
www.cs.rug.nl/svcg

Scalable and Robust Computation of Medial
Axes and Surfaces in 2D and 3D

State of the art

Alexandru Telea

Faculty of Mathematics and Natural Sciences
University of Groningen, the Netherlands

www.cs.rug.nl/svcg 2

Some often-heard statements:

•  Medial objects are in general
–  hard to compute
–  sensitive to noise
–  computable only for binary shapes
–  mainly useful for navigation, shape matching/analysis

•  3D medial surfaces are
–  very slow to compute
–  impractical for real-world applications

www.cs.rug.nl/svcg 3

Some statements:

•  Medial objects are in general
–  hard to compute
–  sensitive to noise
–  computable only for binary shapes
–  mainly useful for navigation, shape matching/analysis

•  3D medial surfaces are
–  very slow to compute
–  impractical for real-world applications

Not entirely true!

www.cs.rug.nl/svcg 4

•  2D skeleton:
–  1D structure
–  centers of maximally inscribed discs

•  3D surface skeleton:
–  2D structure
–  centers of maximally inscribed balls

•  3D curve skeleton
–  1D structure
–  no agreed formal definition

S(!) = {x"!|#y$z"%!,||x-y||=||x-z||=DT%!(x)}&

Definition

www.cs.rug.nl/svcg 5

Collapsed boundary metric

'(x " S) = max (min |p-q|%!)&
p,q " F(x)

•  monotonic and continuous on whole shape !&
•  leads to a robust, multiscale skeleton

collapse

[Ogniewicz & Kubler ’95]
[Falcao et al. ’02]
[Telea & Van Wijk ’02]

Global 2D detectors

www.cs.rug.nl/svcg 6

Augmented Fast Marching Method (AFMM)
•  O(N log N1/2), 2 fps @ 10242 pixels

&
CUDA Banding Algorithm
•  O(N), 500 fps @ 10242 pixels
•  The fastest, simplest, most robust 2D skeletonization method out there

&

shape

level sets

collapse
'&

parameterization u!

robust
skeleton S(&(&

[Telea & Van Wijk’03]

'(!) is Cauchy continuous!&

[Hurter et al., TVCG’11]

Implementation

www.cs.rug.nl/svcg 7

Euclidean Manhattan

[Strzodka & Telea ’04]

Change the distance metric!

Generalized Skeletons

www.cs.rug.nl/svcg 8

Euclidean Manhattan

Change the distance metric!

Generalized Skeletons

www.cs.rug.nl/svcg 9

Saliency metric:
)(p) = '(p) / DT(p)

p
DT(p)

'(p)

Saliency Skeletons

www.cs.rug.nl/svcg 10

More complex examples!

Saliency Skeletons

www.cs.rug.nl/svcg 11

Most challenging example
•  very noisy CT segmentation
•  saliency-based smoothing:

•  connect specks
•  reconstruct perceived sharp corners

Saliency Skeletons

www.cs.rug.nl/svcg 12

Generalize skeletons
•  for a whole color/grayscale image
•  not just a binary shape

•  this generates a 2-dimensional image scale-space

Dense Skeletons
[Van der Zwan et al., VISAPP’13]

www.cs.rug.nl/svcg 13

Image segmentation
•  select a few most relevant layers
•  simplify each layer (using salience metric)

•  skeletons: we get less jaggies and we keep sharp corners!

Applications

input image dense skeletons (60% layers) mean shift segmentation
[Comaniciu & Meer ‘02]

www.cs.rug.nl/svcg 14

Image compression
•  same procedure as before

Applications

www.cs.rug.nl/svcg 15

Artistic image manipulation
•  keep few, highly simplified, skeletons

Applications

input images Papari et al., TPAMI’07 our method

www.cs.rug.nl/svcg 16

Define vector field F and mass ' on ! so that
F |%! = n, ' |%! = 1
F = *(DT) |!\S

 div 'F = 0 on entire ! (also on S!)

Intuition: Mass...
–  flows straight from %! to surface skeleton S (2D)
–  flows on S to curve skeleton C (1D)
–  flows on C to a global root-sink R (0D)

Collapse '(x): mass passing through x en route to R!

Generalize the 2D collapse metric to 3D!

3D Skeletons

www.cs.rug.nl/svcg 17

•  Directly compute collapse:
–  no advection

•  Curve skeleton formal definition:
–  x " S that have two shortest paths

between their two feature points

•  Collapse:
–  x " C: smaller area of the two %!-

components due to the two shortest
paths

–  x " S: length of single shortest-path

[Reniers et al., TVCG’08]

3D Surface and Curve Skeletons

www.cs.rug.nl/svcg 18

3D Surface and Curve Skeletons

[TVCG’08,
DGCI’06,
DGCI’08]

www.cs.rug.nl/svcg 19

Curve Skeletons: Part Segmentation

[CGF’08, TVC’08, SMI’07, SMI’08]

www.cs.rug.nl/svcg 20

Curve Skeletons: Patch Segmentation

Surface skeleton segmentation

Shape segmentation

www.cs.rug.nl/svcg 21

Surface Skeletons: Shape Classification

[VCBM’08]

Robust surface classification Cortex structure

[VCBM’08]

