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Some often-heard statements: 

•  Medial objects are in general 
–  hard to compute 
–  sensitive to noise 
–  computable only for binary shapes 
–  mainly useful for navigation, shape matching/analysis 
  

•  3D medial surfaces are 
–  very slow to compute 
–  impractical for real-world applications 
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Some statements: 

•  Medial objects are in general 
–  hard to compute 
–  sensitive to noise 
–  computable only for binary shapes 
–  mainly useful for navigation, shape matching/analysis 
  

•  3D medial surfaces are 
–  very slow to compute 
–  impractical for real-world applications 

Not entirely true! 
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•  2D skeleton: 
–  1D structure 
–  centers of maximally inscribed discs 

•  3D surface skeleton: 
–  2D structure 
–  centers of maximally inscribed balls 

•  3D curve skeleton 
–  1D structure 
–  no agreed formal definition  

S(!) = {x"!|#y$z"%!,||x-y||=||x-z||=DT%!(x)}&

Definition 
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Collapsed boundary metric 

'(x " S) = max (min |p-q|%!)&
p,q " F(x) 

•  monotonic and continuous on whole shape !&
•  leads to a robust, multiscale skeleton 

collapse 

[Ogniewicz & Kubler ’95] 
[Falcao et al. ’02] 
[Telea & Van Wijk ’02] 

Global 2D detectors 
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Augmented Fast Marching Method (AFMM) 
•  O(N log N1/2),     2 fps @ 10242 pixels 

&
CUDA Banding Algorithm 
•  O(N),                 500 fps @ 10242 pixels 
•  The fastest, simplest, most robust 2D skeletonization method out there 

&

shape 

level sets 

collapse 
'&

parameterization u!

robust 
skeleton S(&(&

[Telea & Van Wijk’03] 

'(!) is Cauchy continuous!&

[Hurter et al., TVCG’11] 

Implementation 
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Euclidean   Manhattan 

[Strzodka & Telea ’04] 

Change the distance metric! 

Generalized Skeletons 
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Euclidean   Manhattan 

Change the distance metric! 

Generalized Skeletons 
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Saliency metric: 
)(p) = '(p) / DT(p) 

p 
DT(p) 

'(p) 

Saliency Skeletons 
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More complex examples! 

Saliency Skeletons 
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Most challenging example 
•  very noisy CT segmentation 
•  saliency-based smoothing:  

•  connect specks 
•  reconstruct perceived sharp corners 

Saliency Skeletons 
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Generalize skeletons 
•  for a whole color/grayscale image 
•  not just a binary shape 

•  this generates a 2-dimensional image scale-space 

Dense Skeletons 
[Van der Zwan et al., VISAPP’13] 
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Image segmentation 
•  select a few most relevant layers 
•  simplify each layer (using salience metric) 

•  skeletons: we get less jaggies and we keep sharp corners! 

Applications 

input image dense skeletons (60% layers) mean shift segmentation 
[Comaniciu & Meer ‘02] 
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Image compression 
•  same procedure as before 

Applications 
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Artistic image manipulation 
•  keep few, highly simplified, skeletons 

Applications 

input images Papari et al., TPAMI’07 our method 
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Define vector field F and mass ' on ! so that 
F |%! = n, ' |%! = 1 
F = *(DT) |!\S 

  div 'F = 0 on entire ! (also on S!) 
 

Intuition: Mass... 
–  flows straight from %! to surface skeleton S (2D) 
–  flows on S to curve skeleton C (1D) 
–  flows on C to a global root-sink R (0D) 

 
Collapse '(x): mass passing through x en route to R!

Generalize the 2D collapse metric to 3D! 

3D Skeletons 
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•  Directly compute collapse:  
–  no advection 
 

•  Curve skeleton formal definition: 
–  x " S that have two shortest paths 

between their two feature points 
 

•  Collapse: 
–  x " C:  smaller area of the two %!-

components due to the two shortest 
paths 

–  x " S: length of single shortest-path 

[Reniers et al., TVCG’08] 

3D Surface and Curve Skeletons 
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3D Surface and Curve Skeletons 

[TVCG’08, 
DGCI’06, 
DGCI’08] 
 



www.cs.rug.nl/svcg 19 

Curve Skeletons: Part Segmentation 

[CGF’08, TVC’08, SMI’07, SMI’08] 
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Curve Skeletons: Patch Segmentation 

Surface skeleton segmentation 

Shape segmentation 
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Surface Skeletons: Shape Classification 

[VCBM’08] 

Robust surface classification Cortex structure 

[VCBM’08] 

[Taubin’95] 
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Scalability 

GPU implementation 
•  point clouds & meshes 
•  1M points/second (GTX 280) 
•  3D surface skeletons are finally practical 

