

Application Note Rev. 1.00 / November 2013

ZSLS7031

230VAC Buck-Boost Converter for 45 LEDs

Brief Application Description

The ZSLS7031 is a high-brightness LED driver that supports both isolated and non-isolated LED lighting designs with active power factor correction (PFC). The ZSLS7031 functions in primary-side controlled peak-current-mode without requiring an optocoupler or any other type of additional secondary-side feedback device.

The device operates at a constant frequency in discontinuous conduction mode (DCM) to provide constant power to the output. It operates from a wide input voltage range; e.g., from 85VAC to 265VAC.

The ZSLS7031 integrates over-current and overvoltage protection, as well as a thermal shutdown to halt the switching action in the event of abnormally high operating temperatures.

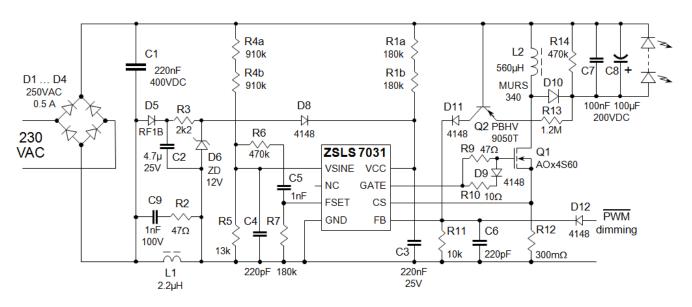
The ZSLS7031 is designed for isolated flyback and non-isolated buck-boost applications but also has applications in PFC buck operation in special conditions.

Refer to the *ZSLS7031 Data Sheet* for details for additional features.

Benefits

- High efficiency 90%
- No optocoupler or secondary-side feedback
 device required
- Safety features including thermal shutdown and over-current and over-voltage protection

Available Support


• ZSLS7031 Demonstration Board

Typical Applications

- Street Lighting with remote management
- Indoor lighting for home automation

Application Physical Characteristics

- Supply voltage: 230 to 240 VAC
- Output: 45 LEDs (nominal 135V) at 350mA
- Power factor >0.9
- Total harmonic distortion (THD) < 20%

Application Schematic

For more information, contact ZMDI via LED_Drivers@zmdi.com.

© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00—November 26, 2013. All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.

1 Introduction

The purpose of a buck-boost converter is to provide a constant output even if the input supply changes from lower to higher than the required output voltage. Like a flyback converter, the buck-boost converter can be active during the entire rectified sinusoid, allowing continuous power factor correction (PFC) and low total harmonic distortion (THD).

The buck-boost topology provides better efficiency when the LED forward voltage is relatively high and the current is reasonably low as in the example given in this application note for a string composed of 45 LEDs in series at a current of 350mA. The schematic is given on page 2. This circuit results in a peak current in the inductors and the MOSFET in the order of a few amperes. The dimensioning of the inductors, the MOSFET, and the buck-boost diode (D10) should take into count these current values.

2 The Buck-Boost Configuration

The following example demonstrates the design process for a buck-boost converter using the ZSLS7031.

Note: This example circuit is designed for a 230VAC input and an output string of 45 LEDs in series with an LED current of 350mA.

2.1. Dimensioning

The buck-boost converter can be considered to be a special case of a flyback converter, where the transformer's primary/secondary ratio equals 1, and the secondary is simply not used, which of course sacrifices isolation. This topology is advantageous in terms of efficiency when the LED voltage is reasonably high; i.e., in the region where the flyback voltage would be with a transformer present. Since a single inductor does not have leakage inductance, a snubber dissipating the related energy is not needed. Considering this, all equations for calculating the transformer's primary inductance in a flyback converter are also valid for a buck-boost inductor by simply assuming equations (1) through (3).

$$n_{prim} = n_{sec}$$
 (1)

$$I_{prim} = I_{sec}$$
 (2)

$$V_{fb} = V_{LED} + V_{D}$$
(3)

