

Luminex GPP xPERIENCE within Public Health Wales

Michael Perry – Clinical Scientist Rotterdam – 19th June 2013

Public Health Wales

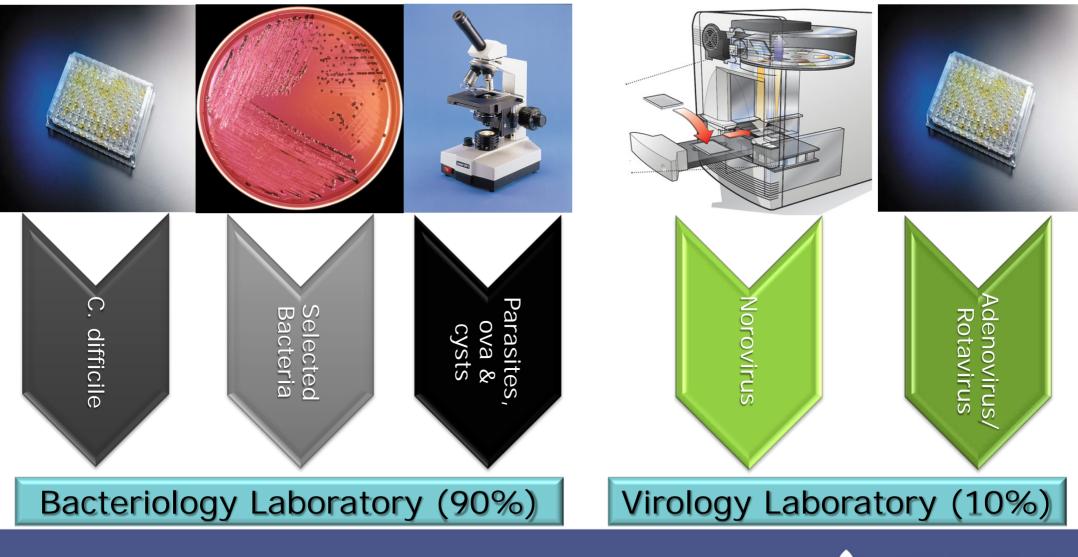
- Provides an expert public health resource as part of the NHS in Wales.
- Ambition to achieve a healthier, happier and fairer Wales.

Michael Perry

Public Health Wales

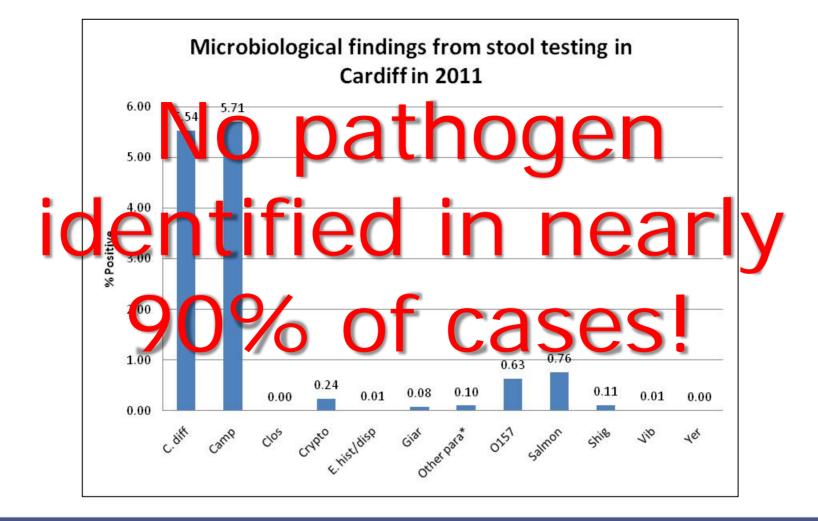
 Includes a network of microbiology laboratory services that provide services relating to the diagnosis, surveillance, prevention and control of communicable diseases for hospitalised patients and the community.

