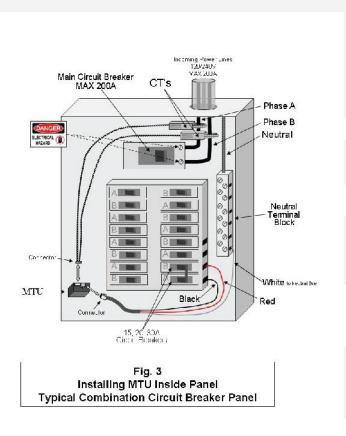
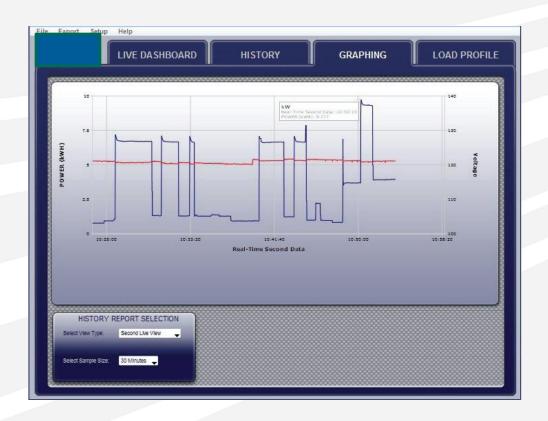
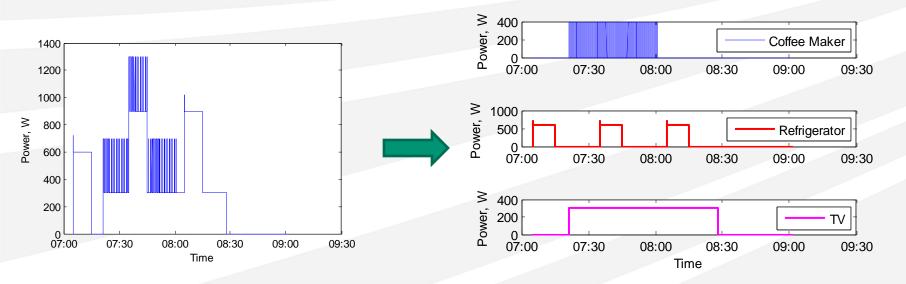
Fraunhofer Center for Sustainable Energy Systems


Disaggregation of Home Energy Display Data Using Probabilistic Approach


Michael Zeifman, Kurt Roth

International Conference on Consumer Electronics Las Vegas 15 January 2012

What Is Home Energy Display (HED)?



- > Intended for home energy saving
- > Information not actionable

What Is NIALM?

- Non-Intrusive Appliance Load Monitoring
 - A.k.a. Non-Intrusive Load Monitoring

- Main breaker/circuit level
- Data acquisition (hardware) and disaggregation algorithms (software)

NIALM: HED User Requirements

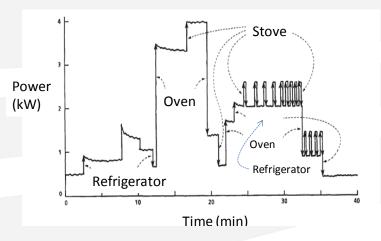
- ☐ Features: compatible with 1 Hz, real power only
- ☐ Accuracy: 80-90%
- No training
- ☐ Real-time capabilities
- ☐ Scalability (up to 20-30 appliances)
- □ Various appliance types

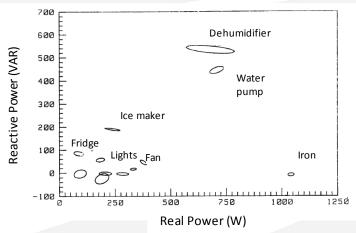
NIALM: Types of Appliances

☐ Permanent

☐ On/off

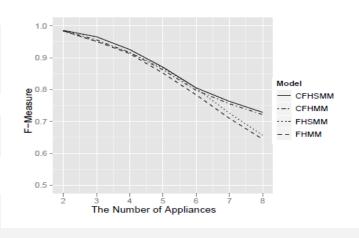
■ Multi State


■ Variable

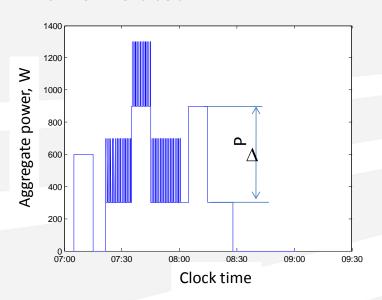


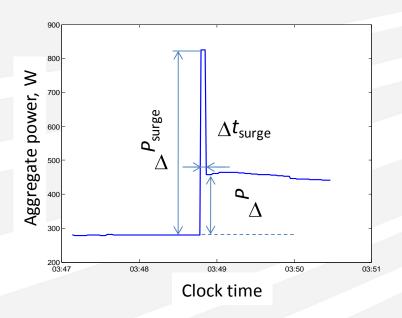
Known NIALM Methods for HEDs: Basic Method

