High Throughput Screening For Prion Therapeutics

Joel Gever April 4, 2014

Emerging data suggests most important neurodegenerative disorders are prion diseases

Selection of cell type is an important decision for phenotypic screens

- PrP^{Sc}:
 - No infected human cell lines have been developed to date
 - N2a mouse neuroblastoma infected with RML mouse adapted-scrapies
 - CAD5 infected with RML and other prion strains (D. Berry)

Selection of cell type is an important decision for phenotypic screens

- PrP^{Sc}:
 - No infected human cell lines have been developed to date
 - N2a mouse neuroblastoma infected with RML mouse adapted-scrapies
 - CAD5 infected with RML and other prion strains (D. Berry)
- PrP^C:
 - T98G human glioblastoma
 - IMR32 human neuroblastoma
 - N2a mouse neuroblastoma

Selection of cell type is an important decision for phenotypic screens

- PrP^{Sc}:
 - No infected human cell lines have been developed to date
 - N2a mouse neuroblastoma infected with RML mouse adapted-scrapies
 - CAD5 infected with RML and other prion strains (D. Berry)
- PrP^C:
 - T98G human glioblastoma
 - IMR32 human neuroblastoma
 - N2a mouse neuroblastoma
- Tau:
 - T98G human glioblastoma
 - IMR32 and SH-SY5Y human neuroblastoma
 - HEK293-RD-YFP (Kfoury, JBC, 2012)
 - Differentiated neural progenitor cells derived from human induced pluripotent stem cells (Haggarty, Biol. Psychiatry, 2013)

HTS at IND relied on protein reduction ELISAs (historically)

"Glowing well" assay requires separate cell viability measurement to eliminate false positives due to cell death

• **Calcein** (intact membrane and functioning esterases)

• Cell TiterGlo (total ATP)

IND database has 159,693 registered compounds and consists primarily of:

Library	# of Compounds	ChEMBL Target ¹
Chembridge (CB-1)	23,759	75%
Chembridge CNS-Set (CB-2)	39,840	70%
SPECS (via SMDC)	30,104	70%
ChemDiv Diversity	21,995	n.d.
Life Chemicals	30,400	n.d.
Broad Institute	9,513	n.d.
Johns Hopkins Clinical Compounds	1,420	n.d.
Analogs and other small collections ²	≈ 2000	n.d.

¹% of 1652 targets with \geq 10 compounds predicted to hit (John Irwin, UCSF) ² University of Kansas, UCLA, Microsource, analog by catalog, synthesized molecules

7

ScN2a PrP^{Sc} ELISA

One common criterion of a "good" assay

$$- Z' = 1 - [(3*SD_{pos} + 3*SD_{neg})/[(mean_{pos} - mean_{neg})]]$$

- Z' ideally should be
$$\geq 0.5$$

Several promising leads emerged from the PrP^{Sc} HTS campaign

- 66,496 compounds screened in dividing cells¹
 - 14 structural classes found by clustering analysis
 - Aminothiazoles were among the most potent and a focus of early optimization

Ron Hawley, IND, UCSF

- 1. Silber, B.M., et al. (2013). Bioorg Med Chem
- 2. Ghaemmaghami, S., et al. (2010). J Virol

Optimization of the aminothiazoles

Potency was optimized while maintaining and improving ADME properties^{3,4}

				S NH
	IND-24	IND-81	IND-114338	IND-30410
EC ₅₀ ScN2a (μM)	1.29	1.95	0.068	0.248
Mouse liver microsomesT _{1/2} (min)	>60	19	>60	>60
Brain AUC _{last} /EC ₅₀ (10mg/kg PO)	22.6	2.3	160	75

 Compounds in the series have excellent brain penetration, reasonable bioavailability (IND24 = 40%), and metabolic stability, and show no apparent toxic effects in long term dosing in mice⁵

- 3. Gallardo-Godoy, A., et al. (2011). J Med Chem
- 4. Li, Z., et al. (2013). Chem Med Chem
- 5. Silber, B.M., et al. (2013). Pharm Res

Animal models for prion disease

Kurt Giles, IND, UCSF

H & E

Effects of IND24 treatment in Tg mouse models of prion disease

Berry D B et al. PNAS 2013;110:E4160-E4169

Effects of IND24 treatment in Tg mouse models of prion disease

Assay format has shifted primarily to high content analysis (HCA)

