

Tenzing Magento on AWS Performance Case Study 2 | P a g e

EXECUTIVE SUMMARY

Tenzing Managed IT services has recently partnered with Amazon Web Services (AWS) enabling Magento Merchants to
combine the flexibility and scalability of AWS with the expertise and managed services that Tenzing provides.

Prior to the official launch, Tenzing conducted beta testing of its reference architecture using ‘real-world’ customer data.
Tenzing Managed IT Services partnered with several Magento Solution Partners for assistance in this phase of the Magento
on AWS project.

This report details beta phase activities as well as summarizes findings.

1.1 Objective
The objective of the beta phase was to build a functional Magento store based on real-world sources (versus vendor sample
data) on the Amazon Web Services (AWS) platform using Tenzing’s optimized Magento reference architectures for AWS as
well as common AWS components and services. Once built, Tenzing tested the performance of the store to ensure the AWS
solution was comparable to other offerings.

The beta phase provided the participating systems integrator with details on how customer sites would be built on the
platform, as well as access to review the ‘demo’ sites. This allowed the Sis the opportunity to recommend updates and
refinements to the offering, based on customer needs.

1.2 Scope
This case study includes an outline of the build and testing that was done as part of the beta phase as well as presentation
and discussion of results.

1.3 Methodology and Approach
The architecture was devised to leverage and fully exploit AWS services. Systems were built and tested using site and data
provided by the SIs on the Magento Enterprise application software.

CONTENTS
1. Summary
2. Objectives
3. Methodology and Approach
4. Results
5. Next Steps
6. Glossary
7. Appendix

Tenzing Magento on AWS Performance Case Study 3 | P a g e

Both Tenzing and the SI conducted basic functional testing and review. Limited non-functional testing was conducted by
Tenzing using Apache Jmeter, Blazemeter.com, and webpagetest.org.

Informal requirements1 as they relate to traffic were provided by the systems integrator and used as a basis for analysis of
non-functional test results.

The following configurations were tested:

 A single application and a single database server
 Two load-balanced application servers and a single active database with failover (active/passive).

1.4 Results
Section 3 of this document details the method used to estimate traffic and load requirements at average and at peak. Section
7 documents the origins of these requirements.

Table 1 details the results of performance testing. Results were the same in both configurations.

Test Detail Test Result

Ability to satisfy average daily load of ~2500 unique site visitors. Successful

Ability to satisfy historical peak monthly load of ~125000 unique site visitors. Successful

Table 1: Results

1.5 Conclusions
Beta results show that a build of the Magento Store on AWS satisfied all outlined objectives and requirements and
demonstrated improved performance to the current production environment.

1 In a questionnaire distributed to the SI, it was indicated that while there are no formal requirements with the end-customer regarding load, traffic, etc., there is an expectation that the
site should has been able to satisfy certain traffic. These details are documented in Section 7.

Tenzing Magento on AWS Performance Case Study 4 | P a g e

OBJECTIVES
Part of the beta testing phase for Tenzing’s Magento on AWS service offering required test of the solution and configuration
with ‘real-world’ data; partnering with Magento Solution Partners allowed Tenzing to accomplish this objective. In addition,
this partnership seeks to illustrate the benefits of a public cloud platform as a potential alternative for a managed Magento
Optimized hosted environment.

Table 2 summarizes the objectives for the beta test activities.

Objective Description
1 Environment setup and site load.
2 Functional testing
3 Performance testing & tuning

Table 2: Beta Activities and Objectives

2.1 General Functional Requirements
The following table lists the required elements of the AWS hosted test site:

Requirement Detail
1151-FR1 All content is available for navigation with no errors encountered.
1151-FR2 Applicable Magento features and functional are available (admin page, Full Page Cache,

etc.).
1151-FR3 End-to-end transactions are possible (adding a product to the cart, view cart, checkout)

Table 3: Site Requirements Summary

2.2 General Non-Functional Requirements
In addition to functional requirements, several non-functional items were deemed required elements of an AWS hosted test
site:

Requirement Detail
1151-NFR1 Flexibility: the ability quickly to meet increased capacity and demand - quickly scaling

up to meet increased customer traffic and then scaling down when traffic decreases in
an automated fashion.

1151-NFR2 Agility: the ability to respond to unforeseen event, such as recovering from physical
disasters, etc.

1151-NFR3 Performance: the ability to accomplish work required compared to the time and
resources consumed. In this case, response times of the test site should be comparable
to the production site.

