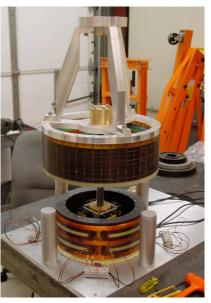
A high power density, high efficiency axial flux Halbach array motor/generator

Presented to the Electric Aircraft Symposium 4/23/2010

Geoff Long
Senior Systems Engineer
LaunchPoint Technologies
glong@launchpnt.com

LaunchPoint Snapshot

- A technology development company
 - Approx. 15 engineers
 - Approx. 5 administrative staff
 - Founded in 1992 by the Paden family
 - Brad Paden CEO, UCSB Professor, IEEE Fellow
 - Al Paden 30 years of engineering experience
 - Dave Paden Mechanical Engineer and machinist
- Primary facility is in Goleta, CA
 - Includes a machine shop, mech. assy, elect. assy, lab space
 - Small offices in Pittsburgh and Phoenix
- Focus is on innovation, technology & business development
 - Idea maturation, prototyping, with a transition to production
 - Minimal production is done in-house




LaunchPoint's expertise

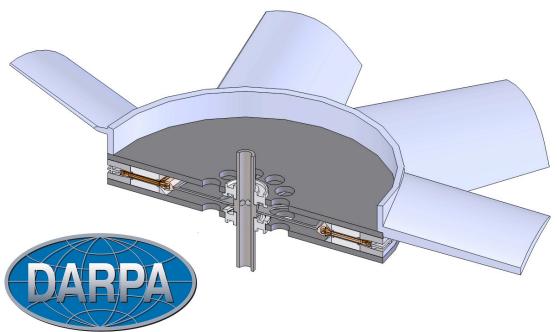
- New Ventures/Product Development
 - Magnetic bearings
 - Motor, alternator, generator design
 - Energy storage
 - Medical devices
 - Custom prototyping
- Engineering Consulting Services
 - Electromagnetic analysis and design
 - Control system analysis and design
 - Modeling and system optimization
 - Life-critical electronic systems
- Research
 - Funded by federal grants and private investments
 - Intellectual property creation, patents

More power, less weight

- Why power density of the motor matters:
 - In aircraft, weight can never be minimized enough
 - For power hungry VTOL aircraft, the weight of the motor is critical
 - The best available electric motors can deliver only about 3 kW/kg
 - The best available batteries can deliver 20 kW/kg
 - Turbine engines typically can deliver about 16 kW/kg
- Speeds must be appropriate for propellers and ducted fans
 - Increasing the shaft speed can increase power density, but
 - Fan tips must stay below the speed of sound in air
- The goal:

Design an electric motor to deliver over 8 kW/kg for lift fans

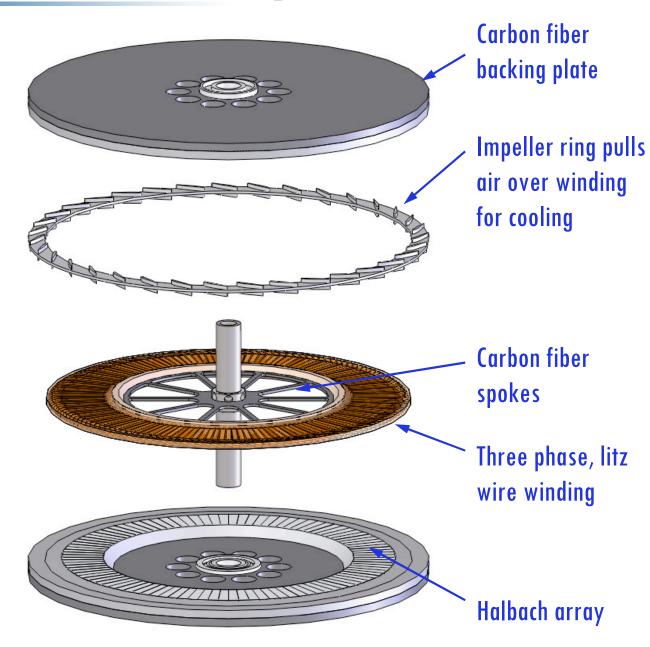
Some electric motor design options


- Cooling method?
 - Cooling capability frequently limits power density
 - Liquid cooling is more effective, but weighs more than forced air cooling
- ► Gearbox?
 - A gearbox will generally increase power density at the expense of reliability
- Motor inside fan or fan inside motor?
 - Increasing the surface velocity of the motor improves electro-magnetic performance, however
 - Putting the motor on the outside of the fan means that the surface velocity will be near the speed of sound and that drag will be high
 - Stiffness can also be an issue
- ► Iron core?
 - Iron core motors are well understood and minimize magnet material, however
 - Iron has a low stiffness to weight ratio and represents a large portion of the losses in a high power density motor
- Cryogenic?
 - Magnets get stronger and copper gets more conductive at cold temperatures, however
 - Keeping the motor cold is difficult, heavy and energy expensive

There are a lot of permutations with a vast solution space

DARPA UAV Motor

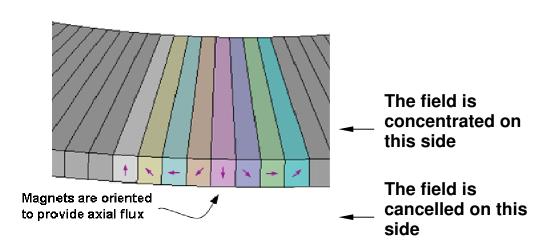
- Motor performance:
 - 5 hp/lb or 8.2 kW/kg
 - 7 hp @ 8400 rpm & 95% efficiency
 - 1.4 pounds or 0.64 kg
 - -6" diameter
- Developed under an SBIR Phase I grant
 - Target application is an electric powered, ducted fan UAV
- This performance is unrivaled
 - No other motor has 5 hp/lb at 8400 rpm while maintaining 95% efficiency

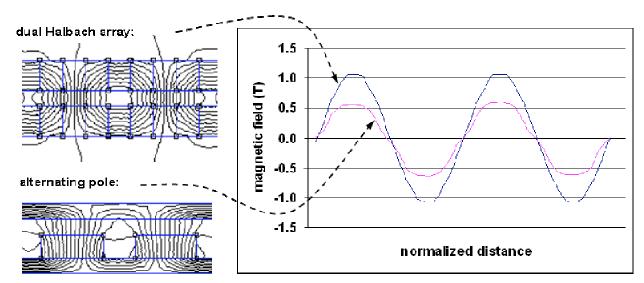


Attributes of the LaunchPoint motor:

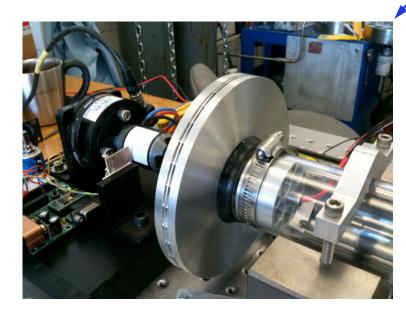
- A brushless permanent magnet motor/generator
- Axial flux configuration (pancake shape)
 - Allows for smaller gaps, higher efficiency than a radial configuration
 - Deflection from centrifugal forces and CTE mismatches are parallel to gap
 - Making parts very flat is easier than making them perfectly round and concentric
- Uses two Halbach arrays
 - Halbach arrays concentrate magnetic field without using iron
 - Optimized pole count to maximize field in gap, typically \sim 90% of B_r
- Highly efficient
 - Halbach arrays generate a field of >1 tesla in the gap
 - Litz wire results in very low copper eddy current losses
 - There is no iron: no hysteresis or iron eddy current losses
- Lightweight
 - Carbon fiber can be used in place of iron for structure
 - The motor is magnet, copper, carbon fiber each ideal for its purpose