Hart, 1992 (MIT method)


- > Features: steady-state change of power (real and reactive)
- Changes of power identified and tracked
- > Training
- ➤ Modifications to account for multi-state appliances
- ➤ Accuracy: ~70-80%
- ➤ Major problem: overlap in power draw

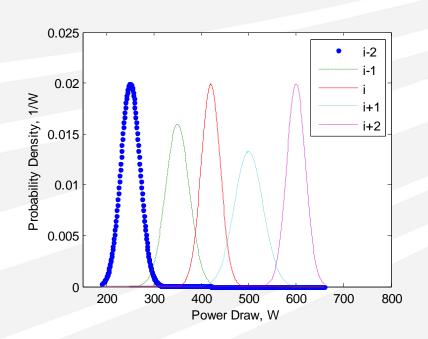
Known NIALM Methods for HEDs: Advanced Method


Kim, et al., 2011


- > Features: steady-state change of power and time-on statistics
- ➤ Factorial hidden Markov model (FHMM) mixture of independent 2-state chains coupled through observations
- > No training but number of appliances must be known
- > Need to process all the data (every second) for all appliances
- > Exponential computational complexity, cannot work with > 10 appliances
- > Overlap alleviated
- ➤ Accuracy: ~70-80%

Proposed Method: Features

■ Power-related



- ☐ Time-related
 - ➤ Time-on, time-off statistics
 - > Can be conditional on time of day

Proposed Method: Key Idea

- ☐ Order appliances by power draw
- ☐ Consider appliance tuplets, e.g., i ±1
- ☐ Track tuplets separately in time
- ☐ Tuplet size 3, or even 2 (triplet split in two)
- ☐ Foreign and missing data

Transitions within a Tuplet

Tuplet size: 2

System states

STATE	Appliance i	Appliance (<i>i</i> + 1)
1	OFF	OFF
2	On	Off
3	Off	On
4	On	On

Negative power change, system transitions

STATE	Appliance i	Appliance (<i>i</i> + 1)	TRANSITION BETWEEN UNDERLYING EVENT(S)	
1	Off	Off	STATES	Chesteria di Entro
2	On	Off	1,1	Is foreign datum
3	Off	On	1,2	Was missing datum from state 2 and is foreign datum
	On	On	1,3	Was missing datum from state 3 and is foreign datum
			1,4	Were missing data from states 2 and 3 and is foreign datum
			2,1	Appliance i is turning off but appliance $(i + 1)$ has not turned on
			2,2	Is foreign datum
			2,3	Was missing datum from state 4 and is 4,3 transition
			2,4	Was missing datum from state 4 and is external datum
			3,1	Appliance $(i + 1)$ is turning off but appliance i has not turned on
			3,2	Was missing datum from state 4 and is 4,2 transition
			3,3	Is foreign datum
Example	le of transiti	on probability:	3,4	Was missing datum from state 4 and is foreign datum
•				
			4,1	Was missing datum from either state 2 or 3 and is 2,1 or 3,1
$P_{4,2} \propto p_{i+1}(\Delta P) f_{i+1}(\tau_{i+1,on}) [1 - F_i(\tau_{i,on})]$		4.2	transition Appliance (i + 1) is turning off but appliance i has not turned off	
,	.,_		4,2	Appliance $(i + 1)$ is turning off but appliance i has not turned off
			4,3	Appliance i is turning off but appliance $(i + 1)$ has not turned off
			4,4	Is foreign datum