ELISAs are convenient because all you need is a plate reader

<u>Undifferentiated neural progenitor cells (NPC)</u> Nucleus (blue), tubulin (green) and tau (red) (kindly provided by Haggarty Lab, Harvard University)

HCA is superior to ELISAs in most ways

- Orders of magnitude more information
 - Thousands of readouts in each well
 - Can measure labeled macromolecules in subcellular regions
 - Can measure up to 4 wavelengths simultaneously
 - Measurements only in cells that are present (cell viability assay not required as in ELISA)
- Can use cells available in small quantities

NPCs differentiated

for 21 days

Nuclei (blue) Tau (red) Tubulin (green)

Automation enables high throughput for time consuming assays

- 30 60 minutes plate read time by HCA; 24/7 screening will more than triple throughput
- 2. Semi-automation of plate preparation may increase throughput
- 3. With scheduling software, can weave activities together (e.g. hitpicking)

Tau aggregation may be a promising approach

Bulic et al., 2009

Tau aggregation using HEK-RD(LM)-YFP

HEK-RD(LM)-YFP clone 9

- HEK293 cells transfected with repeat domain containing double mutation (P301L and V337M)
- Conjugation to YFP enables live cell imaging
- Two subclones (clone 9 and clone 10) are phenotypically distinct and stably express tau aggregates

Cells kindly provided by Marc Diamond, Washington University

HEK-RD(LM)-YFP clone 1 Infection

2000 HEK Clone 1 cells/well in 384 well plate Plates analyzed 3 days after exposure to lysate or vehicle

Vehicle

2 µg/well Clone 9 lysate

Hoechst nuclear stain – used at sub-cytotoxic concentration

HCA enables the acquisition of many types of data simultaneously

- Mean fluorescence (I)
- Mean area of fluorescence (A)
- Integrated total fluorescence (I x A)
- # of aggregates
- Mean size of aggregates
- Cell area
- Nuclear area

For other cell types (e.g. NPCs)

- Axonal vs somatodendritic staining
- Neurite length
- # of neurites
- # of dendritic branches

Aggregation Assay Optimization

- Magnitude of tau aggregation related to both dose of clone 9 lysate and amount of time post-exposure
- Conditions for HTS:
 - 0.02 and 2 µg/well of clone 9 lysate
 - Plates imaged 2 and 3 days after exposure to lysate

Aggregation Assay Optimization

Aggregation Assay Optimization

Data storage at IND: finding the right blend of functionality and affordability

CDD is:

- affordable relational database
- web-based (accessible anywhere)
- secure
- simple
- requires minimal vendor support
- BUT limited customization

20 – 100 TB per year of image data will probably require NAS server or something similar

D.D. IN	D Main Vaul	t i -					Joel Ge	ver: Account - Help - Log o
ashboard	Explore Data	Import Data	Reports	Manage	Settings			You are a Vault Administrat
ack to Search	00024						Vaul IND	t Main Vault
H.C.	`NH	Overvi	ew Batch	es 6 Plat	es 1 Prote	ocols 8	Collections 0 Pro	jects 2 Files 5
5		ſ	Definition				🖉 Ed	it definition and structure
	\geq		Name:	IND-0000024				
			Synonyms: Description:	(no synonyms)			
Find molecules	s with this structure		Structure:	SMILES · CXS	MILES InChi	S2)C2=C	y · IUPAC CC-C(C-C2)C2-CC-CC-I	€ €2)=N1
Add to a collect	tion							
Add a batch Manage projec	t access			F 1-1-1-				
Delete this mol	ecule	User-defined Fields 🔗 Edit user-defined field						
Showing data fr	rom 2 of 2 projects				Chemica	I Series:	Aminothiazoles	
Owner: Joel Created: Nov	Gever ember 18, 2010	L	ipinski Prop	perties		Θ	Additional Properties	3 😡
pdated: Nov	ember 18, 2010		Molecula	r weight: 343.	445 g/mol		Formula:	C ₂₁ H ₁₇ N ₃ S
				log P: 5.94	ł		pKa:	5.62
			H-bond	donors: 1			Exact mass:	343.114 g/mol
			H-bond ac	ceptors: 3			Heavy atom count:	25
			Lipinski F	tule of 5: One 3 of rang	violation 4 within desirable e		Composition:	C (73.44%), H (4.99%), N (12.23%), S (9.34%)