Microbiology Cardiff


 University Hospital of Wales - 1000 bed hospital in Cardiff

 Serves C&V NHS trust and the larger population of Wales

Process c.1M tests/year


Current strategy

Michael Perry

Faecal Pathogen Detection

| lechyd Cyhoeddus | Cymru | Public Health | Wales

Michael Perry

Poor diagnostic yield

 Insufficient testing – STEC/ETEC, viruses etc

Low sensitivity (microscopy/ELISA)

Non-viable/non-culturable – time & selective processes

Current strategy

- Labour intensive
- Subjective
- Low yield
- Confusing
- Inefficient

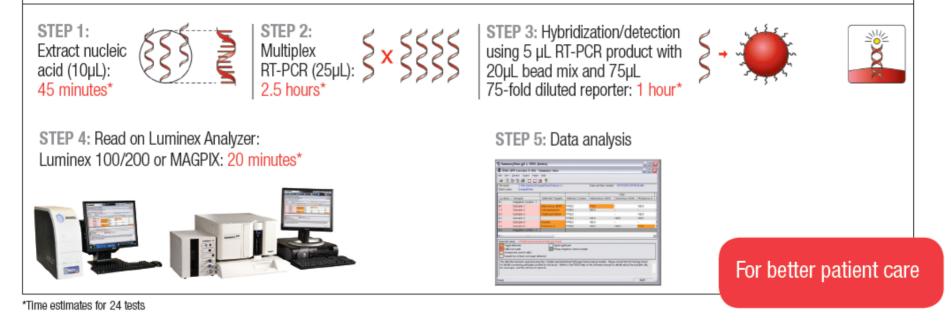
Syndromic approach

- One sample
- One laboratory
- Increased laboratory efficiency
- Increased yield?
- Improved clinical outcome?
- Costs?

Luminex xTAG GPP

- 15 'targets':
 - -9 bacterial
 - 3 viral
 - 3 parasite
- 1 tube/test!

Salmonella
Shigella
Campylobacter
Yersinia enterocolitica
Enterotoxigenic E. coli (ETEC) LT/ST
Escherichia coli 0157
Shiga-like Toxin producing <i>E. coli</i> (STEC) stx 1/stx 2
Clostridium difficile Toxin A/B
Vibrio cholerae
Adenovirus 40/41
Rotavirus A
Norovirus GI/GII
Giardia lamblia
Cryptosporidium
Entamoeba histolytica

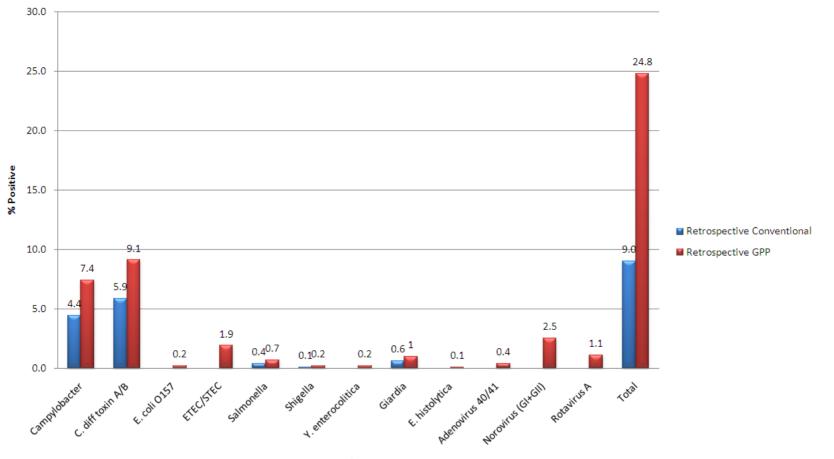

Target (Analyte)

Michael Perry

Luminex xTAG Gastrointestinal Pathogen Panel (GPP)