Table 4: Site Requirements Summary

2.3 Specific Customer Requirements
A few informal requirements were gathered and generated based on discussions and feedback from the systems integrator.
These items are detailed below2:

Assumption Detail
1151-CR1 The site must be able to handle at least 2500 unique visitors per day.

1151-CR2 The site must be able to handle approximately 120000 visits per month at peak.

Table 5: Assumptions Summary

2 See Section 7 for additional details

Tenzing Magento on AWS Performance Case Study 5 | P a g e

METHODOLOGY AND APPROACH
The site was configured to use ‘small’ and ‘large’ infrastructure definitions that allow alternatives for particular use-cases,
which will be outlined in the respective sections.

All test sites utilized the following components:

Name Function Version
PHP-APC PHP Opcode cache 3.1.15-0.3
Magento EE Commerce Platform 1.12.0.2
Nginx Web Server 1.4.2
PHP Middleware 5.3.28-1.5
PHP-FPM FastCGI Process Manager 5.3.28-1.5
MySQL Database Server MySQL 5.6.13 (RDS3)

Table 6: Software Components

Additional tuning was performed on several components following Magento best practices and available data. The
components above were tested with the following tools for purposes outlined below:

Tool Function
Jmeter Jmeter was used to test concurrency and response time of the test site under

load.

Testing with Jmeter utilized a single test node, ‘local’ to the test Magento site
components (within the same AWS Availability Zone, VPC, and subnet).

Blazemeter.com Blazemeter.com uses Jmeter scripts to simulate multiple users from multiple
sources. The same parameters used to test ‘locally’ were used to test
concurrency and load remotely.4

Webpagetest.org As comparisons regarding concurrency and load were not available,
Webpagetest.org provided a sample for comparison related to page load
times, user experience, etc.

Table 7: Test Tools

3.1 ‘Small’ Test Configuration
The ‘small’ configuration consists of a minimal number of components that would satisfy smaller, lower traffic sites that
may not need high availability. Additionally, testing a minimal number of components provided baseline for core system
capabilities prior to adding ancillary components (Elasticache, etc.). A single, more powerful server, or instance, was used in
this configuration.

3.1.1 Components
The following components and arrangement comprised the ‘small’ test site.

Service Name Service Function Sizing
CloudWatch Monitoring 1 minute
EBS Persistent block storage 25 GB (x1)
EC2 Compute c34.xlarge (x1)5
RDS Database services db.m3.large (x1)6

 1000 provisioned IOPs7
 100 GB storage8

3 See Section 6 for further details on RDS.
4 Remote testing adds several variables and intermediaries that are not present during local tests. Thus, these tests are meant to be indicators versus definitive or extensive performance
numbers, which would require additional resources to attain.
5 AWS EC2 Instance Types
6 AWS RDS Instance Types
7 1000 is the minimum number of provisioned IOPs available.
8 100GB is the minimum required amount of storage to utilize provisioned IOPs.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/rds/details/

Tenzing Magento on AWS Performance Case Study 6 | P a g e

Route53 DNS services N/A
Table 8: ‘Small’ Infrastructure Components

3.2 ‘Large’ Test Configuration
The ‘large’ configuration consists of an expanded number of components that would satisfy larger, higher traffic sites that
also may need high availability options. As load will be distributed, 2 x c32.xlarge9 instances were used and provided
comparable performance to a single c34.xlarge at the same price point and provide availability across 2 physical locations.
Fail-over scenarios are tested.

3.2.1 Components
The following components and arrangement comprised the ‘large’ test site.

Service Name Service Function Sizing (count)
Auto Scaling Facilitates automated horizontal scaling N/A
CloudFront Content Delivery Network N/A
CloudWatch Monitoring 1 minute
EBS Persistent block storage 25GB (x1 per EC2 instance)
EC2 Compute c32.xlarge (x2)10
ElastiCache Caching services (memcached) m1.medium (x1)
Elastic Load Balancer Load balancing services (x1)
RDS Database services db.m3.large (x1)11

 1000 provisioned IOPs12
 100 GB storage13

Route53 DNS services N/A
Table 9: ‘Large’ Infrastructure Components

9 Instance number and type can be changed with minimum effort.
10 AWS EC2 Instance Types
11 AWS RDS Instance Types
12 1000 is the minimum number of provisioned IOPs available.
13 100GB is the minimum required amount of storage to utilize provisioned IOPs.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/rds/details/

Tenzing Magento on AWS Performance Case Study 7 | P a g e

Figure 1: ‘Small’ Infrastructure Diagram

Tenzing Magento on AWS Performance Case Study 8 | P a g e

Figure 2: ‘Large’ Infrastructure Diagram

Tenzing Magento on AWS Performance Case Study 9 | P a g e

3.3 Requirements Testing
Requirement Test Detail
1151-FR1 Manual site navigation: static content, catalog, and product pages.
1151-FR2 Ensure that admin page is accessible and all applicable EE features are enabled.

