

MediationZone 7.0

By Markus Henriks & Irene Gonzalvez

MediationZone 7.0

3

Configuration Space

5

What has been changed in MediationZone?

- Major changes internally
- New MZSH commands
- Select which space to use in GUI and MZSH

- 8
- MediationZone has excellent performance
 - Often downstream systems can not handle the load
- Protect downstream systems
 - Outbound user defined throttling of requests to downstream systems
 - Threshold configuration per downstream instance
 - Available in Diameter Routing Profile and Radius Forwarding agent

SMPP collection and forwarding

- Support for sending and receiving SMS over the SMPP protocol
- SMPP Receiver (receive SMS)
- SMPP Transmitter (send SMS)

Business Value:

- Lower integration cost
- End user transparency
- Notification management using MZ

PostgreSQL DB support

- DB profile option
- Allow access to PostgreSQL 9.3 Databases
- Using SQL Collection and SQL
 Forwarding

Business Value:

• More Integration options

© Digital Route AB 2014 - Proprietary and Confidential Information

ISO Transport Service on top of TCP

- Offer low cost FTAM Solution
- Less 3PP dependent using ISODE framework
- Using FTAM over TCP/IP
 - RFC-1006 0

Business Value:

Low TCO legacy connectivity

isode

HiCAP connectivity

- Support for Lucent High Capacity Automatic Message Accounting Protocol (HiCAP) AMATS protocol
- Collection agent through RPC
- Modeled after AMATPS
- Insert into a wf

Business Value:

Legacy connectivity

😑 🔘 😑 Agent – HiCAP_1	l (New Workflow [1])
Name HiCAP_1	
HICAP	
Connection File Polling	Trace
<u>H</u> ost	
<u>D</u> CF	
<u>T</u> imeout (s)	120
<u>P</u> assword	
<u>S</u> ensor Id	0
S <u>e</u> nsor Type	0
Se <u>n</u> ding Unit	0
<u>Connect</u> Session Retries	5
Connect Sleep Time (ms)	10000
F <u>i</u> les to Test	3
<u>R</u> eset Server Password	arpcs01
Reset Server Sleep Time (s)	300
<u>O</u> K <u>C</u> ancel	<u>H</u> elp

TCP/IP forwarding agent

- New generic agent to send data over TCP/IP to external systems
- Bi-directional support
- Support for multiple receiving agents
- Complement to our TCP/IP collector

Business Value:

• Proxy for any type of TCP traffic

Google's Protocol Buffers

- Support for decoding/encoding of Google's protocol buffers in Ultra
- Language-neutral, platformneutral, extensible mechanism for serializing structured data
- Think XML, but smaller, faster and simpler

protobuf

Protocol Buffers - Google's data interchange format

```
message DataRequest {
  required string destination = 1;
  optional int32 code= 2;
```

```
optional int32 number = 3;
```

Business Value:

 Additional services and formats supported Same way as XML schema, copy/paste of GPB schema into Ultra Editor

RESTful / JSON support

- Optional APL functions for both HTTP and JSON
- Support for RESTful web services
 - Often used for provisioning
- JSON or XML

Business Value:

 Integration with RESTful web services

We need to collect data from our 200 Network Elements, producing data in 50 formats, forwarding data to our 3 billing systems, revenue assurance and fraud.

No, problem! We are the experts! We can develop it for you and then you can support it. You will become self sufficient.

DigitaRoute

3 Months later

Here you are, we have developed your configuration, helped you to go into production. Now you are **self sufficient** and can do what ever you want.

50 workflows, 14 Ultras 15 workflow groups,

But no documentation

Automated Documentation

27

Demo

New APL editor

28

• Demo

$\Theta \cap \Theta$	Agent - Finalize (PCC.PCC_WFL_Gx_UsageMonitoring)
Name F	inalize
Analys	e
07	
3/	
20	debug(~\n\n);
40	(/ Undate all lacked RDWc
41	store Rel Man (input, input, hdh):
42	<pre>storeBdhMao(input, input,bdhRemoved):</pre>
43	
44	// Comit transaction
45	if (input.txn != null) {
46	<pre>pccCommitBucketDataTransaction(input.txn);</pre>
47	<pre>debug("Transaction commited");</pre>
48	}
49	
50	// Send notifications
52	it (input.notifications != null) {
53	Int I = v; while (i < listSize(input potifications)) /
54	NotificationInfo.n = listGet(input notifications _i);
55	debug("Sending notification = " + n);
56	udrRoute(n, "notif"):
57	i = i + 1;
58	}
59	}
60	
61	// Create CDR
62	if (CDR_ENABLED) {
64	debug("CDR enabled");
65	ist <curos> cors = generateoxCurs(input);</curos>
66	$II (cors := nucc) \tau$
67	while (i < listSize(cdrs)) {
68	CdrGx cdr = listGet(cdrs. i):
69	udrRoute(cdr, "cdr");
70	<pre>debug("CDR sent = " + cdr);</pre>
71	i = i + 1;
•	
Line: 45	Column: 21 Position: 1010
A.T	
UDR Typ	es
rc (PCC.	PCC UFL Internal)
	Set To Input

APL for loop

Classic for loop:

```
list<int> numbers = listCreate(int);
listAdd(numbers, 77);
```

```
listAdd(numbers,24);
```

```
for( int i; i<listSize(numbers); i++)</pre>
```

```
debug(listGet(numbers,i));
```

For each loop:

```
list<int> numbers = listCreate(int);
listAdd(numbers, 77);
listAdd(numbers,24);
```

```
for (int n : numbers)
```

```
debug(n);
```


From the last UGM..

- Current real-time aggregation has excellent performance
 - Using heap memory aggregation cache
- Scales by adding new workflow instances or threads
- But the current real-time aggregation agent has some limitations
 - Not possible to access same aggregation cache from different workflows

Real-time aggregation storage

Aggregation 1

Aggregation

- 33
- Real-time and scalable storage support for our real-time aggregation agent
- Guaranteed service continuation
- Geographical replicated data
- Simplified Horizontal scale out
- Allows concurrent access from multiple real-time workflows
- Scales with additional workflows and storage nodes
- Uses clustered in-memory database technology
 - Couchbase NoSQL database

Couchbase overview

Document NoSQL Architecture High availability database Value is read and written Shared nothing Replication level (N) can be based in a key architecture configured N+1 nodes have the data Documents can be any Horizontal scaling with additional nodes value to support failover JSON documents supports Asynchronous design Supports geo-redundancy querying inside Couchbase Supports geo-redundancy

- Cluster consists of server nodes
- Data is spread across server nodes (the cluster) and replicated

Server Nodes

Replication & Persistency

© Digital Route AB 2014 - Proprietary and Confidential Information

cluster at runtime

 Once the node joins the cluster, the cluster must be rebalanced

Nodes can join the

- Distribute data evenly among nodes
- Scales linearly

Scalability

© Digital Route AB 2014 - Proprietary and Confidential Information

www.digitalroute.com