PK data now being stored in CDD

• Study data extracted from Excel spreadsheet using Python script

Select		Batch Fields	in vivo PK data								
all - none	Molecule 🕈	Name 🗢	Study ID ≑	Species 🗢	Animal type 🗘	Route ≑	Dosing Method 🗢	Dose(s) (mg/kg) 🌻	Formulation 🗢	Run Date 🗢	Study Data File 🗢
	flag outliers	rs AA-001	GD-AMT-016	Mouse	FVB	ро	gavage	10		10/19/2010	GD-AMT-016.xlsx
			SR-PK-0023	Mouse	FVB	iv	i.v.	1	10% DMSO in 1:1 PEG400/H2O	2/3/2011	SR-PK-0023.xlsx
	s - cn		SR-PK-0134	Mouse	FVB	iv	i.v.	1	10% DMSO, 20% Ethanol in 1:1 PEG400/H2O	4/7/2011	SR-PK-0134.xlsx
			SR-PK- 0026_0027_0028	Mouse	Female FVB mice	ро	feeding	75, 125, 210	100% PEG400, diluted 1/800 in chocolate diet	6/2/2011	SR-PK-0026_0027_0028.xlsx
	IND-0000024 IND Main Vault		GD-AMT- 005_006_007_008_014	Mouse	Female FVB mice	ро	feeding	25, 75, 125, 210	100% PEG400, diluted 1/80 in chocolate diet	July 29-30, 2010	GD-AMT- 005_006_007_008_014.xlsx
			SR-PK-0002	Mouse	FVB	ро	feeding	75	100% PEG400, diluted 1/80 in chocolate diet	10/28/2010	SR-PK- 0002_0003_0004_0005.xlsx
			SR-PK-0026	Mouse	FVB	ро	feeding	75, 125, 210	100% PEG400, diluted 1/800 in chocolate diet	12/9/2010	SR-PK- 0026_0027y3_14_32_90.xlsx
			SR-PK-0061	Mouse	FVB	ро	feeding	75, 75, 75, 75	100% PEG400, diluted 1/80 in chocolate diet	1/6/2011	SR-PK- 0061_0062_0063_0064.xlsx
			SR-PK-0074	Mouse	FVB	ро	feeding	75, 75, 75, 75	100% PEG400, diluted 1/80 in chocolate diet	1/20/2011	SR-PK-0074-0081.xlsx

Link to raw data is helpful

Raw data and graphs are easily retrieved

Conclusions

- Screening format has transitioned from relatively primitive ELISAs to sophisticated, data-rich high content analysis
- Automation has been employed to maximize advantages of high content analysis
- TBs of image data necessitates more sophisticated data storage

Back up slides

Several promising leads from PrP^{Sc} reduction HTS

- 66,496 compounds screened in dividing ScN2a cells using an ELISA
 - 14 structural types were investigated to varying degrees
 - Good variety of structural types found, with very good potency for lead compounds

IND-0114335 aka "AMT1" (aminothiazole)

IND-0114337 aka "**AMT2**" IND-0031751 aka "**Amide**" (aminothiazole) (amide)

Pharmacological combination hints at similarity/dissimilarity of mechanism

Measuring tau reduction by HCA

Epitope Map of Tau Antibodies

Tau-12 & Tau-13 gave strongest signal

Tau antibodies kindly provided by Skip Binder, Northwestern University

SH-SY5Y human neuroblastoma cells:

• Nucleus (DAPI)

• Tau (1°: Tau-13; 2° GaM-Alexafluor488)

Tau HCS update

- Triplicates from 384 well plate, SH-SY5Y cells
- Primary = Tau13
- Secondary = goat anti-mouse-FITC or goat anti-mouse-Dylight
 488

Data quality of Tau HCS is comparable to previous screens

- Tau reduction by HCA
 - 43,504 molecules tested in SH-SY5Y human neuroblastoma cells: single well, 10 μM
 - 652 hits (≥ 40% reduction of tau, < 50% reduction # of cells)

HEK-RD(LM)-YFP-mCherryNLS

Nuclei stained with Hoechst

Nuclei expressing mCherry-NLS

mCherry with a nuclear localization sequence enables automated nuclear localization

HEK-RD(LM)-YFP cells expressing mCherry-NLS kindly provided by Marc Diamond, Washington University