The operating supply current for the ZSLS7031 in a buck-boost converter can be provided from an auxiliary winding on the inductor (i.e., it functions as a complete transformer again) but without needing a snubber, *or the operating current can be provided by an alternative supply concept as shown in the schematic.*

Data Sheet November 26, 2013	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	3 of 5	1
---------------------------------	--	--------	---

2.2. Protection

2.2.1. Output Over-Voltage Protection

With proper dimensioning of components in the buck-boost converter application circuit, an overvoltage condition in the output will be detected. Q2, R11, and R13 operate as an inverting amplifier with a gain of R11/R13, providing a fraction of the LED voltage to the overvoltage detection input FB, referenced to ground. R11 and R13 in the output divider must be dimensioned so that the voltage across R11 is 1.25 V when VLED reaches the overvoltage shutdown level.

2.2.2. Over-Current Protection

The ZSLS7031 has an integrated overcurrent protection circuit that switches off the driver for 60 clock cycles of the oscillator if a voltage > 700mV is detected across R12 at the end of the blanking time (typically 500ns after the MOSFET is turned on).

2.2.3. Under-Voltage Lockout

If the input voltage on the VCC pin on the ZSLS7031 falls below the under-voltage threshold of 8V (typical), the under-voltage lockout (UVLO) will be triggered and the ZSLS7031 will stop.

3 Ordering Information

Ordering Code	Description	Package
ZSLS7031ZI1R	ZSLS7031 Flyback LED Driver, 3mm x 3mm MSOP-8, 40 to 105 °C	Tape on Reel
ZSLS7031KIT-D1	ZSLS7031PCB-D1 Evaluation Board, 5 sample ZSLS7031 ICs	Kit

4 Related Documents

Note: X_xy refers to the current revision of the document.

Document	File Name
ZSLS7031 Data Sheet	ZSLS7031_Data_Sheet_RevX_xy.pdf

Visit the ZSLS7031 product page at <u>www.zmdi.com/zsls7031</u> on ZMDI's website <u>www.zmdi.com</u> or contact your nearest sales office for the latest version of these documents.

Sold in North America By: Servoflo Corporation 75 Allen Street Lexington, MA 02421 Tel: 781-862-9572

www.servoflo.com / info@servoflo.com

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	4 of 5

5 Glossary

For this table, only list acronyms that occur in your data sheet.

Term	Description	
FB	Feedback	
PFC	Power Factor Correction	
THD	Total Harmonic Distortion	
UVLO	Under-Voltage Lockout	

6 Document Revision History

Revision	Date	Description
1.00	November 26, 2013	First release.

Sold in North America By: Servoflo Corporation 75 Allen Street Lexington, MA 02421 Tel: 781-862-9572

www.servoflo.com / info@servoflo.com

Sales and Further Information		www.zmdi.com LED		Drivers@zmdi.com	
Zentrum Mikroelektronik Dresden AG Global Headquarters Grenzstrasse 28 01109 Dresden, Germany Central Office: Phone +49.351.8822.0 Fax +49.351.8822.600	ZMD America, Inc. 1525 McCarthy Blvd., #212 Milpitas, CA 95035-7453 USA USA Phone +855.275.9634 Phone +408.883.6310 Fax +408.883.6358	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan Phone +81.3.6895.7410 Fax +81.3.6895.7301	ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan Phone +886.2.2377.8189 Fax +886.2.2377.8199	Zentrum Mikroelektronik Dresden AG, Korea Office U-space 1 Building 11th Floor, Unit JA-1102 670 Sampyeong-dong Bundang-gu, Seongnam-si Gyeonggi-do, 463-400 Korea Phone +82.31.950.7679 Fax +82.504.841.3026	
European Technical Support DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Phone +49.351.8822.7.772 Earopean Sales (Stuttgart) Discual Microelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, toricleuting negligence), strict liability, or otherwise.					

Data Sheet	\odot 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	5 of 5