
Top Six Performance Testing
Mistakes and Their Solutions

How to Ensure Your
Website or Mobile
App Won’t Fail on
PEAK DAYS

Refael Botbol
Director of Professional Services

Andrey Pokhilko
Chief Scientist

http://blazemeter.com/

 Table of Contents

INTRODUCTION:
HOLIDAY FAILS: WHEN YOUR PERFORMANCE TESTING LETS YOU DOWN

PART 1:
NETWORK INFRASTRUCTURE IN PRE-EVENT TESTING

PART 2:
ESTIMATING YOUR ANTICIPATED LOAD

PART 3:
IDENTIFYING YOUR CRITICA, POINTS

PART 4:
RECOVERING QUICKLY FROM TECHNICAL PROBLEMS

PART 5:
OVERLOOKING THE END USER PERFORMANCE

PART 6:
THIRD PARTY INTEGRATIONS

CONCLUSION & SUMMARY

FURTHER READING AND USEFUL TOOLS

Holidays like Black Friday, Cyber Monday, Valentine’s Day and Mother’s Day, present developers

and testers of e-commerce sites with an immense challenge.

These are almost always the busiest days of the year as website visitors rush to buy online gifts,

goods, and cards, but there’s a strong likelihood that the extremely high load of traffic will cause

your web app or mobile app to

fail - and there couldn’t be a worst time for this to happen.

The consequences of website fails on well-known international holidays like Black Friday or

Cyber Monday can significantly damage profits and reputations.

Stores can literally lose hundreds of thousands of dollars from missed sales, shoppers are

frustrated, customer loyalties are frayed, and it’s incredibly stressful and disappointing for the

developers in charge of the site. Stores behind the biggest holiday web fails make national

headlines - for all the wrong reasons.

The list of catastrophic holiday failures is extensive - with store giants like Kohl's, Lowe's,

Staples, Toys"R"Us, Sears, Home Depot, and Victoria's Secret all falling victim to web crashes at

some point in their history.

Kohls is just one example of the high cost of a web failure on such a critical day. On Black Friday

2012, the store ran a huge sales promotion but, due to a massive surge in traffic, it experienced

an outage for several hours.

Every time customers tried to view an item’s details or access their shopping cart, they would

simply view an outage message instead. This cost Kohls tens or hundreds of thousands of dollars

in lost sales and endless frustrations for its customers1.

INTRODUCTION - HOLIDAY FAILS:
WHEN YOUR PERFORMANCE TESTING LETS YOU DOWN

So sorry!
Our team of elves is working hard to
keep up with our holiday shoppers,
but Kohls.com is not avaliable at the
moment. We’re working to get the
site back up and running smoothly
for you. Please check back shortly to
shop our great holiday deals!

It’s clear that rigorous preparations and robust performance testing is more crucial than ever in

the lead up to known times of peak traffic.

The good news is that most of these failures are preventable and 75% of bottlenecks can be

avoided in testing.2

The bad news is that the stakes are getting higher. Online and mobile sales are rising and this

trend looks set to continue. This is clear to see when analyzing statistics from sales over the past

few Black Friday’s in 2013, Black Friday desktop online sales were $1.198 billion - 15% higher

than the previous year.3 Reports also reveal that traffic and sales from tablets and mobiles are

rapidly rising. IBM’s Digital Analytics Benchmark Study revealed that mobile traffic grew to 39.7

percent of all online traffic in 2013 - a 34% increase from 2012.4

2011

12:00 AM

Black Friday 2013
24-hr Realtime Sales Chart

IBM Digital Ananlytics Benchmark

Sales peaked
at 9:05 AM

Time of Day (PST)

2:30 AM 5:00 AM 7:30 AM 10:00 AM 12:30 PM 3:00 PM 5:30 PM 8:00 PM 10:30 PM

2012 2014

Source: IBM 2013 Digital Benchmarks Report5

In this white paper, I will reveal how you can ensure your web or app will be a success during peak

holiday traffic despite its perpetually increasing challenges. I will explore the six most commonly

made performance testing mistakes - and reveal steps you can take to prevent them.

Source: IBM 2013 Digital Benchmarks Report5

NOT INCLUDING YOUR NETWORK INFRASTRUCTURE IN

PRE-EVENT TESTING

PART 1:

Failing to include your network infrastructure in your performance testing for the holidays puts

your web or app at risk. In many cases, developers will test all the servers and infrastructures

from inside the organization but not from outside. But testing solely in-house is inadequate.

