Using the medial axis to locate mesh singularities

Harry Fogg, Cecil Armstrong, Trevor Robinson

Key Messages

- Mesh singularities are crucial features
- Existing mesh generation methods often don't create the ideal singularity configurations
- The medial axis can be used to locate effective positions of mesh singularities

Mesh singularities

• Nodes where regular grid structure is disrupted

- Undesirable because
 - they cause element distortion
 - can't take advantage of grid properties

- However, singularities are necessary:
 - to satisfy boundary alignment constraints

- to control/facilitate mesh resolution change

Review of existing methods

...paying attention to occurrence of singularities

Paving

• Disordered array of sings. in interior

*T. Blacker and M. Stephenson. Paving: A new approach to automated quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32(4):811–847, 1991.

Manual multiblock decomposition

• well-positioned singularities

* L. Dubuc et al. A grid deformation technique for unsteady flow computations. Int. J. Numer. Meth. Fluids 2000
† J. Hauser et al. Parallel multi-block structured grids. In Handbook of grid generation, 1998

Cartesian fitting method* (submapping)

• Singularities pushed to boundaries

Octree meshing

• Many pos-neg singularity pairs along boundaries

*

***R. Schneiders et al**. Octree-based Generation of Hexahedral Element Meshes. 5th IMR, 1996.

Medial axis (Tam & Armstrong) method*

 Geometry partitioned into sub-regions with at most one central singularity

Fig. 14. Stages in mesh generation by medial axis subdivision. (a) the medial axis. (b) concavity removal. (c) chain splitting. (d) subregion meshing.

- Tam & Armstrong MA based method generates
 high quality meshes...
- But it has shortcomings:
 - crude treatment of concavities
 - only takes into account the topological info in MA and not geometric info

<u>Indents</u>

Topological rectangles:

Theory

 Governing eqn. of orthogonal mesh*: Poisson Eqn.

$$\Delta_{S} \phi = K + \sum_{i} k_{i} \frac{\pi}{2} \delta_{\mathbf{p}_{i}}$$
scalar field Gaussian point sources relating to curvature at mesh element size surface singularities

* Guy Bunin. A continuum theory for unstructured mesh generation in two dimensions. Comput.Aided Geom. Des., 25(1):14–40, January 2008.

- ϕ can be solved numerically (FEM)
 - isotropic element size given by

$$h = e^{-\phi}$$

– derivatives of ϕ describe change in angle of cross-field

• But singularities must be positioned first

Placing singularities

- The crucial step
- Inverse Poission problem ... no general efficient solution method

Once singularities are fixed the rest of the mesh solution follows

The medial axis (MA)

 It provides a means to assess the geometry locally – links proximate boundaries

 It can be used to identify critical locations for mesh singularities*

* H. Fogg, C. Armstrong, and T. Robinson. New techniques for enhanced medial axis based decompositions in 2-D. In Proc. of 23rd IMR, 2014

A simple idea...

• θ_m - relative orientation of proximate boundaries \Rightarrow indicates preferred mesh pattern

Theory

Optimum mesh flow

θ_m range	$[\pi, 3\pi/4)$	$[3\pi/4, \pi/4)$	$[\pi/4, 0]$
$ \Phi_{lpha} _{ ext{optimum}}$	$\pi - \theta_m$	$\pi/2-\theta_m$	$- heta_m$
Medial axis appearance	θ_m	$\begin{array}{c} \alpha \\ \theta_m \end{array}$	α θ_m
Cross-field behaviour	Φ_{α}	Φ_{α}	Φ_{α}
Colour			

Optimum mesh patterns at corners

Medial vertices:

Finite contact:

$$k = -\text{floor}\left(\frac{\max(\theta_m)}{\pi/2}\right)$$

Basic Algorithm

- I. Generate MA (CADfix).
- 2. Assemble analysis positions on MA.
- 3. Perform flux balance calculation in slivers.
 - \Rightarrow Place mesh singularities on MA.

Examples

Examples

Examples

Generating the decomposition

• Trace separatrices of cross-field...been done.

* N. Kowalski et al. A pde based approach to multidomain partitioning and quadrilateral meshing. In Proc. of the 21st IMR, San Jose, Oct. 2012.
† H. Fogg et al. Multi-block decomposition using cross-fields. In Proc. of ADMOS, Lisbon, June 2013.
H. Fogg et al. New techniques for enhanced medial axis based decompositions in 2-D. In Proc. of 23rd IMR, London, Oct, 2014.

• Niche of MA-based mesh generation:

- 'lightweight', cheap, fast, robust.

• Require simple operations to split surface satisfying implicit solution...see [Fogg, 2014]

Summary

- Mesh singularities are the key features in all-quad meshes
- The MA can be used to effectively locate positions of singularities.
- Natural treatment of concavities and responsiveness to geometric shape