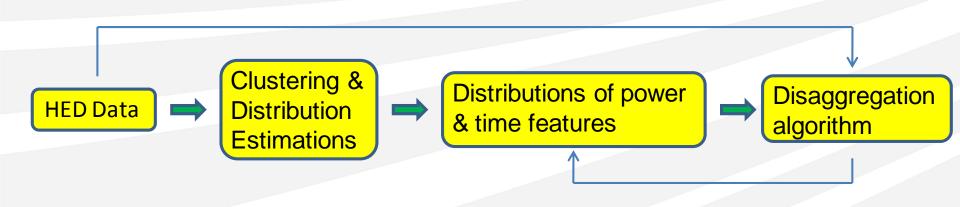
Modified Viterbi Algorithm

$$\{\hat{s}_t\} = \arg\max\left[\{s_t\} \mid \{\omega_t\}\}\right]$$

 $\{\hat{S}_t\}$ - maximum likelihood estimation of state sequence

 $\{s_t\}$ - state sequence

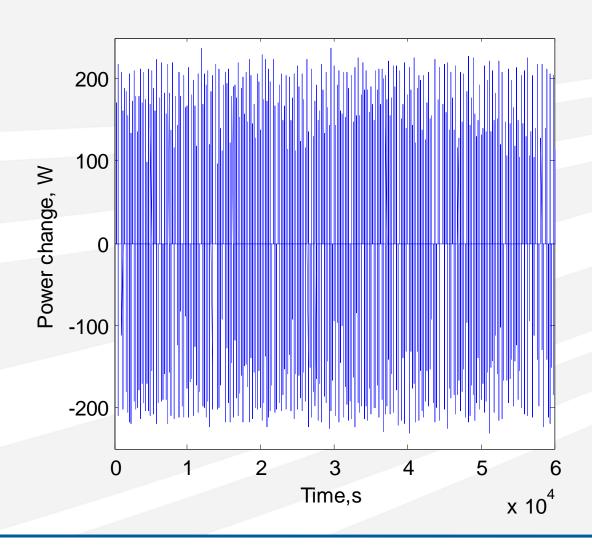
 $\{w_t\}$ - transition observations' sequence


- ☐ Developed for 1-st order Hidden Markov models
- ☐ Our model can be of higher order
- ☐ Keep in memory previous state for each appliance in tuplet

Estimation of Power and Time Distributions

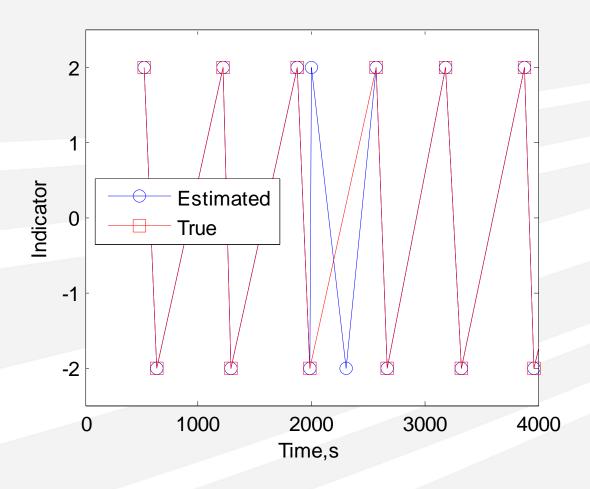
- ☐ Historical data (~ two weeks)
- ☐ Clustering negative power changes (ISODATA)
- ☐ Matching negative and positive changes, power surges
- ☐ Estimation of time-on and time-off durations
- ☐ Statistical modeling of all distributions

High-Level Block Scheme


Simulation Example

- ☐ 5 on-off overlapping appliances
- ☐ Normal (Gaussian) distributions of power changes
- ☐ Uniform distributions of time-on and time-off

	SIMULATED APPLIANCE	MEAN M, POSITIVE CHANGE, W	MEAN M, NEGATIVE CHANGE (ABSOLUTE VALUE), W	STANDARD DEVIATION Σ , W
1		110	105	10
2		130	135	13.5
3		150	160	10
4		180	190	13.5
5		210	210	10


SIMULATED	TIME-ON,	TIME-ON,	TIME-OFF,	TIME-OFF,
APPLIANCE	MINIMUM, S	MAXIMUM, S	MINIMUM, S	MAXIMUM, S
1	30	100	400	600
2	70	150	500	600
3	100	180	350	500
4	150	270	200	400
5	40	140	300	700

Simulated Time Series

Simulated Time Series: Disaggregation Results

Indicator = $\pm 2 \rightarrow$ Appliance 2 is on(off)

Simulated Time Series

☐ Accuracy metric: F-measure

$$F = 2 \frac{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}}{\frac{TP}{TP + FP} + \frac{TP}{TP + FN}}$$

SIMULAT APPLIAN		OUR ALGORITHM, NO TIME-OFF STATISTICS USED	OUR ALGORITHM
1	0.859	0.910	0.985
2	0.666	0.835	0.865
3	0.749	0.850	0.925
4	0.743	0.865	0.970
5	0.859	0.950	0.965

Real Household Data by HED

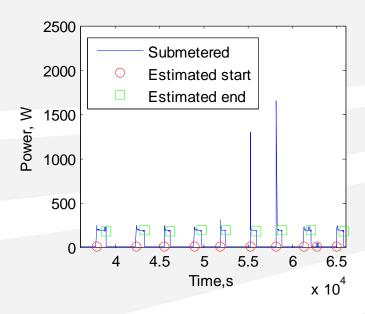
- ☐ Kolter and Johnson (2011) collected data in six households in Massachusetts
- ☐ Submetered on individual circuit level
- ☐ Selected 1 household with 9 "good" circuits recorded over 26 days

