## Scalable and Robust Computation of Medial Axes and Surfaces in 2D and 3D State of the art



### Alexandru Telea

Faculty of Mathematics and Natural Sciences University of Groningen, the Netherlands



# Some often-heard statements:

- Medial objects are in general
  - hard to compute
  - sensitive to noise
  - computable only for binary shapes
  - mainly useful for navigation, shape matching/analysis
- 3D medial surfaces are
  - very slow to compute
  - impractical for real-world applications



# Some statements:

- Medial objects are in general
  - hard to compute
  - sensitive to noise

- 3D medial surfaces are
  - very slow to compute
  - impractical for real-world applications



# Definition

# $S(\Omega) = \{x \in \Omega | \exists y \neq z \in \partial \Omega, ||x - y|| = ||x - z|| = DT_{\partial \Omega}(x)\}$

## 2D skeleton:

- 1D structure
- centers of maximally inscribed discs

## 3D surface skeleton:

- 2D structure
- centers of maximally inscribed balls

## 3D curve skeleton

- 1D structure
- no agreed formal definition





# **Global 2D detectors**

Collapsed boundary metric

[Ogniewicz & Kubler '95] [Falcao *et al.* '02] [Telea & Van Wijk '02]





- monotonic and continuous on whole shape  $\Omega$
- leads to a robust, multiscale skeleton

# Implementation

## Augmented Fast Marching Method (AFMM)

• O(N log N<sup>1/2</sup>), 2 fps @ 1024<sup>2</sup> pixels

## CUDA Banding Algorithm

- O(N), 500 fps @ 1024<sup>2</sup> pixels
- The fastest, simplest, most robust 2D skeletonization method out there





6

[Telea & Van Wijk'03]

[Hurter et al., TVCG'11]

# **Generalized Skeletons**

[Strzodka & Telea '04]



Change the distance metric!



# **Generalized Skeletons**



Change the distance metric!



# **Saliency Skeletons**

### Saliency metric: $\sigma(p) = \rho(p) / DT(p)$







# **Saliency Skeletons**

More complex examples...





0)







ÿ



r)



s)

p)

t)

# **Saliency Skeletons**

## Most challenging example

- very noisy CT segmentation
- saliency-based smoothing:
  - connect specks
  - reconstruct perceived sharp corners







# **Dense Skeletons**

### Generalize skeletons

- for a whole color/grayscale image
- not just a binary shape



• this generates a 2-dimensional image scale-space



# **Applications**

### Image segmentation

- select a few most relevant layers
- simplify each layer (using salience metric)



input image

dense skeletons (60% layers)

mean shift segmentation [Comaniciu & Meer '02]

• skeletons: we get less jaggies and we keep sharp corners!



# **Applications**

### Image compression

• same procedure as before







d) reconstruction (MSSIM=0.55, 61 layers removed)

# **Applications**

### Artistic image manipulation

• keep few, highly simplified, skeletons



input images

Papari et al., TPAMI'07

our method



# **3D Skeletons**

Generalize the 2D collapse metric to 3D!

Define vector field  ${\it F}$  and mass  $\rho$  on  $\Omega$  so that

$$F|_{\partial\Omega} = n, \rho |_{\partial\Omega} = 1$$
  
F =  $\nabla(DT) |_{\Omega \setminus S}$   
div  $\rho F = 0$  on entire  $\Omega$  (also on *S*!)

Intuition: Mass...

- flows straight from  $\partial \Omega$  to surface skeleton S (2D)
- flows on S to curve skeleton C (1D)
- flows on C to a global root-sink R (0D)

Collapse  $\rho(x)$ : mass passing through *x* en route to *R* 

# **3D Surface and Curve Skeletons**

[Reniers et al., TVCG'08]

### • Directly compute collapse:

- no advection
- Curve skeleton formal definition:
  - $x \in S$  that have two shortest paths between their two feature points

### Collapse:

- $x \in C$ : smaller area of the two  $\partial \Omega$ components due to the two shortest paths
- $x \in S$ : length of single shortest-path





# **3D Surface and Curve Skeletons**









[TVCG'08, DGCI'06, DGCI'08]























×

## **Curve Skeletons: Part Segmentation**





[CGF'08, TVC'08, SMI'07, SMI'08]

# **Curve Skeletons: Patch Segmentation**



# Surface Skeletons: Shape Classification

#### Robust surface classification

Cortex structure





# Scalability



[Jalba et al., TPAMI'12]

### **GPU** implementation

- point clouds & meshes
- 1M points/second (GTX 280)
- 3D surface skeletons are finally practical

# **Real-time Reconstruction**

#### Surface skeleton

(technique: mesh projection)

(technique: depth splatting)





# Shape thickness

### Find thin shape parts

- important in 3D metrology (e.g. 3D printing)
- how to define/compute shape thickness? ۲
- solution:

*Thickness*( $p \in \partial \Omega$ ) = min  $_{q \in FT^{-1}(p)} DT(q)$ 

easy to implement, real-time to compute





roningen

# On to our unified framework...

### **Challenge 1: Definition**

- what is a curve skeleton?
- many algorithms, few formal definitions (except Dey & Sun '06, Reniers et al.' 08)



Which is the 'correct' curve skeleton?

