

White Paper

White Paper

PowerShell for Dummies

Project: Supervision

Targeted Product: GSX Monitor & Analyzer

White Paper

Introduction: A Bit of History .. 3

Starting with PowerShell ... 4

Prerequisites .. 5

Exchange Management Shell ... 5

Remote Power Shell .. 5

First Syntax .. 6

Get Information and configure your environment 7

Get Exchange server .. 7

Get-mailbox ... 7

Get-Active Sync Device .. 7

Get-Public Folder Database ... 7

Get-MailboxDatabase... 7

Monitor and troubleshoot your environment 8

Testing Autodiscover Testing the mailbox server core functionalities… 8

Get-MailboxDatabaseCopyStatus.. 8

Test-Mapi Connectivity .. 9

Testing the HUB queues ... 9

Content

1

White Paper

Get-Queue ... 9

Testing the Client access Server .. 10

Test-Owa Connectivity ... 10

Active Sync Connectivity ... 11

Test-Outlook connectivity ... 12

Reports on Usage of Your Environment 13

First command: Get-mailbox .. 13

Second one: Get-Mailbox Statistics ... 13

Get-Logon Statistics .. 14

PowerShell limitations .. 14

Maintainability ... 14

Automating and alerting ... 14

Storing the information .. 15

Trending availability and usage statistics 15

One Solution: GSX Monitor & Analyzer 16

Your Next Action .. 17

2

White Paper

At first it was a project: A code name Monad.

Why Monad?

The name came from a book written by Leibniz called “Monadologie.” It explained
that reality is composed of fundamental elements (Monades), which are all integrated
into a predefined harmony. Well, it’s a beautiful origin and a good analogy here
would be that PowerShell is a set of tasks executed by a set of component all
integrated into what we call PowerShell.

Previously named Microsoft Command Shell (MSH), PowerShell is a script language,
and a shell, that has been created with Microsoft .NET Framework.

The first beta appeared on Nov. 9, 2005, with a final version available on Nov. 14,
2006.
To focus on Exchange, PowerShell has been integrated to Exchange since 2007.
The problem there is that this first version of PowerShell did not integrate remote
capabilities. Thus, every command had to be run directly on the Exchange server.

Since PowerShell v2, which came with the Exchange 2007 Service Pack 2, the
remote session is now available.

This means that now you can run PowerShell script from any computer that has a
remote access to the Exchange server. And, as you will see in this White Paper, it’s
a big deal!

Since the 2010 wave of Microsoft products, PowerShell is at the heart of
administrative capabilities. This technology is becoming more powerful than ever,
and it will not cease to grow in the future. So, it is important to start becoming familiar
with it.

Using PowerShell scripting to monitor an Exchange environment can be a daunting
task for Exchange administrators, especially when they do not know how to
automate the main cmdlets.

This White Paper deals with the utilization of basic PowerShell commands that will
enable the user to monitor, troubleshoot and get some statistics from your
environment.

Finally, we will focus on PowerShell limitations, and how to easily they can be
solved, thanks to GSX Monitor & Analyzer.

Introduction: A Bit of History

3

White Paper

First, let’s describe some basic components of this Shell:

The cmdlets execute the tasks, for which they are designed.
PowerShell uses a system of syntax that allows commands to be piped. This means
that the output of a cmdlet can be the entry of another one, without any change
needing to occur. It is called “Piping.” Think about an assembly line, where the object
is operated in different ways through each phase, just like a car (welding doors,
adding windows, installing seats).

For Example: Get-Service | Sort-Object Status.

Simplified navigation in the operation system allows the user to browse the registry
and other data pools, like one would do inside a file system.

• Powerful features can manipulate objects that will be sent to other
 databases tools, if needed.

• Easy integration into third-party tools can be used in the PowerShell to help
 administrators automate tasks.

For Example: GSX Monitor & Analyzer!

