

Use of a disposable lysis device and capture of unamplified mycobacterial rRNA on a liquid bead array for species determination from liquid cultures

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

r.anthony@kit.nl

de Ronde H¹, de Haas P², van Soolingen D² and Anthony RM¹

1. KIT Biomedical Research Koninklijk Instituut voor de Tropen, 1105 AZ Amsterdam, The Netherlands.

2. RIVM, Tuberculosis Reference Laboratory, Bilthoven 3730 BA, The Netherlands

Background: Simple and rapid species identification from mycobacterial culture is critical especially when liquid culture is used.

The recent availability of antibody based lateral flow tests to confirm the presence of a member of the *M. tuberculosis* complex (MTBC) is a valuable advance but these strips do not currently allow other mycobacterial species to be identified. A method with the potential to allow a range of non-tuberculous mycobacteria (NTMs) to be simply and rapidly identified in addition to *M. tuberculosis* is appealing.

Here we explore the possibility of directly capturing and detecting unamplified rRNA from lysed cells using a liquid array system (Luminex corporation). The liquid bead array is composed of a series of magnetic micro-beads internally labeled with a ratio of two dyes which allows them to be identified in a dedicated reader (flowcytometer or CCD camera flow cell). In our proposed assay the beads are covalently coupled to oligonucleotides designed to capture specific mycobacterial rRNA molecules. This method has the advantage of avoiding an enzymatic amplification/labeling step wich is generally required for hybridization assays providing the potential to develop a robust and rapid method.

Proof of concept in the Luminex system:

In close collaboration with the RIVM, we assessed the system using 8 species of beads to identify the bacterial species and one to detect mycobacterial rRNA as positive control. Samples were both from patient materials and laboratory strains.