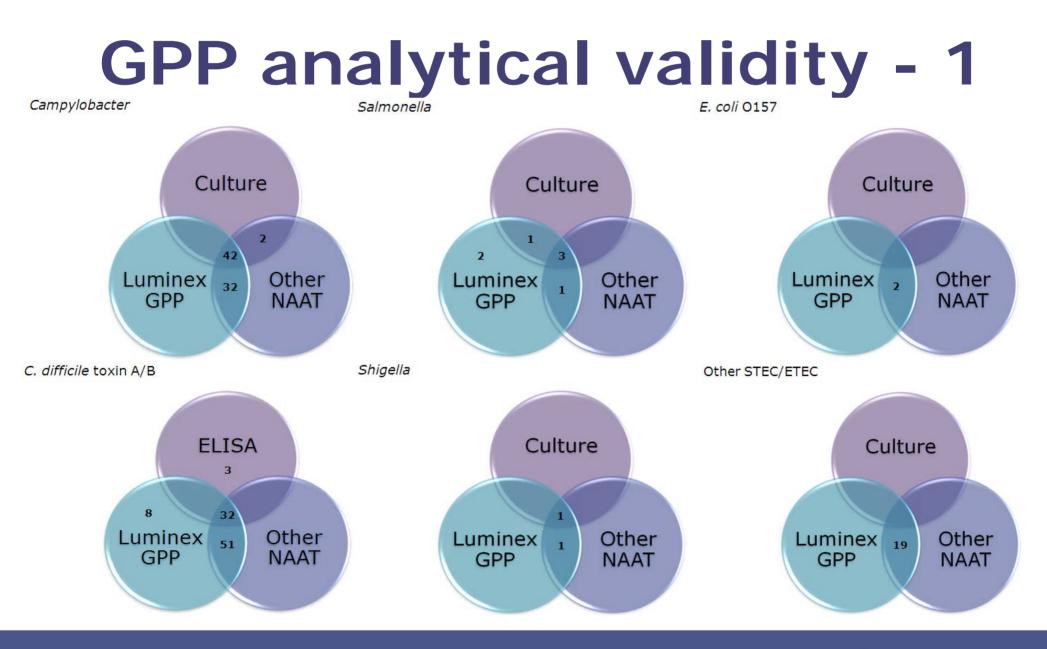
Product is region specific and may not be approved in your country of residence. For a complete list of warnings and precautions, consult the package insert.

| Iechyd Cyhoeddus | Cymru | Public Health | Wales


Luminex GPP vs. conventional approach

- 1000 clinical samples
- Conventional testing:
 - -Ova, cysts & parasites (n=995)
 - Campylobacter, E. coli O157, Salmonella and Shigella (n=991)
 - C. difficile ('vulnerable' patients only n=597)

Retrospective test results


Gastrointestinal pathogen detection by conventional methods and the Luminex GPP assay (n=1000)