So, now that we’ve seen the philosophy and the main characteristics of the “tool,”
let’s go into its utilization.

Starting with PowerShell

4

White Paper

PowerShell has been part of every operating system since it was first implemented in
Windows 7, and Windows Server 2008 R2. However, it is possible to install it on
Windows XP and Windows Server 2003.

When PowerShell is installed, launch “powershell.exe” and use the basic cmdlets to
access the system.
However, it is important to notice that specific sets of cmdlets, such as those for
Exchange 2010, are stored in a “snappin,” or module. A snappin/module is installed
with the technology, and it is possible to import such snappin/module into another
session.

In order to execute PowerShell cmdlets on an Exchange servers, there are different
ways to proceed.

Exchange Management Shell
The easiest way to start with Exchange cmdlets is to remote the desktop into one
Exchange servers and launch the “Exchange Management Shell.” This is the
equivalent of the Management Console for managing Exchange, but without the
interface.

It is also possible to install the “Management tools” that include the Management
shell on remote computers.

Remote PowerShell
In order to connect to a remote computer with PowerShell, it is necessary to create a
“PSSession”:

$session = New-PSSession –computerName <fqdn of machine> -credential Get-
Credential – authentication Kerberos

Prerequisites

5

White Paper

For connecting to Exchange directly:
$session = New-PSSession -credential Get-Credential –authentication
Kerberos –connectionURI
http://<FQDN of Exc server>/PowerShell –configurationName Microsoft.Exchange

First Syntax
Let’s cover the Syntax very quickly. PowerShell cmdlets are always written following
the syntax “verb-resource”. Action verbs like “new,” “get,” “remove,” and “set” can be
used. For instance, to receive a service you would use “Get-Service”.

There are two cmdlets that are specifically important: Get-Help and Get-Command.
These will give you the list of commands and attributes that you are able to execute
on your environment.
For all the common cmdlets, there are aliases that allow you to call them.

For example:

• Get Help with the aliases “man” or “help”
• Get Command with the alias “gcm”

Note: For the command “get-help,” you can use the parameters “-full” or “-online” to
getmore details. Using “-full” will display the full help along with examples.
Meanwhile, “- online” will display the TechNet article on the cmdlet.

Coming back to Exchange, once a session is created, you can either:

• Import the session, and then work as if you were on the remote computer
with thecommand: Import-PSSession $session => Implicit remoting.

• Enter the session with the command: Enter-PSSession $session => Explicit
remoting.

• Invoke the commands on the remote computer with: Invoke-Command { any
cmdlet here} –session $session.

While remoting onto multiple computers at the same time, using implicit remoting
with prefixes or invoking commands will be easier to use. The cmdlet “Invoke-
Command” contains a parameter “computername” that accepts a list of computer
names (separated by commas).

6

White Paper

Now that we have a grasp of the basics, let’s focus on the commands that will help
you directly with the administration of your Exchange environment.

Get Exchange server
It retrieves all the server parts of the current organization, with their name, site, roles,
version and edition, AD server.
To view all the Exchange server attributes that this cmdlet returns, you must pipe the
command to the Format-List cmdlet.

Get-mailbox
The Get-Mailbox cmdlet retrieves attributes and objects for a mailbox. No
parameters are required. If the cmdlet is used without a parameter, all mailboxes in
the organization are listed. You can use the Get-Mailbox cmdlet to view mailbox
objects and attributes, populate property pages, or supply mailbox information to
other tasks.

Get-ActiveSyncDevice
You can use the Get-ActiveSyncDevice cmdlet to retrieve the list of devices in your
organization that have active Microsoft Exchange ActiveSync partnerships. The Get-
ActiveSyncDevice cmdlet returns identification, configuration, and status information
for each device.

Get-PublicFolderDatabase
For those who still have “Public folder,” this command returns attributes of all of the
public folder databases in the Exchange organization.