		Total sign	nal			% Total s	ignal				
RIVM	rCapA		Pos cont (Abs (26)	Avi (27)	Gor (28)	Kan (34)	Malm (39)	Mar (44)	Tub (54)	Xen (65
M abs	M abs	2789	32	20	7	6	6	8	6	6	8
Mabs	Мус	8782	4 4	8	7	8	6	7	7	6	8
M abs	M abs	14574	44	29	4	5	3	3	4	4	3
M abs	M abs	13693	41	32	4	4	3	4	4	4	4
Mabs	M abs	16281	41	33	3	4	3	4	3	4	4
Mavi	M avi	8831	35	2	47	2	2	3	2	3	3
Mavi	M avi	1688	24	8	21	8	8	8	6	10	8
Mavi	M avi	6855	37	2	49	2	2	1	2	2	3
Mavi	M avi	4220	27	4	42	5	5	4	4	5	4
Mavi	M avi	6861	37	2	47	2	2	2	2	3	3
Mavi	Mavi	9017	31	4	44	3	4	3	3	4	4
Mavi	Mavi	8867	32	3	44	3	3	4	3	4	4
Mavi	Mavi	2255	27	5	35	5	6	5	4	6	6
Mavi	Mavi	3017	26	7	32	7	5	6	5	6	7
Mchel	Mabs	9153	40	36	4	3	3	3	3	3	4
Mchel	M abs	1290	31	19	7	8	8	7	6	8	7
Michel	No result	8/9	12	12	- 11	- 11	9	11	10	11	13
Mfort	Myc	3215	51	6	5	5	6	/	6	/	/
IVI TORT		11287	65	4	4	4	4	5	5	5	4
		5416		4	3	4	3	4	<u>ح</u>	4	4
Nfort		11740	00	4	4	5	4	4	4	5	5
NITOR	IVIYC	11/16	/5	4	3	3	3	3	2	3	3
ivi gor		3574	50	4	4	11	4	4	ð	4	4
ivi gor	IVIYC Navo	6406	54	4	4	9	4	0	9	0 2	4
	IVIYC Navo	6734 1072	62	2	2	10	2	2	14	2	3
NI INT	IVIYC Navo	1973	47	b 4		b C	/		6	б Г	8 5
Mint	IVIYC Muc	4277	22	4	0	0	12	11	4	С 0	с 0
Mint	Nuc	2670	20 67	0 2	9	/	6	11	0	о Л	9
Mint	Muc	5180	45	5	4	4 5	12	4	4 5	4	4
Mint	Muc	5/32	40	5	8	7	12	7	5	2 2	6
Mint	Myc	35/13	40	6	7	6	8	7	5	6	6
Mint mix	Mkan	7551	45	2	, 2	2	30	8	2	2	2
Mkan	Mkan	1362	17	8	8	7	21	11	12	8	8
Mkan	Mkan	81/18	36	2	2	2	21	15	2	2	5
Mkan	Mkan	11083	29	2	2	2	33	16	2	4	6
Mkan	Mkan	10414	29	3	3	3	38	14	2	4	6
Mkan	Mkan	8562	34	2	2	2	37	13	2	3	4
Mkan	Mkan	5188	33	3	3	3	35	9	3	4	5
M kan 1	Mavi	3084	31	5	33	5	5	5	4	5	6
M kan 1	Mavi	9970	40	3	40	3	3	2	3	3	3
M kan I	No result	833	11	11	9	11	11	11	12	10	14
Mmalm	Мус	5082	58	5	6	6	5	6	5	5	5
Mmalm	Мус	2495	53	6	5	6	5	8	5	5	6
M mar	No result	931	12	11	10	11	11	10	14	11	11
Mmar	No result	858	14	10	11	9	11	12	10	12	11
M mar	M mar	3682	35	5	5	7	5	5	22	13	4
Mmar	M mar	1752	23	8	9	8	6	6	23	9	6
M mar	M mar	9358	36	1	1	5	2	2	33	18	2
Mmuc	Мус	4008	63	3	4	5	5	5	5	5	5
Mmuc	Мус	1148	31	9	8	8	8	8	8	9	10
M peregri	Мус	5582	67	4	5	4	3	4	4	4	5
M peregri	Мус	7917	67	4	4	4	4	5	4	4	5
Mscr	M kan	2185	17	6	5	6	34	12	7	6	8
Mscr	M kan	10513	34	2	2	2	37	13	2	2	5
Mscr	M kan	6560	29	2	2	2	40	16	2	3	6
Mscr	M kan	1919	26	6	6	6	24	10	6	6	9
Msimiae	Mtb	6482	47	4	3	5	5	3	5	24	4
Msimiae	Mkan	5407	32	3	3	2	37	13	3	3	5
Mterrae	Мус	5749	71	3	2	3	2	3	5	9	3
Mterrae	Mtb	5731	33	2	2	7	2	2	19	33	2
Mterrae	Mkan	9750	33	1	1	1	39	16	1	2	5
Mxen	Mxen	11633	33	1	1	1	1	1	6	1	54
Mxen	Mxen	9639	30	1	1	1	3	1	5	1	55
Mxen	Mxen	7777	31	1	2	1	1	1	6	1	54
Mtb	Mtb	11586	53	2	2	4	3	2	5	27	2
Mtb	Mtb	10475	49	2	3	4	3	2	4	30	3
444	N 4+1	0000		~	~	-	2	•	-	20	

Direct capture and detection of bacterial ribosomal RNA (rRNA). The concept:

There are 1000 to 10,000 copies of rRNA present in an actively growing bacterial cell.

Our proposed assay relies on a series of identifiable micro-beads covalently coupled to oligonucleotides that specifically bind to mycobacterial rRNA. A second oligonucleotide containing a biotin label is also present and can hybridize to the targeted bacterial rRNA directly adjacent to the immobilized oligonucleotide.

In this way, when the cell lysate contains bacterial ribosomes, the rRNA acts as a bridge between the immobilized and the labeled oligonucleotides and concentrate the signal at the bead surface where it can be detected. After washing of the (magnetic) beads the amount of label on each species of beads can be accurately determined by the Luminex device.

Cartoon of the proposed method (left – 6 µM bead red, immobilized probe yellow, fluorescent probe green, captured rRNA brown)

Fluorescent microscopic image of the beads (right).