[Jalba et al., TPAMI’12] 
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Real-time Reconstruction 

Surface skeleton  Input shape 
(technique: mesh projection) (technique: depth splatting) 

[Jalba et al., TPAMI’12] 
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Shape thickness 

[Jalba et al., TPAMI’12] 

Find thin shape parts 
•  important in 3D metrology (e.g. 3D printing) 
•  how to define/compute shape thickness? 
•  solution: 

 
•  easy to implement, real-time to compute 

Thickness(p " %!) = min q"FT-1(p) DT(q) 
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Challenge 1: Definition 
•  what is a curve skeleton? 
•  many algorithms, few formal definitions (except Dey & Sun ’06, Reniers et al.’ 08) 
 
 
 
 
 
 
 
 

Challenge 2: Unification 
•  can we define and compute the C-skeleton from the S-skeleton! 
•  !in the same way we compute the S-skeleton from the input shape? 

Which is the ‘correct’ curve skeleton? 

On to our unified framework! 
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Use exactly the same definition for S-skeleton and C-skeleton (!) 

2D skeleton 3D S-skeleton 3D C-skeleton 

!:   input shape (2D) 
|| ||:  Euclidean dist. (!) 

!:   input shape (3D) 
|| ||:  Euclidean dist. (!) 

!:   S-skeleton 
|| ||:  geodesic distance (S) . . . 

Unified framework: Yes we can! 

[Jalba and Telea, EGUK’12 Best paper] 
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•  advect S in *DT%S  
•  compute *DT%S analytically using observation in [Reniers et al., TVCG’08] 

Given a S-skeleton 
point q! 

Computation 
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Take its two feature 
points f1

q and f2
q! 

Computation 
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Compute geodesic +q on 
%! between f1

q , f2
q! 

Computation 
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Take the tangent 
vectors t1

q , t2
q on +q at 

f1
q , f2

q! 

Computation 
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Compute *DT%S(q) as 
(t1

q+t2
q)/2 

Computation 
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normalize *DT%S to 
control advection speed 

nearest-neighbor of si 
on S-skeleton 

keep advection in S-
skeleton (triangle-fan at si) 

Stop advecting points when T(si) < ,&

Computation 

Advect S-skeleton into C-skeleton: 
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Advection 
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Kustra et al.,  
VISAPP’13 

Livesu et al.,  
TVCG’12 

Our results Au et al.,  
SIGGRAPH’08 

Dey and Sun, 
SGP’06 

Jalba et al., 
TPAMI’12 

Reniers et al., 
TVCG’08 

Results 
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Applications: Graph visualization 

Edge bundling 
•  how to capture & draw the essence of a large graph (>100K edges) 
•  probably the hottest area in large graph visualization (10..20 top papers/year) 

[Holten, InfoVis’06] 
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Skeleton-based edge bundles (SBEB) 

[Ersoy et al., TVCG’11] 
[Hurter et al., TVCG’11] 

Simple idea 
•  iterate the following steps: 

draw edges dilate skeletonize attract to skeleton 

•  implementation: fully image-based (CUDA) 
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Pseudo-shading 
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US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec. 

Results 
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US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec. 

Results 
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France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec. 

Results 
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France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec. 

Results 
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Kernel density edge bundling (KDEEB) 

[Hurter et al., CGF’12] 

unbundled graph 

edge density signal 

bundled graph 

sharpening 

If bundling sharpens the edge density, then sharpening the edge density should bundle 

This is nothing but mean shift [Comaniciu & Meer ‘02] on the edge-space! 
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Results 

Net50: 460K edges France: 44K edges 

Wiki: 200K edges 
Random: 200K edges 
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Bundling dynamic graphs 

Time-dependent graphs 
•  streaming data (millions of edges, arriving in real time) 
•  solution: time-dependent mean shift – real-time bundling on the GPU! 

[Hurter et al. PacificVis’13] 
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Ongoing work 

NPR sculpting 
•  reduce 3D shape to smooth surfaces bounded by pixel-sharp feature edges 
•  solution: process surface normal using 3D surface skeleton 

•  simple (~20 lines C++) 
•  fast (real-time) 
•  intriguing! 
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Ongoing work 

Large graph visualization 
•  reduce huge graphs to shapes 
•  encode data in shading/color 

amazon graph (~1M edges): image generated in real-time (GTX 680) 
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Conclusions 

Revisited a few ‘myths’: Skeletons are 
•  fundamentally stable and robust shape descriptors 
•  computable accurately in real-time for large shapes 
•  admitting a single unified definition in nD 
•  useful for much more than shape matching 

www.cs.rug.nl/svcg/Shapes 
•  examples, applications 
•  code 
•  papers 