Clear cache directories, browse site, verify that cache directories get populated.
1151-FR3 Add product to cart

Checkout as Guest
Checkout as logged in user
Login to admin and invoice/ship orders

Requirement Test Detail
1151-NFR1 Create appropriate AutoScaling Group, and Elastic Load Balancer and run test

simulation

Vertically scale template that includes fully configured customer data

1151-NFR2 Create applicable infrastructure in multiple zones; terminate active nodes to
simulate failure and test failover to standby node in separate physical location.

1151-NFR3 Test and collect data on concurrency and response time, comparing results to the
production site where possible.

Assumption Test Detail
1151-CR1 Create and execute tests using Jmeter, Blazemeter.com, or webpagetest.org or a

combination thereof based on details in Section 3.4 and Section 7.

1151-CR2 Create and execute tests using Jmeter, Blazemeter.com, or webpagetest.org or a
combination thereof based on details in Section 3.4 and Section 7.

Table 10: Site Requirements Summary

Tenzing Magento on AWS Performance Case Study 10 | P a g e

3.4 Site Visitor Calculation
The test site is required to handle on average 2,500 visitors per day and 120,000 at peak per month14. Given that traffic
would not be equal in a 24 period, a more realistic 4 hour distribution period was assumed.

Average Users Peak Users

Users Time Users Time
0.173611 60 sec 0.268817 60 sec

10.41667 60 min /hour 16.12903 60 min /hour

625 4 hour /day 967.7419 4 hour /day

2500 31 day /month 3870.968 31 day /month

 120000 1 month /year

Table 11: Average and Peak Users

From the conversion outlined above, as peak users per second are less than 1, for test purposes 1 user per second was used;
assuming 1 user per second distributed over a 4-hour period, the following table illustrates the number of users over various
lengths of time.

Test Users

Users Time
1 60 sec

60 60 min /hour

14400 4 hour /day

446400 31 day /month

Table 12: Average and Peak Test Users

As a result of limited availability of site user behavior data, these simulations simply added 1 user every second for 60
seconds, held the 60 user traffic constant for a 30-60 seconds, and then reduced the number of simulated users; this cycle
was then repeated one additional time. Average results for response time and concurrency were recorded.

Several pages were included as part of testing15. Of these the first grouping simulated users visiting home and static pages
with the next group in the test cycle visiting catalog and product pages.

NOTE: While incorporating checkouts and transactions were not part of the load test scripts, some manual checkouts
were performed with no excessive degradation in response time.

14 See Section 7.4 for details.
15 See Section 7.1 for details.

Tenzing Magento on AWS Performance Case Study 11 | P a g e

RESULTS
The following section summarizes the results of the tests conducted and whether or not requirements detailed in Section 2
were successfully met and discusses additional implications.

Requirement Detail Results
1151-FR1 All content is available for navigation with no

errors encountered.
Success

1151-FR2 Applicable Magento features and functional are
available (admin page, Full Page Cache, etc.).

Success

1151-FR3 End-to-end transactions are possible (adding a
product to the cart, view cart, checkout)

Success

Requirement Detail Results
1151-NFR1 Flexibility: the ability quickly to meet increased

capacity and demand - quickly scaling up to
meet increased customer traffic and then
scaling down when traffic decreases in an
automated fashion.

Success:
AWS provides mechanisms such as
Auto Scaling to accomplish this
requirement. The site was able to
scale beyond its original
configuration.

1151-NFR2 Agility: the ability to respond to unforeseen
event, such as recovering from physical
disasters, etc.

Success:
Testing of Multiple Availability Zone
fail-over was successful with
minimal service interruption (within
minutes) for the ‘Large’
configuration.

1151-NFR3 Performance: the ability to accomplish work
required compared to the time and resources
consumed. In this case, response times of the
test site should be comparable to the production
site.

Success:
Average of total response time with
local and remote tests was
minimal16 and testing conducted via
websitetest.org was comparable.

Assumption Detail Results
1151-CR1 The site must be able to handle at least 2500

unique visitors per day.

Success:
Based on current test methodology,
both configurations were successful.

1151-CR2 The site must be able to handle approximately
120000 visits per month at peak.