Get-MailboxDatabase
You can use the Get-MailboxDatabase cmdlet to retrieve one or more mailbox
database objects from a server or organization. If you use the Get-MailboxDatabase
cmdlet with no parameters, it gets information about all mailbox databases in the
Exchange organization. If you use the Get-MailboxDatabase cmdlet with the Server
parameter, it gets information about all mailbox databases on the server that you
specify. To return specific database properties (including backup and mount status
information), make sure you use the “Status” parameter.

Get Information and configure your environment

7

White Paper

Now that you have all the information you need about your environment, let’s try to
monitor it and troubleshoot problems.

For that, a bunch of commandlets exist. We will focus on a very small part of them
for you to follow.

Testing Autodiscover
Autodiscover is a central point in the CAS infrastructure. This configures user profile
settings for Outlook clients automatically and provides access to Exchange features.
Hence, constantly checking its health is critical.

The OutlookWebServices test performs several PowerShell tests to measure the
availability and performance of the Autodiscover service. It tries to retrieve the
configuration parameters of a test mailbox for multiple services. These include:

• Availability Service: This is a free busy calendar service.
• Offline Address Book: This is used to synchronize remote clients.
• Outlook Anywhere: This was formerly known as RPC/HTTP.
• Unified Messaging: This checks if everything is well configured to access

this key service.

Testing the mailbox server core functionalities

Get-MailboxDatabaseCopyStatus
This command retrieves current statuses of the mailbox databases of the current
server,along with the copyQueueLength, the ReplayQueueLength, the
ContentIndexState and the server hosting the active Database copy.

If a database is specified by using a command with the Identity parameter, the status
of all copies of the database is returned. If a server is specified by using a command
with the Server parameter, information on all database copies on the server is
returned.

Monitor and troubleshoot your environment

8

White Paper

Figure 1: This cmdlet retrieves all the Mailbox Databases with their Status, copy
queue length and other interesting data. To view the full list of values, remember to
use " formatlist " at the end of the cmdlet.

Test-MapiConnectivity

It connects on the mailbox you want (or to the system mailbox if you don’t want to
specify a specific target) and extracts the list of the elements of that mailbox.

Doing this tests the two most critical protocols used during any connection between a
client and a mailbox server: the MAPI and the LDAP protocol. During the
authentication, it also checks the MAPI server, the Mailbox Database and the
Directory Service Access are working correctly.

These tests check the service that the Mailbox service should deliver as well as the
Health of the Mailbox Database that is specified.

Testing the HUB queues

Get-Queue

The Get-Queue cmdlet displays information about existing queues on a Hub
Transport server or an Edge Transport server. You can manage your HUB queue
directly via PowerShell commands. These cmdlets allows you to:

• Resume Queues.
• Retry Queues.
• Suspend Queues.
• Resume Messages.
• Suspend Messages.
• Remove Messages.

9

White Paper

Testing the Client access Server
Regarding the Client Access Server, you should use commands that test configured
protocols. These commands include:

• Test OWA Connectivity.
• Test POP and IMAP Connectivity.
• Test Active Sync Connectivity.
• Test Outlook Connectivity.

Next, let’s describe the most useful tests: OWA, Active Sync and Outlook
Connectivity:

Test-OwaConnectivity

You can use the Test-OwaConnectivity cmdlet to verify that Microsoft Office Outlook
Web App is running as expected. The Test-OwaConnectivity cmdlet can be used to
test Outlook Web App connectivity for all Microsoft Exchange Server 2010 virtual
directories on a specified Client Access server. The Test-Owa-Connectivity can also
be used for all mailboxes on servers running Exchange within the same Active
Directory site.

The Test-OwaConnectivity cmdlet can also be used to test the connectivity of an
individual Exchange Outlook Web App URL.

Figure 2: See the latency of the test-OwaConnectivity and the scenario results

10

White Paper

ActiveSyncConnectivity

Another very important test for companies using Active Sync is the
ActiveSyncConnectivity test. This test proceeds to a synchronization step by step.