### **Challenge 2: Unification**

- can we define and compute the C-skeleton from the S-skeleton...
- ...in the **same** way we compute the S-skeleton from the input shape?









# Unified framework: Yes we can 3

Use exactly the same definition for S-skeleton and C-skeleton (!)

 $S(\Omega) = \{\mathbf{x} \in \Omega \mid \exists \mathbf{y}, \mathbf{z} \in \partial \Omega, \mathbf{y} \neq \mathbf{z}, \|\mathbf{x} - \mathbf{y}\| = \|\mathbf{x} - \mathbf{z}\| = DT_{\partial \Omega}(\mathbf{x})\}$ 

**2D skeleton** 

**3D S-skeleton** 

**3D C-skeleton** 



Ω: input shape (2D)  $\|\cdot\|$ : Euclidean dist. (Ω)





Ω: input shape (3D)  $\|\cdot\|$ : Euclidean dist. (Ω)  $\Omega$ : S-skeleton  $\|\cdot\|$ : geodesic distance (S)

[Jalba and Telea, EGUK'12 Best paper]

www.cs.rug.nl/svcg



university of groningen www.cs.rug.nl/svcg

- advect S in  $\nabla DT_{\partial S}$
- compute  $\nabla DT_{\partial S}$  analytically using observation in [Reniers *et al.*, TVCG'08]



university of

groningen

www.cs.rug.nl/svcg











**N** 









Advect S-skeleton into C-skeleton:

$$\mathbf{s}^{i+1} = P_{T(\mathbf{s}^{i})} \left( \mathbf{s}^{i} + \frac{\nabla DT_{\partial S}(\mathbf{\tilde{s}}^{i})}{\|\nabla DT_{\partial S}(\mathbf{\tilde{s}}^{i})\|} \delta \right)$$
  
keep advection in S-  
skeleton (triangle-fan at  $\mathbf{s}^{i}$ ) normalize  $\nabla \mathsf{DT}_{\partial \mathsf{S}}$  to  
control advection speed nearest-neighbor of  $\mathbf{s}^{i}$   
on S-skeleton

Stop advecting points when  $T(s^i) < \varepsilon$ 







# Advection



www.cs.rug.nl/svcg

university of groningen



# **Applications: Graph visualization**

### Edge bundling

- how to capture & draw the essence of a large graph (>100K edges)
- probably the hottest area in large graph visualization (10..20 top papers/year)



[Holten, InfoVis'06]



# Skeleton-based edge bundles (SBEB)

[Ersoy *et al.*, TVCG'11] [Hurter *et al.*, TVCG'11]

### Simple idea

iterate the following steps:



implementation: fully image-based (CUDA)



# **Pseudo-shading**







US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec.





US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec.





France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec.





France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec.



# Kernel density edge bundling (KDEEB)

[Hurter et al., CGF'12]

If bundling sharpens the edge density, then sharpening the edge density should bundle



This is nothing but mean shift [Comaniciu & Meer '02] on the edge-space!





# Bundling dynamic graphs

### **Time-dependent graphs**

- streaming data (millions of edges, arriving in real time)
- solution: time-dependent mean shift **real-time** bundling on the GPU!



[Hurter et al. PacificVis'13]



# Ongoing work

### **NPR sculpting**

- reduce 3D shape to smooth surfaces bounded by **pixel-sharp feature edges**
- solution: process surface normal using 3D surface skeleton

- simple (~20 lines C++)
- fast (real-time)
- intriguing...

# Ongoing work

### Large graph visualization

- reduce huge graphs to shapes
- encode data in shading/color



### amazon graph (~1M edges): image generated in real-time (GTX 680)



# Conclusions

### **Revisited a few 'myths': Skeletons are**

- fundamentally **stable** and **robust** shape descriptors
- computable accurately in real-time for large shapes
- admitting a single unified definition in nD
- useful for much more than shape matching





#### www.cs.rug.nl/svcg/Shapes

- examples, applications
- code
- papers