Motor Components




Halbach arrays are one key enabler

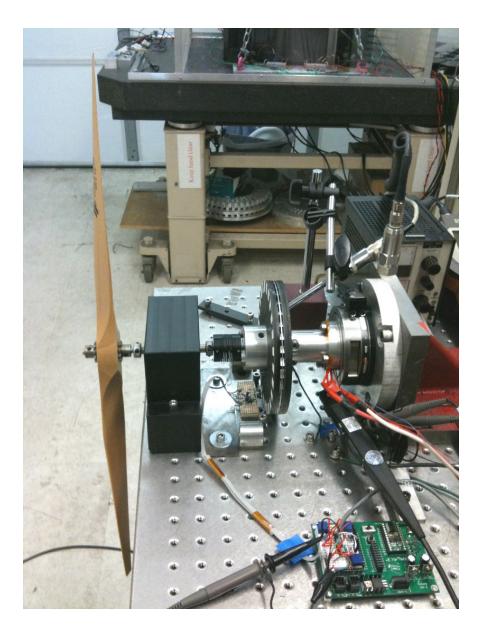
A Halbach array is an arrangement of magnets:



The dual Halbach array has a much stronger field for a given size and weight:

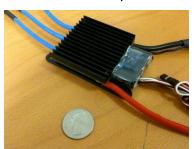
Hardware validation of models

- Analytical model developed, validated
 - Optimizes thermal, fluid dynamics, electromagnetic, mass properties
- Halbach array assembly tooling developed
- Winding tooling has been developed
 - Patent application in progress
- Thermal design has been tested and validated



Validation of models (continued)

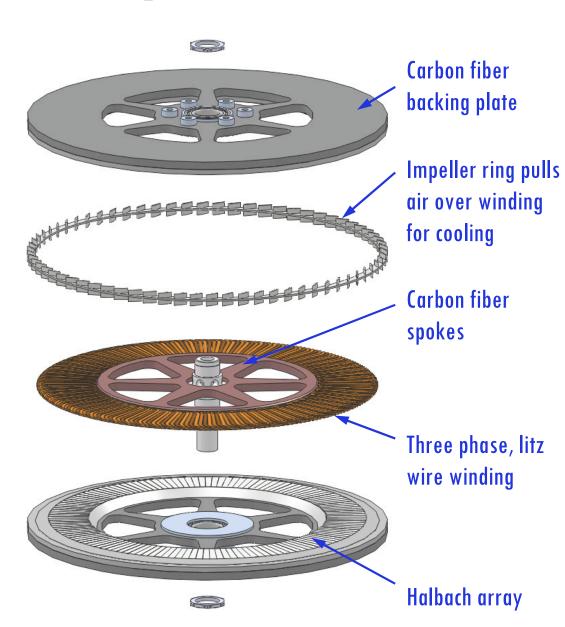
- Back EMF amplitude has been validated
- Terminal resistance has been validated
- No-load spinning losses at 8400 rpm have been validated
- A 20" propeller was spun using an off-theshelf motor controller
 - 1 hp of shaft power was generated
 - Stator temperature prediction was validated


Next prototype development steps

- Complete trade studies for motor controller
 - Commercial off-the-shelf motor controllers aren't necessarily compatible without special accommodation
 - Need to accommodate extremely low inductance, high PM flux linkage, high excitation frequency
 - Several appropriate power electronic architectures have been demonstrated
 Need to optimize and pick the best one
- The controller will likely be similar in power density compared to offthe-shelf controllers:

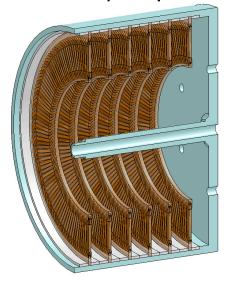
5 kW motor, 0.625 kg

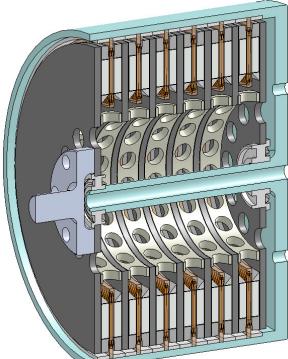
5 kW controller, 0.140 kg



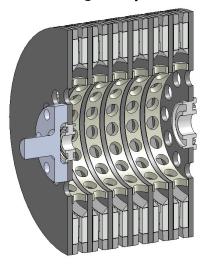
Other well suited applications

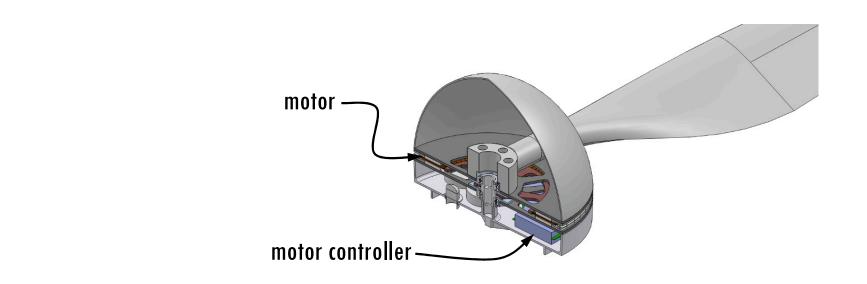
The design can be scaled up

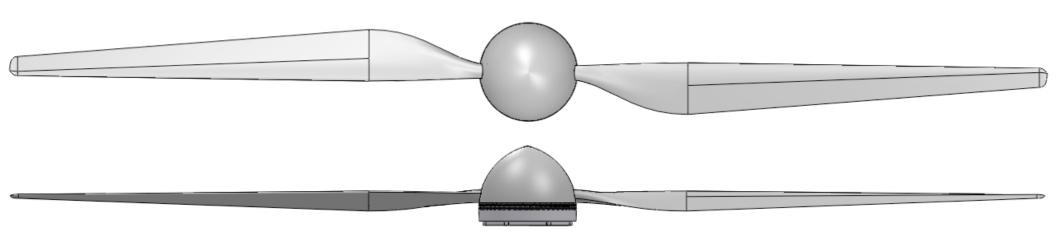

- A larger motor suitable for the DARPA Transformer program:
 - 18" diameter
 - 15 kilograms
 - 97% efficient at 150 hp, 3500 rpm
 - 97% efficient at 100 hp, 2700 rpm
 - Capable of up to 5 hp/lb



Motors can be stacked up


Stationary components:


Rotating components:

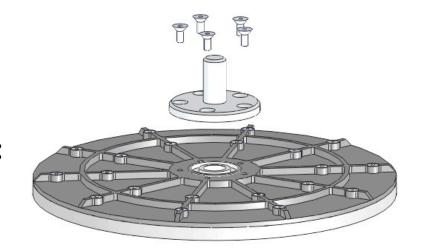


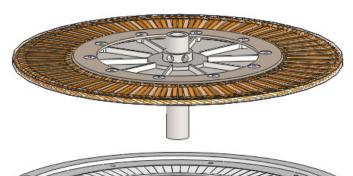
In this configuration, the stator is held from the outside

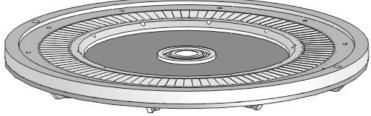
Driving an aircraft propeller

Landing gear wheel motor/generator

- Motor-in-wheel gives near-silent taxiing
 - Steer-by-wire
- Tire spool-up pre-touchdown
- Regenerative braking
- Motor volume and weight minimization is an enabler







NASA SBIR configuration

- Ongoing Phase I SBIR
 - -Work began mid-March
- Like the DARPA configuration, except:
 - Must operate from 40 K to 403 K
 - Must operate in a vacuum
- May be used in future lunar or Mars rovers, cranes, etc.
- Technology developed will be used to robustify motors for aircraft applications

Works equally well as a generator

Can be an integrated starter/generator

A prime mover with a single generator can drive multiple

distributed motors

Prime mover

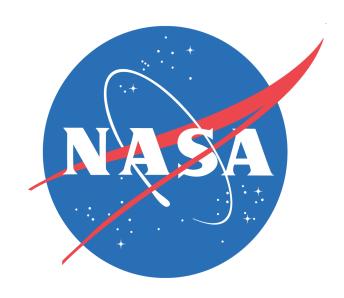
- Turbine
- Wankel
- Diesel

LaunchPoint generator

Auxiliary power

LaunchPoint motor in lift fans

LaunchPoint motor in wheel motors


Key takeaway message

This technology can provide a significant improvement in power density

Thanks to DARPA and NASA!

Some of the work that has been presented was funded by DARPA and NASA through the Small Business Innovation Research (SBIR) program

Call today to discuss your application!

Geoff Long
Senior Systems Engineer

glong@launchpnt.com

(805) 683-9659 x214

