatic amplification/labeling step wich is generally required for hybridization assays providing the potential to develop a robust and rapid method.

Direct capture and detection of bacterial ribosomal RNA (rRNA). The concept:
There are 1000 to 10,000 copies of rRNA present in an actively growing bacterial cell.
Our proposed assay relies on a series of identifiable micro-beads covalently coupled to oligonucleotides that specifically bind to mycobacterial rRNA. A second oligonucleotide containing a biotin label is also present and can hybridize to the targeted bacterial rRNA directly adjacent to the immobilized oligonucleotide.
In this way, when the cell lysate contains bacterial ribosomes, the rRNA acts as a bridge between the immobilized and the labeled oligonucleotides and concentrate the signal at the bead surface where it can be detected. After washing of the (magnetic) beads the amount of label on each species of beads can be accurately determined by the Luminex device.

Proof of concept in the Luminex system:
In close collaboration with the RIVM, we assessed the system using 8 species of beads to identify the bacterial species and one to detect mycobacterial rRNA as positive control. Samples were both from patient materials and laboratory strains.

Conclusion: Our results show that unamplified, unlabeled rRNA can be captured, detected, and identified using a liquid bead array. Results are encouraging, but can be improved. Due to the genetic similarity of the targeted region the current test cannot differentiate between M. kansasii and M. scrofulaceum and maybe M. simiae, nor can it differentiate M. abscessus from M. chelonae.
One M. kansasii laboratory strain was identified by the rCapA as M avium. Here there is also no similarity among the 2 regions. One patient sample, identified by the RIVM as M simiae and assayed twice by the rCapA assay from 2 different MGIT cultures, was once identified as M tuberculosis by the rCapA assay and once as M kansasii like. Because of similarity in the 16 S region targeted it is likely that the rCapA assay will not always separate M kansasii from M simiae. Two M. terrae laboratory strains were tested using the rCapA assay one was identified as M tuberculosis and one as M kansasii. This result is difficult to explain, because both the M tuberculosis and the M kansasii probe have very little reported similarity with the M terrae 16 S region. Only one BCG out of 36 MTB complex tested was not identified by the rCapA assay. Further work on this approach will, in addition to optimizing the protocols, include: extending the range of species identified by adding beads, exploring the use of more stable/brighter labels (quantum dots etc.) and alternative detection strategies (in collaboration with our MicroNed partners and others).

