
Cache invalidation
strategies

with Varnish Cache

Per Buer / CTO / Varnish Software

Phil Karlton

“There are only two hard things in
Computer Science: cache invalidation

and naming things.”

About Varnish Cache

● Web app accelerator

● Fast

● Flexible

About Varnish Software

● The company behind Varnish Cache

● Offers subscriptions with

○ Software

○ 24/7 support

○ Professional services

Goal
Run an efficient website with Varnish Cache

● Allows for longer TTLs

○ Higher cache hit ratios

○ Better UX

○ Lower backend usage

● Instantaneous updates when content
changes

Why do cache invalidation?

Components in Varnish

Components in Varnish we’ll be
covering

● PURGE
● ban
● Soft PURGE
● Soft Ban
● “Smart” bans
● Ban/purge distribution - VAC Super Fast

Purger
● Hashninja

● HTTP verb

● Takes URL as parameter

● Can purge all variants

● Derived from Squid

HTTP PURGE

PURGE /foo HTTP/1.1

Host: www.bar.com

HTTP PURGE

PURGE VCL
acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }

}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

PURGE VCL
acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }

}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

PURGE VCL
acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }

}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

PURGE VCL
acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }

}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

PURGE VCL
acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }

}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

● Fast

● Efficient

● Knows nothing about relationships between
pages

● Doesn’t know about grace

HTTP PURGE

Varnish bans

● Fast

● Flexible - can match almost any pattern

● Regular expressions on obj or req

● Not efficient

● Doesn’t know about grace

Varnish bans

CLI:

ban req.http.host == "example.com" &&
req.url ~ "\.png$"

HTTP:

BAN /foo HTTP/1.1

Host: www.bar.com

Ban VCL
sub vcl_recv {
 if (req.request == "BAN") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 ban("req.http.host == " + req.http.host +
 "&& req.url == " + req.url);
 # Throw a synthetic page so the
 # request won't go to the backend.
 error 200 "Ban added";
 }
}

Ban list

Bans Objects in cache

Ban list

Bans Objects in cache
time = t0

Ban list

Bans Objects older than t0time = t0

● Each object matched only
once against each ban.

● Potentially killed.

The ban lurker

Bans

Om nom nom nom nom

● Worker thread

● Evaluates each ban against
objects older than it

● Works only for bans on obj.*

● Kills a ban when it is
matched against all objects
older than t0.

Please do smart bans

● Avoid banning on req.*

● Copy the bits from req to beresp in vcl_fetch

● Keep an eye on the ban list and regex/sec

● Trim cache

Graceful
cache

invalidation

Graceful cache invalidation

● Problem: Purge object - backend goes
down. No graced objects left to serve.

● “There is VMOD for that!”

● Marks objects as stale instead of killing them

● https://www.varnish-cache.org/vmod/soft-
purge

What about graceful bans?

● Same as regular bans but objects are still
subject to grace

● Requires a patch for Varnish Cache - in VS
Enhanced Varnish Cache.

Advanced topics

Distribution of invalidation events

● You don’t want every webapp to know about
every varnish server

● Distribute invalidation events from a single
point

Distribution of invalidation events

varnishvarnish varnishvarnish

Distribution of invalidation events

varnishvarnish varnishvarnish

admin

Distribution of invalidation events

varnishvarnish varnishvarnish

admin

Simplest invalidation distributor

nc -l 2000 | while true

 do read url

 for srv in “alfa” “beta” “gamma”

 do curl -m 2 -x $srv -X PURGE $url

 done

done

VAC Fast purger

● Fast API for event distribution

● 40 Kreq/s across datacenters

curl -X POST –user user:pw -H ‘Content-Type: text/plain’
-d ‘req.url ~ “/articles/FOO”‘
http://vac.local/api/v1/cachegroup/production/ban

Invalidation based on content
relationship

● You have a web page with content from 8
different objects

● One object is updated

● Which pages to purge?

Content tagging in Varnish

● Add X-Keys to each object (SKUs, article
IDs or similar unique IDs)

● Identifies each object that is on the page

● Then you invalidate based on that unique ID.

● Every page that mentions that ID will be
invalidated

Banning based on tagged content

● ban obj.http.x-keys ~ “[,]$ID\D”

● Suitable for low volume updates

● CPU usage will increase due to bans

● On high volumes you should check out….

Hashninja

● Maintains a hash with keys⇔pages

● Many-to-many

● Very low overhead, high performance

● Requires subscription + Proprietary VMOD

● Suited for e-commerce and digital media

Summing up

● Purges

● Bans

● Soft purges and bans

● Smart bans

● Hashninja and content tagging

Thanks!
Questions and comments, please.

Get in touch: per.buer@varnish-software.
com