• This test simulates a Mobile that first makes a request to check the protocol
version.

• Afterwards, it tries a folder synchronization to retrieve all the folder
hierarchy in the mailbox.

• The test then initiates the synchronization and creates a communication
channel with the mailbox. This is done to order to retrieve the number and
size estimation of items (mail, calendars, notes, contacts) waiting for
synchronization.

• Active Sync then synchronizes all existing data in the test folder.

• Here comes the test of the “Direct Push.” For that test, it checks if the
mobile is able to receive a push notification doing a real notification ping on
the virtual device.

• Finally, it takes one complete item of the list and makes a complete
download and synchronization to finish the test.

Figure 3: The test-ActiveSyncConnectivity executes a set of scenarios. If the result
failed for any of them, you can see a detailed error string on the issue, otherwise
there will be a latency returned for each scenario.

11

White Paper

Test-Outlook connectivity:

This protocol is one of the most widely used because it enables the communication
between the outlook client and the Client Access Server. For example:

Each time an Outlook client is used, this protocol is used. It reflects the performance
experience by 90 percent of the users in the company

This test checks simultaneously all of the following:

• The Autodiscovery connectivity.

• The creation of a user profile.

• Logging onto the user’s primary mailbox or archive mailbox.

This test uses the architecture of Exchange for a complete connection to the
mailbox.

Figure 4: The test-OutlookConnectivity executes a set of scenarios to simulate an
end user connection. The full scenario covers Autodiscovery of the Exchange
settings from the login onto the mailbox.

12

White Paper

Some PowerShell commands are extremely useful to check the usage of your
environment.

First command: Get-mailbox
The Get-Mailbox cmdlet retrieves the attributes and objects for a mailbox. No
parameters are required. If the cmdlet is used without a parameter, all mailboxes in
the organization are listed.

Second one: Get-MailboxStatistics
It can be used with “–server” parameter or “–identity” <Mailbox>

Get-MailboxStatistics cmdlet is used to obtain information about a mailbox, such as
the size of the mailbox, the number of messages it contains, and the last time it was
accessed. In addition, the move history or a move report of a completed move
request may be obtained.

Only on Mailbox servers can use the Get-MailboxStatistics cmdlet without
parameters. In this case, the cmdlet returns the statistics for all mailboxes on all
databases on the local server.
Otherwise, the Get-MailboxStatistics cmdlet requires at least one of the following
parameters to complete successfully: Server, Database, or Identity.

Figure 5: Using Get-MailboxStatistics on a specific Mailbox will return information
like the number of items in the mailbox, the last logon time, and a Mailbox GUID that
can be used to link with other mailbox objects that PowerShell can retrieve.

Reports on Usage of Your Environment

13

White Paper

Get-LogonStatistics
The Get-LogonStatistics cmdlet retrieves logon information about currently active
session. Usually, you can only use Get-LogonStatistics cmdlets on Mailbox servers
without parameters.In that case, the cmdlet returns the logon statistics for all
mailboxes on all databases within the local server.

Of course, there are many other PowerShell commands that exist to retrieve
additional useful statistics.
Now that we have seen how PowerShell is powerful, let speak about its limitations…

As we’ve just seen, you can run multiple commands in PowerShell, build a pipe of
commands to perform complex actions, and you can get information, monitor your
environment or see instant statistics. Hence, you can create multiple scripts to make
checks in your environment.

But, the first limitation that comes with any script is maintainability.

Maintainability
Any script that runs into your environment may cause this same issue. Scripts are
made by people and dedicated to a particular environment. As soon as people or the
environment changes, you may have problems to maintaining them. So in most
cases, you are forced to do it again and again.

Avoiding script allows you to have a clean environment, but in this case you cannot
check your environment as thoroughly as you probably should. So, you need a tool
that runs and maintains all the scripts for you.