Once the characteristics of the assay had been defined using purified whole cell NA, we applied the assay to crude bacterial lysate, using the beads themselves to capture and concentrate

Mechanical Ivsis Mechanical Mechanical Mechanical Mechanical N. Tuberculosis cells are hard to lyse results were obtained by lysing the ce disposable OmniLyse devices within minutes.	centrate but good ells with 2.5	Mtb Mtb 8336 53 2 2 5 3 3 5 25 2 Mtb Mtb 5881 47 3 3 5 4 3 5 26 3 Mtb Mtb 5881 47 3 3 5 4 3 5 26 3 Mtb Mtb 9865 54 2 2 4 3 2 5 36 3 3 3 5 46 3 2 5 36 3 3 3 5 4 3 2 5 36 3 3 3 5 4 3 2 5 36 3 3 3 5 4 3 2 5 36 3
 Simplified method: Hybridize rRNA to beads + reporter Figure of <i>M. tuberculosis</i> is directly hybridized in 5M GTC (overnight) to bead coated with the capture probe and the fluorescent reporter oligopucloctide 	Summary of the results of 100 MGIT Cultures tested in the RIVM (data shown on the right) S Total PosCont Accurate ID Expected Result Incorrect	Mtb Mtb 4916 11 3 3 10 6 3 12 49 3 Mtb Mtb Mtb 23751 15 1 2 12 8 2 19 40 2 Mtb Mtb 13582 14 1 12 5 1 14 49 1 Mtb Mtb 23691 16 1 2 12 7 2 19 40 1 Mtb Mtb 9518 16 1 2 12 7 2 19 40 1 Mtb Mtb 9518 17 1 2 8 5 1 76 37 2 Mtb Mtb 6612 15 2 2 8 5 2 36 39 2 Mtb Mtb 7994 14 2 2 8 5 2 36 39 3 Mtb Mtb 5114 12 2 3 8 5 <
Beads are magnetically concentrated, washed and then analyzed by the Luminex system.	NTM 63 59 25 44 2 MTBC 36 36 34 34 1	Mib Mib
Magnetically concentrate and detect	Total99*9559783* = one mixed culture excluded from the analysis	Mtb Mtb 19933 16 1 1 12 7 1 27 33 1 Mtb Mtb Mtb 2551 13 5 4 7 6 50 21 32 6 Mtb Mtb 22543 16 1 1 12 8 1 27 33 1 Mtb Mtb 22543 16 1 1 12 8 1 27 33 1 Mtb Mtb 33189 18 0 1 13 8 1 27 31 1 Mtb Mtb 12269 15 1 1 9 5 1 30 36 1 Mtb Mtb 4157 17 3 3 8 3 3 22 37 33 Mtb BCG Mtb 12532 15 1 2 11 5 12 12 5 5

Conclusion: Our results show that unamplified, unlabeled rRNA can be captured, detected, and identified using a liquid bead array. Results are encouraging, but can be improved. Due to the genetic similarity of the targeted region the current test cannot differentiate between *M. kansasii* and *M. scrofulaceum* and maybe *M. simiae*, nor can it differentiate *M. abscessus* from *M. chelonae*.

One *M. kansasii* laboratory strain was identified by the rCapA as *M avium*. Here there is also no similarity among the 2 regions. One patient sample, identified by the RIVM as *M simiae* and assayed twice by the rCapA assay from 2 different MGIT cultures, was once identified as *M tuberculosis* by the rCapA assay and once as *M kansasii* like. Because of similarity in the 16S region targeted it is likely that the rCapA assay will not always separate *M kansasii* from *M simiae*. Two *M. terrae* laboratory strains were tested using the rCapA assay one was identified as *M tuberculosis* and one as *M kansasii*. This result is difficult to explain, because both the *M tuberculosis* and the *M kansasii* probe have very little reported similarity with the *M terrae* 16S region. Only one BCG out of 36 MTB complex tested was not identified by the rCapA assay. Further work on this approach will, in addition to optimizing the protocols, include: extending the range of species identified by adding beads, exploring the use of more etable/brighter labels (guantum date ate) and alternative datection attraction attraction with our MicroNed partners and others).