When you take this approach, you’re failing to test and monitor all the chains of delivery and it’s

unlikely that you’ll get a clear and accurate picture of how it will perform on the actual day.

Many failures aren’t caused by the application itself. Maybe your application has a huge capacity

- but how do you know that there isn’t a problem with your external infrastructure or your

hosting server (i.e. AWS or Rackspace)?

For example: Tumblr experienced an outage for six hours in October 2013 due to network issues

caused by an issue with one of its uplink providers. The microblogging and social networking site

was down from 8:30am to 2:25pm EST.6

Another mistake developers commonly make is when they run load tests without using a

network emulator. It’s important to see every scenario and check the results from different

devices and global locations. As we’ve already seen, the amount of traffic on smartphones and

tablets will differ dramatically to laptops and desktops. Regional differences are also a

significant factor. As this table shows, you’re much more likely to get a heavy load of traffic from

New York and California than states like Ohio and Michigan. Therefore, it’s important to take

such variables into account by including them into the testing.

Total Online Retail Sales

1. California

2. New York

3. Texas

4. Florida

5. Illinois

6. Pennsylvania

7. New Jersey

8. Georgia

9. Ohio

10. Michigan

Top States

Thanksgiving 2013

1. New York

2. California

3. Texas

4. Florida

5. Georgia

6. New Jersey

7. Pennsylvania

8. Illinois

9. Ohio

10. Michigan

Black Friday 2013

IBM Digital Ananlytics Benchmark

If you ignore or overlook testing these variables in your regular tests - you might just miss the

actual problem that will hit you during peak times.

http://jmeter.apache.org/

First of all, I strongly recommend running the test on your live production site. This is the only

way that you can ensure the test will be accurate, that the test plan is well organized, and that

you’re stressing every point in the entire chain of delivery. It’s best practice to test in your

production environment at a time when you know that traffic will be low (for example: 2:00am

on a Sunday morning) - and to notify your customers in advance that there is a possibility of

downtime during this period. It’s far better to create a ‘handmade disaster’ during

off-peak hours than to encounter a real disaster during the busiest day of the year. Trust me - it

will be cheaper

in the long run!

Now that you’ve decided to test in your production environment, there are various ways that

you can do this. Some companies take their existing processes and enlist real people sitting at

physical machines and devices from around the world to test their web or app. This is still done

by some organizations today but it’s clearly not the most efficient!

Another, more efficient, way is to use an open source load testing tool like JMeter and buy

several Virtual Private Servers (VPS) in different geo-locations to test your web or app servers

under heavy, concurrent and geographically distributed load. You can also take a cloud

performance testing tool like BlazeMeter to simulate the load from multiple geo-locations and

various devices with just a few clicks in the User Interface (UI).

RUN LOAD TESTS FROM THE PRODUCTION ENVIRONMENT

SOLUTION 1:

http://jmeter.apache.org/

This mistake is very easy to make. Often developers will use simple maths to estimate how many

visitors are expected to come the following year. But, in the unpredictable world of e-commerce,

2+2 doesn’t always equal 4.

For example: If your web or app sustained a load of 100,000 on Cyber Monday in 2014 and your

business has doubled in the past year, you could probably expect around 200,000 (100,000

visitors X 2 times the # of customers = 200,000) visitors this year - right? Right? Wrong. Unlike

mathematical formulas, people are unpredictable. Maybe your business has a very special

promotion for Cyber Monday in 2015 which means that 3X the number of visitors will come.

Maybe the physical store was overwhelming the previous year so far more people decided to

shop online this year.

Another, slightly tricky situation can occur, whereby your competitor’s website might fail and

his customers come flocking to you. This will generate an unprecedented load on your web and,

if you also fail, these people will move on to another site, creating a snowball effect. You want

to be able to collect all of this culminated traffic - not let it slip through and move on to the

competition.

So maybe you’ve tested your web or app up to 200,000 users and the test went well. You think it

will sustain the load - but what happens when visitor #200,001 arrives?

Whatever your failure is - whether it’s a CPU, memory, connection pools, network bandwidth

issue or something else - you want to find it. Don’t be satisfied with a successful test. You need

to know your capacity. This means that you should keep on increasing the load until you see

what will fail, when it will fail, and how it will fail.

To do this, run a sequence of tests while continually increasing the load. Monitor the hits/s

throughput as you increase your load. Keep on doing this until you hit a scaling problem. Don’t

rely on theoretical formulas to calculate the limits of your web or app, find the actual limit

through testing.