Success:
Based on current test methodology,
both configurations were successful.

Table 13: Assumptions Summary

16 See Section 7.2 for full details

Tenzing Magento on AWS Performance Case Study 12 | P a g e

Figure 3: BlazeMeter.com
Average Response Times and User Distribution

Given that load testing and performance data were not available for the production site, online test tools were used for
comparison. Below is an example of comparable page load times of the same page from both the production and test sites.

The first two examples are results from the test site. The third example shows results of the current production
environment. In both instances, the test site outperformed the current production site.

Figure 4: webpagetest.org Results:
Test Site

Tenzing Magento on AWS Performance Case Study 13 | P a g e

Figure 5: webpagetest.org Results:
Test Site 17

Figure 6: webpagetest.org Results:
Production Site

17 The AWS CloudFront CDN was used in this sample

http://aws.amazon.com/cloudfront/

Tenzing Magento on AWS Performance Case Study 14 | P a g e

4.1 Implications
Section 7.3 illustrates the approximate AWS cost for both small and large configurations used for testing. While both were
able to satisfy the requirements as defined in previous sections, a public cloud platform further allows for dynamic and
rapid infrastructure changes to accommodate evolving requirements while also introducing unique opportunities to reduce
cost.

For instance, Section 7.2 illustrates the acceptable results of the identical load used in all tests on a single c32.xlarge
(differing from the single instance testing in Section 4 for the ‘small’ configuration consisted of a single more powerful
c34.xlage instance, while the ‘large’ configuration used 2 x c32.xlarge instances and distributed load between these generally
halving the results shown in Section7.2: Table 14 per instance). In this case a smaller server, or instance type, can be
substituted to meet these specific requirements at reduced pricing compared to the alternative. Nevertheless, should
requirements change and demand more resources, a larger server, or instance type18, can be rapidly put into service.
Horizontal scaling is also an option where feasible19. Further, in Section 7.2: Table 17 illustrates that database resources for
the instance type chosen20 were far from exhausted during testing, even in testing without the use of caching mechanisms
such as memcached.

Thus, multiple opportunities exist to reduce cost through the use of resources that can be ‘right sized’ but still flexible and
dynamic. This eliminates the need to ‘lock-in’ to resources that are sized and priced at estimated peak usage, as is the case
with traditional physical infrastructure.

18 Section 7.2:
Figure 12 illustrates CPU resource usage when scaling from a c32.xlarge (the first peak) to a c34.xlarge (the plateau) under the same load. The final peak illustrates CPU consumption with
1.5x load on a c3.4.xlarge.
Figure 11 and Table 16 also show the corresponding response and transactions per second of the additional 1.5x load on the more powerful c43.xlarge instance.
19 Magento licensing costs and models will directly affect horizontal scale.
20 db.m3.large with 1000 provisioned IOPs

Tenzing Magento on AWS Performance Case Study 15 | P a g e

CONCLUSION
Based on the tests conducted, the AWS test site has successfully accomplished the established requirements. A build of the
Magento Store on AWS satisfied all objectives and requirements and in preliminary comparisons showed better
performance than the current production site.

Tenzing Magento on AWS Performance Case Study 16 | P a g e

NEXT STEPS
A public cloud platform such as AWS provides a number of alternative configuration options to satisfy dynamic
requirements as well as cost-effective options for availability and disaster recovery. Given the positive results of the beta
testing Tenzing teams will continue to investigate the potential applications and benefits of AWS infrastructure for
Magento merchants.

Tenzing also aims to combine its commerce expertise to further improve performance on AWS. One example would be by
incorporating advanced managed services into the monitoring program for AWS.

APM Assure is a current Tenzing product and provides tremendous benefit by breaking down an entire transaction stack
into each procedure call. It then orders by method time allowing the reviewer to simply scroll down the list and view
anything that may be out of order.

Using APM Assure on the test site, 2 potential performance concerns were revealed:

1. The following procedure may need review due to the number of times the procedure is called. The following seems to
indicate that images are being opened and/or saved while just browsing the site.

Figure 7: APM Assure Results:
‘HOT SPOT’ Example 1

NOTE: Upon further investigation, the first ‘Hot Spot’ disappeared once Compilation was enabled within the Magento
Admin site. The second ‘Hot Spot’ remains.

Tenzing Magento on AWS Performance Case Study 17 | P a g e

2. The procedure labelled GetSortAttributes is being called multiple times per transaction and may need optimization.

Figure 8: APM Assure Results:
‘HOT SPOT’ Example 2

While just an example from a test site, this data attempts to demonstrate of the level of visibility and added value that
Tenzing can provide.