CIRCUIT (APPLIANCE)	Positive, mean, W	POSITIVE, STANDARD DEVIATION, W	NEGATIVE, MEAN, W	NEGATIVE, STANDARD DEVIATION,W
1 Refrigerator	204.3	3.9	179.5	2.4
2 Dishwasher	217.3	20.6	212.1	19.7
3 Kitchen outlet 1	1084.8	14.5	1074.6	15.1
4 Microwave	1548.5	52.4	1504.9	43.9
5 Kitchen outlet 2	1543.5	21.1	1533.5	14.5
6 Bathroom GFI	1613.2	18.6	1607.3	18.4
7 Oven 1	1651.4	22.4	1640.7	21.1
8 Oven 2	2474.9	29.5	2448.4	24.2
9 Kitchen outlet 3	2767.9	51.3	2706.3	33.1

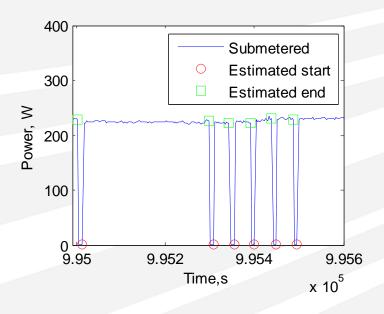
Real Household Data: Appliance Characteristics

- ☐ Kolter and Johnson (2011) collected data in six households in Massachusetts
- ☐ Submetered on individual circuit level
- ☐ Selected 1 household with 9 "good" circuits recorded over 26 days

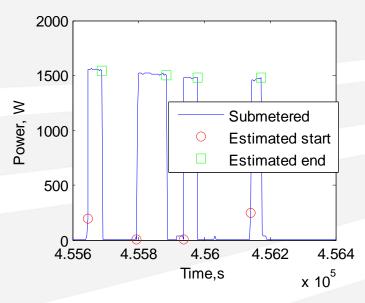
CIRCUIT (APPLIANCE)	Positive, MEAN, W	POSITIVE, STANDARD DEVIATION, W	NEGATIVE, MEAN, W	NEGATIVE, STANDARD DEVIATION,W
1 Refrigerator	204.3	3.9	179.5	2.4
Kenngerator				
2 Dishwasher	217.3	20.6	212.1	19.7
3 Kitchen outlet 1	1084.8	14.5	1074.6	15.1
4 Microwave	1548.5	52.4	1504.9	43.9
5 Kitchen outlet 2	1543.5	21.1	1533.5	14.5
6 Bathroom GFI	1613.2	18.6	1607.3	18.4
7 Oven 1	1651.4	22.4	1640.7	21.1
8 Oven 2	2474.9	29.5	2448.4	24.2
9 Kitchen outlet 3	2767.9	51.3	2706.3	33.1

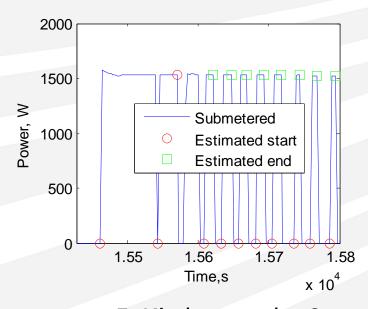


Real Household Data: Disaggregation Results


APPLIANCE FROM TABLE VI	BAYESIAN CLASSIFIER	OUR ALGORITHM
1 Refrigerator	0.859	0.831
2 Dishwasher	0.881	0.846
3 Kitchen outlet 1	0.989	0.936
4 Microwave	0.775	0.899
5 Kitchen outlet 2	0.409	0.840
6 Bathroom GFI	0.753	0.927
7 Oven 1	0.800	0.908
8 Oven 2	1.0	0.962
9 Kitchen outlet 3	1.0	0.971

Real Household Data: Disaggregation Results


1. Refrigerator


2. Dishwasher

Real Household Data: Disaggregation Results

4. Microwave

5. Kitchen outlet 2

Needs Improvement

- ☐ Fully develop triplet
- ☐ Better pre-processing (filtering, incremental power changes)
- ☐ Better change detection (change-point problem)
- ☐ More advanced clustering procedure
- ☐ Matching between found clusters and real appliances (use of estimated time-on and time-off features)

Conclusions

Use Requirements	Our Method			
☐ Features: compatible with 1 Hz, real power only ☐ Yes				
☐ Accuracy: 80-90%	☐ Accuracy: 80-90%			
□ No training	Learning from historical data.Matching with real appliances forthcoming			
☐ Real-time capabilities	☐ Yes			
☐ Scalability (up to 20-30 appliances)	☐ Yes. Complexity linear with number of appliances			
☐ Various appliance types	☐ Not yet, but in the process			