For example: In this chart, you can see where your system reaches its capacity. In this example,

the application is unable to increase the hits per second rate after 300 virtual users. This

reveals your saturation point and you can show this report to your stakeholders, confident that

you’re giving them a trustworthy measurement.

UNDERESTIMATING THE ANTICIPATED LOAD

PART 2:

GO TO THE LIMIT. TRY TO BRING YOUR SYSTEM INTO THE FAILURE.
SOLUTION 2:

1200

1000

800

600

400

200

0

300

350

250

200

150

100

50

0
0 100 200 300 400 500 600 700 800 900 100

SCALABILITY CHART Concurrency Hits/s

So, as we can see from mistake #2, it’s vital to identify exactly when your system will break.

However, this is only half of the picture. Once you’ve identified when you will hit a bottleneck,

you then need to pinpoint precisely where the underlying issue is.

If you don’t know what’s causing the problems, you can’t resolve them and issues could still

arise from this critical point at the worst possible moment.

Now is the time to investigate what’s going on in your system. Are the transactions taking too

long? Are there critical messages in the log? Are there hardware resources that are exhausted?

When preparing for peak traffic times, your operations team sets up resource monitoring

dashboards and alerts to keep track of your systems. But there are literally thousands of

metrics that can be measured. How many operations teams have the time or resources to

monitor all of these?

If your Ops teams’ workspace looks like this, it will be hard for them to identify the problems

quickly.

FIND THE CRITICAL RESOURCE

SOLUTION 3A:

FAILING TO IDENTIFY YOUR CRITICAL POINTS

PART 3:

Here’s where performance engineers can help by enabling them to focus on the critical issues.

(APM tools like New Relic can help as they monitor the backend application and enable you to

understand where your bottlenecks are occurring). During performance testing, identify

around five to seven metrics which reflect the system’s critical usage and give them to the

operations team for tracking. You can also set up automated alerts with pre-defined thresholds

on around 20-50 metrics for resources that could lead to further problems. If you have time,

you can even get your developers to optimize some of the critical resources that you’ve

identified - eliminating problems before they occur.

Why is this important? Let’s say that a last minute change is made to the application which

might affect the performance of your web or app. At least you’ll know which resources to keep

a close eye on and, if you see that you’re getting close to the limit, you can quickly take action.

Unfortunately, issue identification can be quite tricky as the problematic resource might not be

at all obvious. A good example of this is when you study the time spent on the application lock.

Quite often the application will lock due to intensive writes into the database table - not

because the system resources are at full capacity, but because of data consistency

requirements. Hopefully, most database servers are able to track the locking time. But this is by

no means guaranteed, so take some time to verify it.

Finding all the critical resources manually just isn’t a viable option. And this is why I recommend

using monitoring or profiling tools. They will pinpoint your critical resources and identify all the

weak links in the chain when you reach your limit. Find an appropriate tool for your platform.

For modern Linux systems, this is the perf tool. The Windows platform has a lot of free and

commercial solutions, you can choose one that suits your budget.

Observe Your Application Logs.

Your application logs can contain important information that you simply can’t see in the load

test results.

To ensure that you get a full picture of when the problems occur and why, it’s worth using

Application Performance Management (APM) tools like BlazeMeter along with Log

Aggregation Tools like Logentries and Splunk. These log aggregation tools can read your logs

and create reports for you - making your life a lot easier.

www.newrelic.com
www.blazemeter.com
http://www.splunk.com/?r=header
https://logentries.com/

A Logentries Screenshot Displaying Tags and Alerts of Important Events

Web traffic can be unpredictable; the load isn’t going to be evenly distributed across the site and

it might not come in the pattern you’re expecting.

For example: let’s say your company is selling an incredibly popular item at an incredibly

competitive price. There’s a good chance that the traffic to this product page will be 10 or even

100 times higher than other pages on your site. If an unprecedented load of traffic comes to this

particular page, it could crash the entire system.

To avoid such an event, it’s good practice to divide your system into logical sections - and then

stress each one separately. Every single section should be stressed to the limit (as outlined in #2

of this document) - then the underlying critical resource must be found. This will enable you to

identify and fix all the problematic scenarios in every section of your system.

Is it time-consuming? Maybe.

Is it vital? Absolutely.

This might sound like a lot of work but it’s an important and valuable process. You may have a

critical underlying problem that won’t be revealed when you run a general test of the system.

When you run a general test, the first bottleneck that you hit could be hiding other issues.