Tenzing Magento on AWS Performance Case Study 18 | P a g e

GLOSSARY
Auto Scaling

Auto Scaling allows scaling of Amazon EC2 capacity up or down automatically according to defined conditions. With Auto
Scaling, the number of Amazon EC2 instances increases seamlessly during demand spikes to maintain performance, and
decreases automatically during demand lulls to minimize costs.

EBS: Elastic Block Storage

Amazon Elastic Block Store (Amazon EBS) provides persistent block level storage volumes for use with Amazon EC2
instances in the AWS Cloud. Each Amazon EBS volume is automatically replicated within its Availability Zone to protect you
from component failure, offering high availability and durability.

EC2: Elastic Cloud Compute

EC2 allows users to rent virtual computers on which to run their own computer applications. EC2 allows scalable
deployment of applications by providing a Web service through which a user can boot an Amazon Machine Image to create a
virtual machine, which Amazon calls an "instance", containing any software desired. A user can create, launch, and
terminate server instances as needed, paying by the hour for active servers, hence the term "elastic". EC2 provides users with
control over the geographical location of instances that allows for latency optimization and high levels of redundancy.

ElastiCache

ElastiCache is a web service that makes it easy to deploy, operate, and scale an in-memory cache in the cloud. The service
improves the performance of web applications by allowing you to retrieve information from fast, managed, in-memory
caches, instead of relying entirely on slower disk-based databases. ElastiCache supports two open-source caching engines:
memcached and Redis.

ELB: Elastic Load Balancer

Elastic Load Balancing automatically distributes incoming application traffic across multiple Amazon EC2 instances. It
enables greater levels of fault tolerance in applications, seamlessly providing the required amount of load balancing
capacity needed to distribute application traffic. Elastic Load Balancing detects unhealthy instances and automatically
reroutes traffic to healthy instances until the unhealthy instances have been restored.

RDS: Relational Database Service

Amazon Relational Database Service is a distributed relational database service by Amazon.com. It is a web service running
"in the cloud" and provides a relational database for use in applications. It is aimed at simplifying the setup, operation, and
scaling a relational database.

Tenzing Magento on AWS Performance Case Study 19 | P a g e

APPENDIX
7.1 Test Results

Table 14: Response in Milliseconds
Single c32.xlarge

Figure 9: Transactions per second
Single c32.xlarge

Tenzing Magento on AWS Performance Case Study 20 | P a g e

Table 15: Response in Milliseconds
Single c34.xlarge

Figure 10: Transactions per second
Single c34.xlarge

Table 16: Response in Milliseconds
Single c34.xlarge (@ 1.5x load)

Tenzing Magento on AWS Performance Case Study 21 | P a g e

Figure 11: Transactions per second
Single c34.xlarge (@ 1.5x load)

Figure 12: CPU Consumption
(c32.xlarge / c34.xlarge)

Database / RDS Resource Name Average Used Maximum Used
CPU 4% 9%

Memory 2GB 2GB

Read IOPs 0.5 1.75

Write IOPs 100 220

Table 17: Database Resource Consumption

Tenzing Magento on AWS Performance Case Study 22 | P a g e

7.3 AWS Simple Calculator / Pricing

‘Small’ Configuration: $1086.21 /month

http://calculator.s3.amazonaws.com/index.html#r=IAD&key=calc-E89794A5-36F9-4FE0-8C44-565D7D0114E8

‘Large’ Configuration: $1669.59 /month

http://calculator.s3.amazonaws.com/index.html#r=IAD&key=calc-567D80DA-CB5F-4747-9316-4D2E33917811

7.4 Traffic Metrics / Assumptions

Traffic Metrics/ Assumptions
Note: If statistics are not available, please provide any estimates or projections.
How many total unique visitors do you expect the current site can accommodate at peak?
I am unsure, but GA says the site averages about 2,500 unique visitors/day with no issues
How many total transactions / orders do you expect the current site can accommodate at peak?
I am unsure, but GA says the site averages about 40 orders/day with no issues

Figure 14: Excerpt from page 3

Magento Beta Questionnaire.doc

http://calculator.s3.amazonaws.com/index.html#r=IAD&key=calc-E89794A5-36F9-4FE0-8C44-565D7D0114E8
http://calculator.s3.amazonaws.com/index.html#r=IAD&key=calc-567D80DA-CB5F-4747-9316-4D2E33917811