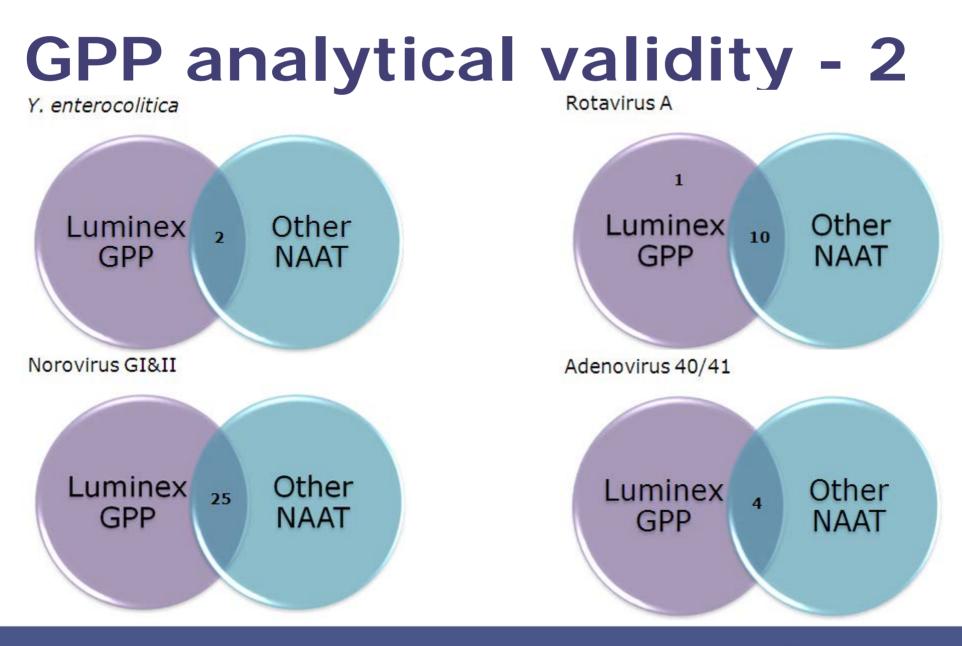
Pathogen

Michael Perry

Michael Perry

Results - In detail

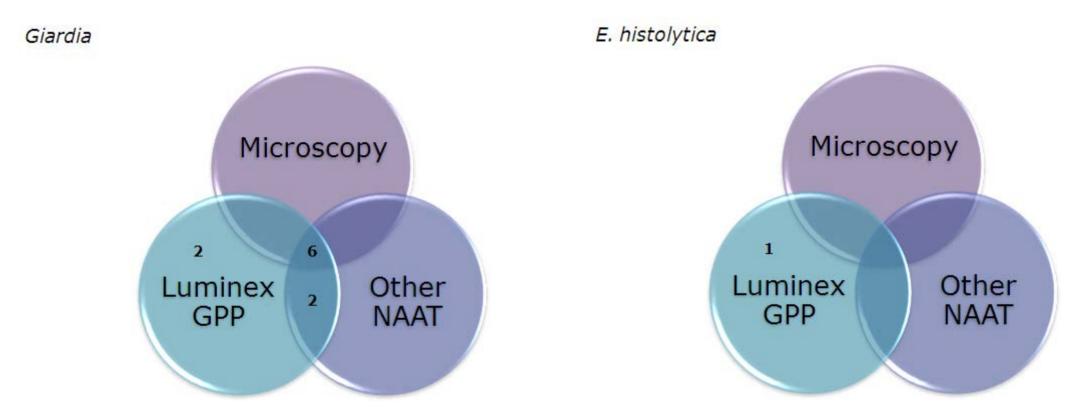
- Campylobacter:
 - -44 culture detections
 - -74 GPP detections
- Positivity difference = 3% (1.9-4.3)
- z-test: 5.14, P<0.001
- Culture 59.5% sensitive
 - Tam et al. 2012: 58%; Bessède et al. 2011: ~60%


| Iechyd Cyhoeddus | Cymru | Public Health | Wales

Results - In detail

- C. difficile:
 - -35/80 GDH toxin A/B EIA detections
 - -57/80 GDH GPP toxin detections
 - Additional 34 GDH neg GPP detections
- Positivity difference = 27.5% (15.3-38.3)
- *z*-test:

– Toxin EIA vs. GPP:44 P<0.001



Michael Perry

GPP analytical validity - 3

• No Cryptosporidium detections

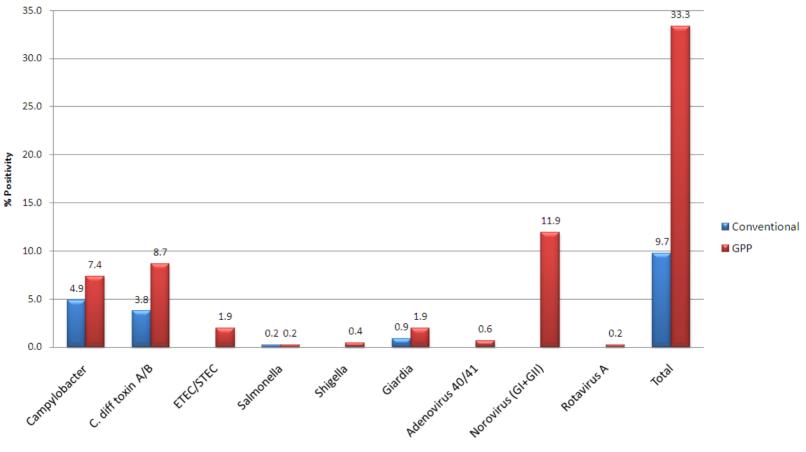
UK Cryptosporidium Reference unit

- All samples correctly identified.
- Included:
 - 2 low-level
 - 5 potential cross reactive samples

Sample ID	Sample type	Species or genotype	Cryptosporidium spp. (real time	Luminex GPP result
1	Human sample	Giardia duodenalis	PCR) Not done	Giardia
2	Human sample	Giardia duodenalis	Not done	Giardia
3		Giardia duodenalis	Not done	Giardia
3 4	Human sample			Giardia
•	Human sample	Giardia duodenalis	Not done	
5	Human sample	Giardia duodenalis	Not done	Giardia
6	Human sample	Giardia duodenalis	Not done	Giardia
7	Human sample	Giardia duodenalis	Not done	Giardia
8	Human sample	Giardia duodenalis	Not done	Giardia
9	Human sample	Giardia duodenalis	Not done	Giardia
10	Human sample	Giardia duodenalis	Not done	Giardia
11	Human sample	C. hominis	C. hominis	Cryptosporidium
12	Human sample	C. hominis	C. hominis	Cryptosporidium
13	Human sample	C. hominis	C. hominis	Cryptosporidium
14	Human sample	C. hominis	C. hominis	Cryptosporidium
15	Human sample	C. hominis	C. hominis	Cryptosporidium
16	Human sample	C. hominis	C. hominis	Cryptosporidium
17	Human sample	C. hominis	C. hominis	Cryptosporidium
18	Human sample	C. parvum	C. parvum	Cryptosporidium
19	Human sample	C. parvum	C. parvum	Cryptosporidium
20	Human sample	C. parvum	C. parvum	Cryptosporidium
21	Human sample	C. parvum	C. parvum	Cryptosporidium
22	Human sample	C. parvum	C. parvum	Cryptosporidium
23	Human sample	C. parvum	C. parvum	Cryptosporidium
24	Human sample	C. parvum	C. parvum	Cryptosporidium
25	Human sample	C. parvum	C. parvum	Cryptosporidium
W23736	DNA extract	Not Cryptosporidium	Challenging sample	ND
126	DNA extract	Not Cryptosporidium	Challenging sample	ND
204	DNA extract	Not Cryptosporidium	Challenging sample	ND
W28023	DNA extract	Not Cryptosporidium	Challenging sample	E. histolytica
W28029	DNA extract	Not Cryptosporidium	Challenging sample	E. histolytica

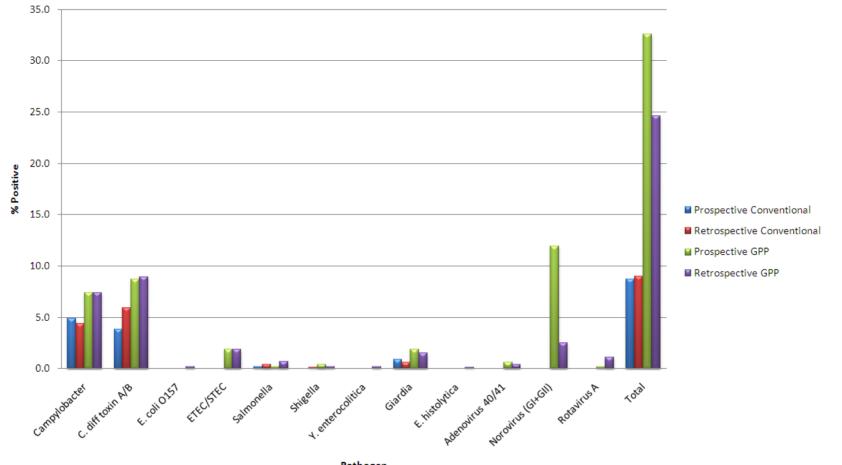
| Iechyd Cyhoeddus | Cymru | Public Health | Wales