By stressing every section of your web or app, you can identify every possible problem you might

run into - and deal with them accordingly. Let’s say you have a live chat window on your website.

The number of people using the chat window won’t be equal to the number of people viewing the

homepage. What’s more; the capacity of each object won’t be the same.

By identifying the capacity of each item separately, you can make sure the ‘weakest link’ won’t

break the entire chain. For example: if you see that your chat window only has the capacity for

100 users per minute, you can keep it separate and ensure that it won’t crash the entire site. You

can take proactive measures to minimise frustration from your customers, such as setting up a

message notifying users that the chat operatives are busy and that they are next in line.

DIVIDE YOUR SYSTEM - THEN STRESS EACH SECTION INDIVIDUALLY

SOLUTION 3B:

Power outages, technical problems and crashes happen. The key question is: how do you deal

with them?

In many cases, the power outage won’t last for more than a couple of minutes - but you may

spend hours recovering from it (for example: you may have to load broken data from the cold

backup storage or wait for the database server to perform a consistency check on the database).

Another example: Salesforce recently suffered from a power failure at an Equinix data center in

Silicon Valley. The power outage itself only lasted for one minute. However, it took Salesforce

more than nine hours to get their service fully up and running again.5 Now imagine if this

happened to you on a busy holiday day. A power outage of 60 seconds could ruin your entire

sales day.

Don’t take any chances - have back-up servers and locations ready so you can recover quickly if

you are unfortunate enough to experience a power outage during a time of peak traffic.

Set up a database replication, database failover cluster or application failover cluster. As soon

as there’s a problem, you can just switch over to the failover location as quickly as possible. This

means that you don’t have to wait for your main server to recover, your back-up can be running

while you firefight and resolve the critical issues. It’s very easy to do this with modern

technologies like Redis, mongoDB, and Cassandra offering various data redundancy schemes

for automated failovers - and is well worth considering for developers and engineers of online

shops.

You can even switch to your failover location manually. You just need to prepare a procedure in

advance and make sure your Ops/DevOps team members know exactly what to do if a problem

does occur.

SET UP BACK-UP SERVERS AND LOCATIONS

SOLUTION 4:

FAILING TO RECOVER QUICKLY FROM TECHNICAL PROBLEMS

PART 4:

http://redis.io/
http://www.mongodb.org/
http://cassandra.apache.org/

Tracking the server performance alone isn’t enough. You also need to monitor the performance

from the perspective of the end user. Your server times might not appear to be degrading but it’s

possible that there are still problems in part of your application - and you can’t predict how they

will affect the rendering of your web page. Problematic requests might make your page look very

slow on the browser but they don’t always trigger a significant raise in response times during a

load test.

You also need to verify that the full page loads within a reasonable time - not just the first piece

of text. After all, your users aren’t interested in seeing half or a third of your web page or app. The

slow loading image or piece of text might just be the area that they want to see.

Incorporate end user performance tracking into your backend testing. This is easy to do and

there are plenty of tools on the market to help you.

You can analyze your web page with Firebug or HTTP waterfall charts from Chrome’s

Developer Tools. Waterfall charts show you what’s going on behind the scenes when a browser

loads your app or webpage. You can view every piece of content that is being loaded - from CSS

files and javascript to third party banners and images. More crucially, they show you how long

each content piece takes to load and are therefore very valuable for identifying bottlenecks in

end-user performance.

A Screenshot of Chrome’s HTTP Waterfall Charts

TRACK THE END USER PERFORMANCE

SOLUTION 5:

OVERLOOKING THE END USER PERFORMANCE
PART 5:

http://getfirebug.com/
https://chrome.google.com/webstore/detail/chrome-apps-extensions-de/ohmmkhmmmpcnpikjeljgnaoabkaalbgc?hl=en
https://chrome.google.com/webstore/detail/chrome-apps-extensions-de/ohmmkhmmmpcnpikjeljgnaoabkaalbgc?hl=en

You can incorporate this into your performance testing by taking your test plan, stressing the

server, opening your Firebug or Developer Tools and manually checking how long your pages

take to load while being stressed.

This is the manual way of tracking your end user performance as part of your load test.

However, you can also use a tool that does it automatically for you. For example: you can

compose a JMeter test plan with 100 threads performing your backend testing and one thread

for the WebDriver Sampler. The WebDriver Sampler will automate the execution and

collection of your browser’s performance metrics by mimicking the behavior of a real user and

interacting with the HTML of the application.