Automating and alerting
It is fine to be able to test your environment every once in a while, but if this action is
not done on a regular basis you cannot anticipate or detect problems. You will only
become aware of problems when your users start complaining. That’s when
PowerShell is manually utilized; it is more for troubleshooting purposes rather than
real monitoring.

Of course, you could have several people running the script every five minutes to
detect problem, but it is not the best solution to be taken.

PowerShell limitations

14

White Paper

Monitoring without an alerting procedure is not recommended. PowerShell’s purpose
does not including sending mail, popups or even alerts to SCOM when the
performance is slow or fails to work. That is also a reason why it’s so difficult to
conduct monitoring with PowerShell.

Storing the information
Another point that comes with the lack of automation is the storage of the
information. After each test, the result is erased. There isn’t any way to store the
information into a databaseautomatically. That is why PowerShell tests do not allow
you to see historical trends about performance and availabilities within your
environment.

Trending availability and usage statistics
This problem is even more sensitive when it comes to reporting. Reports are made of
historical data. Thus, getting historical data through PowerShell isn’t easy…

If you want to calculate SLAs, or have an overview of the availability, performance
and usage of your environment within the last seven days, four months or two years,
it will be very, very difficult.

Even with SCOM, you’ll need a SQL expert to use a Report Builder, which isn’t the
best tool choice.

Hopefully, there is a solution to all these problems.

15

White Paper

GSX Monitor & Analyzer offers a simple solution to all these problems.

GSX Monitor & Analyzer is a monitoring and reporting tool made of a remote
PowerShell.Without any code on servers, it performs all the tests we have seen
earlier, in addition to a lot of other tests that check the availability and performance of
your environment.

Basically, you can consider it as a machine that performs multiple PowerShell tests
on all your servers regularly, displays the results in a graphical interface and stores
the performance and availability statistics in real time, gives historical or forecasting
trends and alerts you in case of performance slow down or system unavailability.

It is not a problem anymore maintaining script, because the tool is made of this and
automatically adapts to new environments.

It is not a problem to store each of the results stored into its database for immediate
availability concerning that information, or trending capability.

It is not a problem anymore to be alerted before your users, because many of the
alerts are based on performance counters that you define on the results of these
tests.

PowerShell is used by GSX because it enables the best tests possible on your
Exchange servers using the Exchange components as a user and understands the
way Exchange works.

GSX Monitor and Analyzer is based on the following:

• A scanning engine to automate PowerShell tests.
• An Alert system to alert on PowerShell tests.
• A PowerShell discovery of the environment.
• Servers’ role PowerShell availability and performance tests.
• DAG performance and availability tests as an entity.
• CAS Array performance and availability test as an entity.
• Mail Routing test from and an end user’s perspective.
• PowerShell tests performance statistics on display and storage.
• PowerShell tests performance statistics on trending and forecasting.

GSX has over 600 large customers with huge and complex infrastructures
worldwide. Our philosophy has always been to improve our products with our
customers, working closely with them on their expectations.

One Solution: GSX Monitor & Analyzer

16

White Paper

All of our products also follow several philosophies, which include the following:

• They are Agentless with a quick learning curve.
• They are simple to maintain.
• They automate all the monitoring and reporting tasks.
• A single product is able to monitor and report on Exchange, SharePoint,
 BlackBerry and IBM with the same key point.

• Watch a live demo of our GSX Monitor & Analyzer solution at
http://www.gsx.com/GSX-Podcast-Webinar-PowerShell-Cmdlets-Automation/

• Ask for a live demo of our GSX Monitor & Analyzer solution and fill out the
format http://web.gsx.com/request-a-demonstration-microsoft-exchange-and-
sharepoint

• Contact us at sales@gsx.com

Your Next Action

17

White Paper

GSX Solutions
sales@gsx.com

BLOG

GSX-Solutions www.gsx.com/
blog

GSX_Solutions GSX-Groupware-
Solutions

GSXSolutions