Retrospective co-pathogens


Co-pathogen type	GSTS	Cardiff
Viral/Viral	4	2
Viral / Bacterial	0	6
Viral / Parasitic	3	0
Bacterial / Bacterial	2	2
Parasitic/parasitic	1	0
Bacterial / Parasitic	2	0
Viral / Bacterial / Parasitic	0	0
TOTAL	12	10

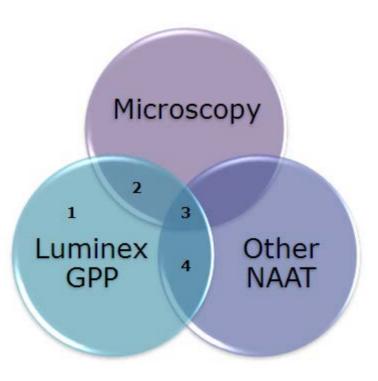
Prospective test results

Gastrointestinal pathogen detection by conventional methods and the Luminex GPP assay (n=472)


Pathogen

Prospective vs. retrospective

Gastrointestinal pathogen detection by conventional methods and the Luminex GPP assay in prospective and retrospective testing



Pathogen

Prospective Giardia accuracy

Michael Perry

Prospective co-pathogens

Co-pathogen type	Cardiff
Viral / Bacterial	5
Bacterial x 2 / Parasitic	1
TOTAL	6

Prospective vs. retrospective

• Summer vs. winter

• Non-selective vs. selective

Inhibition rate similar

Infection control

- C. difficile:
 - -40 GPP
 - -14 tox ELISA
 - -32 toxigenic culture
 - 5 culture neg
 - 1 toxin neg
- 81% of patients toxigenic C. diff

Michael Perry

Infection control

Concerns over increased reporting

Positive anecdotes

Workflow

- Only 2 lab technicians required —Less skilled than current staff
 - Results reported from 6-24 hours depending on when samples arrive in laboratory

Conclusion

FASTER: turn-around-times – 24-72hrs to 6-24hrs

- **HIGHER**: efficiency & yield
 - 5 'tests'/2 samples to 1 'test'/1 sample
 - -9% to 25-33% yield
- STRONGER: compared to conventional testing strategies – positive & negative results

Further work/bottlenecks

- Clinical impact & healthcare economics
- Process automation
- Other syndromes

Acknowledgements & References

- Public Health Wales colleagues
- UK Cryptosporidium Reference Unit colleagues
- GSTS colleagues
- Luminex
- Bessède E. *et al.* New methods for detection of Campylobacters in stool Samples in comparison to culture. J Clin Microbiol 2011; 49(3): 941.
- Lopman B. A. *et al.* Clinical manifestation of norovirus gastroenteritis in health care settings. Clin Infect Dis 2004; 39: 318-24.
- Lopman B. A. *et al.* Epidemiology and cost of nosocomial gastroenteritis, Avon, England, 2002-2003. Emerg infect Dis 2004; 10(10): 1827-34.
- Tam C. C. *et al.* Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 2012; 61: 69-77.
- Tam C. C. *et al.* Changes in causes of acute gastroenteritis in the United Kingdom over 15 years: microbiologic findings from 2 prospective, population-based studies of infectious intestinal disease. Clin Infect Dis 2012; 54: 1275.

Michael Perry