When using the WebDriver with JMeter, you’ll need to write the Selenium code to load the

page and ensure you’re measuring the rendering time correctly. Other tools like BlazeMeter

have features which do all the tracking and information collection for you automatically. With

BlazeMeter, you can create a heavy load on your application and integrate with tools like

WebDriver, Perfecto Mobile and Sauce Labs to create Selenium tests from various regions

across the globe. This is easy to do and it will give you a very accurate picture of the actual user

experience.

https://jmeter-plugins.org/downloads/all/
www.blazemeter.com
https://www.perfectomobile.com/
https://saucelabs.com/

So you’ve checked and tested everything thoroughly. You’ve avoided all of the mistakes listed

above and you’re sure that your web or app will be able to cope with whatever gets thrown your

way.

But you might be forgetting one crucial thing. Even if your web or app is 100% prepared, your

third party plugin or module might not be. Third party plugins and widgets like social media

icons, advertisements or even Google Analytics codes might just trigger the Single Point of

Failure (SPOF) that will bring down your entire system.

In July 2012, Facebook suffered sporadic outages for a three hour period, triggering a

widespread ripple effect and slowing the performance of thousands of news and retail sites. The

reason? All of these companies have the Facebook ‘like’ button on their sites. The code

generating its appearance sits on Facebook’s servers. So when Facebook went down - everyone

fell with it.7

Widgets from Facebook, Google and Disqus Could Crash Your System

Source = Compuware APM
8

FAILING TO CONSIDER YOUR THIRD PARTY INTEGRATIONS

PART 6:

ADD DISQUS TO YOUR SITE

There are two aspects of third party dependency. I’ve just described an example of a failure with

the frontend. However, failures in the backend due to slow third-party API response times can

also occur.

For example: let’s say your online shop is integrated on the server side with a delivery company

and you’re using API calls for information on delivery costs. If their service goes down a peak

holiday day, your sales and product pages might also slow down. You can’t put your destiny in

someone else’s hands - you must have full control.

Each type of third party failure needs to be examined and dealt with differently.

First of all, let’s look at your front end dependencies.

Have your third party integrations been added synchronously or asynchronously? If they’ve
been added synchronously, they could bring your entire page down.

Synchronous scripts block all the subsequent elements on a page from rendering in the browser
- on every type of browser. If your advert, widget or plugin has been added synchronously and it
fails to load - your entire web page will be blank for around 30 seconds. That’s thirty seconds of
a completely blank screen. How many users do you think will still be there when it finally does
load?

Go through all of your code and make sure that all of your third party integrations have been
added asynchronously. If they haven’t, then change them! This ensures that, if there’s a problem
with your third party, only their content will fail to appear. Your content and most of your site
will appear perfectly normally to your users.

APPLY ASYNCHRONOUS SCRIPTING, SET UP FALLBACKS, AND CHECK
YOUR CONTRACTS

SOLUTION 6:

Ad successfully created

Ad code

You can paste this code into any webpage or website that complies with our program policies.

For more help with implementing the code, please see our Code Implementation Guide.

Code type

Ad code

Asynchronous

Close

<script async
src=”//pagead2.googlesyndication.com/pages/js/adsbygoogle.js”>
</script>
<!-- dfsfdsfs -->
<ins class=”display: inline-block; width:728px;height:90px”
data-ad-client=”ca-pub-01025006597954630”
data-ad-slot=”8835796564”></ins>
<script>
(adsbygoogle = window.adsbygoogle || [)] .push ({}) ;
</script>

?

?

But of course, you will still need to test that it will work within an acceptable timeframe and to

see if any of the third party widgets slow down. Try changing your DNS resolving process so it

points the browser to a nonexistent address instead of an actual third party and observe the

results.

Now for the backend failures…

It’s worth setting up a ‘fallback’ in case an API timeout or failure occurs.

Your response time can’t be faster than your third party API. It’s important to set in advance the

limit that you’re willing to wait until a call is considered a failure. Your limit usually will not go

over one second.

If there is a failure, you may want to switch off the advert or widget so that this one piece of

functionality won’t appear. This is preferable to letting it bring down the entire site. If the

functionality is important, you should inform the users that you’ve disabled the feature for

technical reasons. Going back to our example about the product delivery service integrations,

your customer would get a message saying that the delivery information is currently

unavailable.

Another option is to link it to previously cached information. Let’s say you don’t want to tell your

customers that your delivery information is unavailable. When the API to the delivery page fails,

rather than letting it crash your site or displaying “Sorry”, you can show users the previously

cached response adding “approximately” to the cost. This means that you can still provide people

with some information about delivery costs and zones - without promising them the most

updated information.