[Taubin’95]

www.cs.rug.nl/svcg 22

Scalability

GPU implementation
•  point clouds & meshes
•  1M points/second (GTX 280)
•  3D surface skeletons are finally practical

[Jalba et al., TPAMI’12]

www.cs.rug.nl/svcg 23

Real-time Reconstruction

Surface skeleton Input shape
(technique: mesh projection) (technique: depth splatting)

[Jalba et al., TPAMI’12]

www.cs.rug.nl/svcg 24

Shape thickness

[Jalba et al., TPAMI’12]

Find thin shape parts
•  important in 3D metrology (e.g. 3D printing)
•  how to define/compute shape thickness?
•  solution:

•  easy to implement, real-time to compute

Thickness(p " %!) = min q"FT-1(p) DT(q)

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Challenge 1: Definition
•  what is a curve skeleton?
•  many algorithms, few formal definitions (except Dey & Sun ’06, Reniers et al.’ 08)

Challenge 2: Unification
•  can we define and compute the C-skeleton from the S-skeleton!
•  !in the same way we compute the S-skeleton from the input shape?

Which is the ‘correct’ curve skeleton?

On to our unified framework!

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Use exactly the same definition for S-skeleton and C-skeleton (!)

2D skeleton 3D S-skeleton 3D C-skeleton

!: input shape (2D)
|| ||: Euclidean dist. (!)

!: input shape (3D)
|| ||: Euclidean dist. (!)

!: S-skeleton
|| ||: geodesic distance (S) . . .

Unified framework: Yes we can!

[Jalba and Telea, EGUK’12 Best paper]

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

•  advect S in *DT%S
•  compute *DT%S analytically using observation in [Reniers et al., TVCG’08]

Given a S-skeleton
point q!

Computation

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Take its two feature
points f1

q and f2
q!

Computation

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Compute geodesic +q on
%! between f1

q , f2
q!

Computation

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Take the tangent
vectors t1

q , t2
q on +q at

f1
q , f2

q!

Computation

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Compute *DT%S(q) as
(t1

q+t2
q)/2

Computation

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

normalize *DT%S to
control advection speed

nearest-neighbor of si
on S-skeleton

keep advection in S-
skeleton (triangle-fan at si)

Stop advecting points when T(si) < ,&

Computation

Advect S-skeleton into C-skeleton:

www.cs.rug.nl/svcg www.cs.rug.nl/svcg

Advection

www.cs.rug.nl/svcg

Kustra et al.,
VISAPP’13

Livesu et al.,
TVCG’12

Our results Au et al.,
SIGGRAPH’08

Dey and Sun,
SGP’06

Jalba et al.,
TPAMI’12

Reniers et al.,
TVCG’08

Results

www.cs.rug.nl/svcg 35

Applications: Graph visualization

Edge bundling
•  how to capture & draw the essence of a large graph (>100K edges)
•  probably the hottest area in large graph visualization (10..20 top papers/year)

[Holten, InfoVis’06]

www.cs.rug.nl/svcg 36

Skeleton-based edge bundles (SBEB)

[Ersoy et al., TVCG’11]
[Hurter et al., TVCG’11]

Simple idea
•  iterate the following steps:

draw edges dilate skeletonize attract to skeleton

•  implementation: fully image-based (CUDA)

www.cs.rug.nl/svcg 37

Pseudo-shading

www.cs.rug.nl/svcg

US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec.

Results

www.cs.rug.nl/svcg

US Migrations graph: 1715 nodes, 9780 edges, 6 clusters, 3 sec.

Results

www.cs.rug.nl/svcg

France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec.

Results

www.cs.rug.nl/svcg

France airlines graph: 34550 nodes, 17272 edges, 207 clusters, 27 sec.

Results

www.cs.rug.nl/svcg

Kernel density edge bundling (KDEEB)

[Hurter et al., CGF’12]

unbundled graph

edge density signal

bundled graph

sharpening

If bundling sharpens the edge density, then sharpening the edge density should bundle

This is nothing but mean shift [Comaniciu & Meer ‘02] on the edge-space!

www.cs.rug.nl/svcg

Results

Net50: 460K edges France: 44K edges

Wiki: 200K edges
Random: 200K edges

www.cs.rug.nl/svcg

Bundling dynamic graphs

Time-dependent graphs
•  streaming data (millions of edges, arriving in real time)
•  solution: time-dependent mean shift – real-time bundling on the GPU!

[Hurter et al. PacificVis’13]

www.cs.rug.nl/svcg

Ongoing work

NPR sculpting
•  reduce 3D shape to smooth surfaces bounded by pixel-sharp feature edges
•  solution: process surface normal using 3D surface skeleton

•  simple (~20 lines C++)
•  fast (real-time)
•  intriguing!

www.cs.rug.nl/svcg

Ongoing work

Large graph visualization
•  reduce huge graphs to shapes
•  encode data in shading/color

amazon graph (~1M edges): image generated in real-time (GTX 680)

www.cs.rug.nl/svcg

Conclusions

Revisited a few ‘myths’: Skeletons are
•  fundamentally stable and robust shape descriptors
•  computable accurately in real-time for large shapes
•  admitting a single unified definition in nD
•  useful for much more than shape matching

www.cs.rug.nl/svcg/Shapes
•  examples, applications
•  code
•  papers