Finally, make sure that you check your contracts and that you’re well aware of all the limitations

and conditions of your third party providers. And, of course, learn from every issue by logging

the details of all the timeouts and API call failures.

HOW TO ENSURE YOUR WEBSITE OR MOBILE APP WON’T
FAIL ON PEAK HOLIDAY DAYS

Run Load Tests From the Production Environment

Choose a time that traffic to your site is low and run a live test in your production

environment. Use tools to simulate the load from multiple geo-locations and devices.

Try to Bring Your System into the Failure

Don’t be satisfied with a successful test. Keep on increasing the load on your site until you

see what will fail, when it will fail and how it will fail.

Find the Critical Resource

Know what your weak points are; set up alert monitoring dashboards for these critical

issues and keep them running.

Observe Your Application Logs

Find out when the problems are occurring and why.

Divide Your System and Stress Each Section Individually

Set Up Back-Up Servers and Locations.

If you have a power outage, make sure you can be back up and running within minutes.

Incorporate End User Performance Testing Into Your Backend Testing.

Use tools to run these measurements automatically

Check Your Third Party Integrations.

Make sure all scripts are applied asynchronously, set up a fallback in case of API failures

and check your contracts.

That’s it! Follow these guidelines and I’m sure your company will make headlines for all the right

reasons on every big event!

There are evidently many reasons why your web or app might fail on busy holiday days - and the

consequences of such a failure are serious. However, if you take these steps, you can feel

confident that everything will be ok on the big day:

1

2

3

4

5

6

7

8

CONCLUSION

FURTHER READING AND USEFUL TOOLS

Sources & Further Reading:

Links to Useful Tools

Throughout this whitepaper, I’ve made reference to a number of valuable tools and solutions.

Here are the website links for further reading:

BlazeMeter - Cloud-Based Performance Testing Solution for Mobile, Web & APIs

Cassandra - High Scalability Database

Chrome Developer Tools - Developer and Debugging Tool

Firebug - Web Development Tool

JMeter - Open Source Load Testing Tool

Logentries - Log Management and Analytics Tool

mongoDB - Open Source Document Database

New Relic - Software Analytics

Perfecto Mobile - Mobile Testing and Monitoring

Redis - Open Source Data Structure Server

Sauce Labs - Mobile. Cross-Browser Testing

Splunk - Operational Intelligence Platform

WebDriver Sampler - Executes and Collects Performance Metrics

FierceRetailIT.com

Appdynamics

comScore

Mobilefomo

IBM Digital Analytics Benchmark Report

Yotta - Site Optimization and Web Performance Blog

Forbes - Facebook Outage Slowed 1000s of Retail, Content Sites

Compuware APM

Steve Souders: “Your Script Just Killed My Site”

2390 El Camino Real Palo Alto, CA, 94036, USA www.blazemeter.com

http://www.fierceretail.com/retailit/story/kohls-lowes-staples-start-the-black-friday-crashes
http://blog.appdynamics.com/apm/top-10-reasons-why-e-commerce-apps-will-fail-this-black-friday/?print=pdf
https://www.comscore.com/Insights/Press-Releases/2013/12/Black-Friday-Billions-12-Billion-in-Desktop-ECommerce-Spending-Marks-First-BillionDollar-Online-Shopping-Day-of-the-2013-Holiday-Season
http://mobilefomo.com/2013/12/mobile-shopping-statistics-black-friday-cyber-monday-2013/
http://www-01.ibm.com/software/marketing-solutions/benchmark-reports/black-friday-2013.html
http://www.yottaa.com/blog/bid/263946/Top-15-Worst-Web-Outages-of-2012
http://www.forbes.com/fdc/welcome_mjx.shtml
http://www.compuware.com/en_us/application-performance-management.html
http://www1.practicalperformanceanalyst.com/2014/08/08/video-of-the-week-your-script-just-killed-my-site/
http://blazemeter.com/
http://cassandra.apache.org/
https://chrome.google.com/webstore/detail/chrome-apps-extensions-de/ohmmkhmmmpcnpikjeljgnaoabkaalbgc?hl=en
http://getfirebug.com/
http://jmeter.apache.org/
https://logentries.com/
http://www.mongodb.org/
http://newrelic.com
http://www.perfectomobile.com/
http://redis.io/
https://saucelabs.com/
http://www.splunk.com/?r=header
http://jmeter-plugins.org/downloads/all/
www.blazemeter.com

