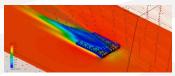
Fraunhofer Center for Sustainable Energy Systems

Emerging Technologies in the Solar Landscape: Can Thin Films Play a Role?

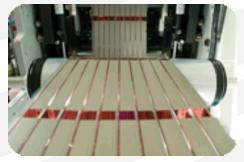

NOLAN BROWNE

Managing Director

PRESENTED AT

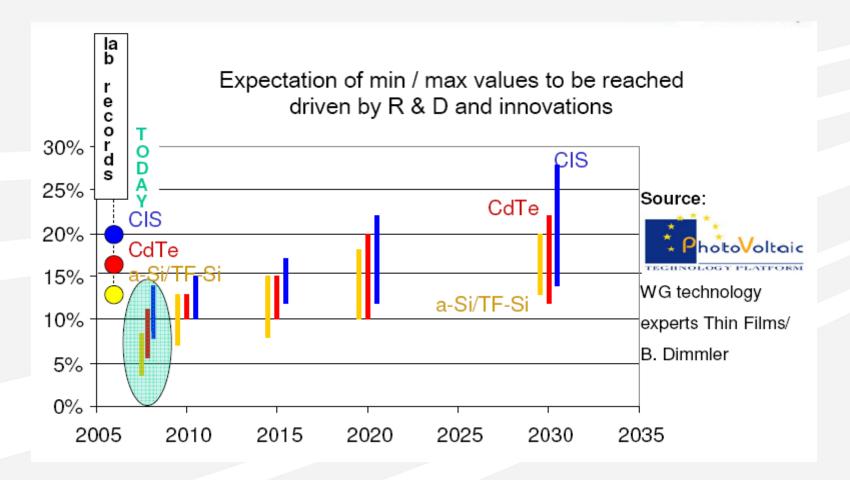
Thin Film Solar 2009 San Francisco, CA, USA April 29th, 2009

© Fraunhofer USA 2010

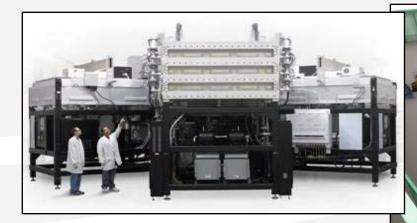

Significant Advantages of Thin Film Solar vs. x-Si

- Potential for lower \$/w than crystalline silicon (x-Si):
 - Less material required
 - Simplified fabrication process
 - Cheaper manufacturing equipment
- New products become possible:
 - Flexible modules
 - Lightweight modules
 - Awnings, clothing, roll-up PV blinds, portable devices
 - Partially transparent devices for BIPV
- Improved performance at lower light levels
- Less power lost at high temperatures

SOURCE: Xunlight


SOURCE: Konarka

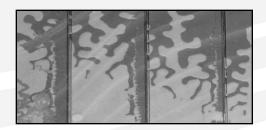
SOURCE: Solarmer


Thin Films May Surpass x-Si Efficiencies...

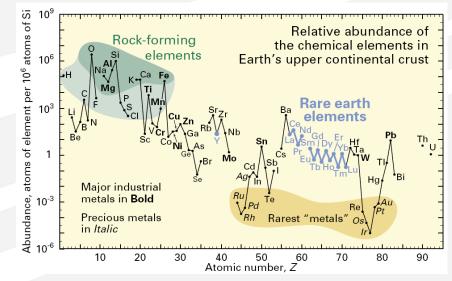
...but it will take time and resources.

Thin Films Have Come a Long Way In Reducing Costs

- Applied Materials SunFab[™]
- Leveraging knowledge from flat panel display technology
- 5.7m² modules
- Tandem junction a-Si / mx-Si layers
- Targeting \$0.71/W production
- Installation costs also reported lower

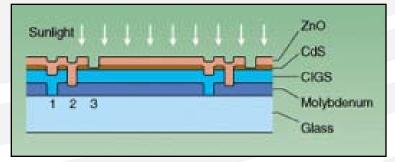


SOURCE: Applied Materials


Need to Address Challenges to Wide-Scale Deployment

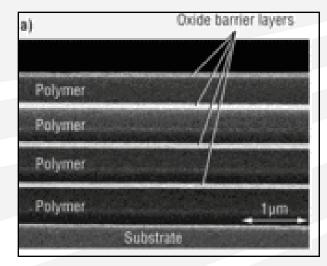
- Efficiencies still lag those of crystalline silicon
- Degradations of modules and material in the field
- Process yields
- Availability of materials
 - Concerns for CIGs and CdTe

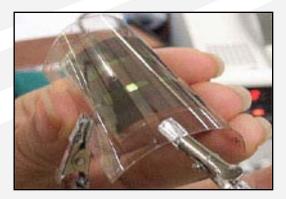
Delamination of thin film cells.


SOURCE: T.J. McMahon, Prog. Photovolt Res. Appl. 2004; 12: 235-248

SOURCE: P.H. Stauffer et al, *Rare Earth Elements - Critical Resources for High Technology*, USGS (2002)

- It is more challenging to make thin film modules that can survive 30 years outdoors compared to x-Si:
 - Cells are not surrounded by encapsulant
 - Laser scribes can provide a route for water to wick into devices
 - Delamination between glass and TCO
 - Many thin film materials tolerate less moisture than x-Si before problems become apparent
 - More distinct layers over which delamination problems can occur


SOURCE: DayStar Technologies


Addressing Moisture Absorption in Thin Film Modules

- Edge sealing for glass modules
- Improved encapsulation for flexible modules
 - Use of organic/inorganic materials developed for OLED
 - Nano-particle pore sealing technology

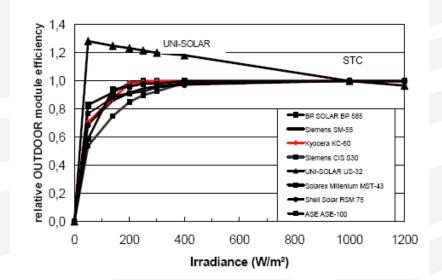
MATERIAL	Moisture permeation rate (g/m2/day)
Typical barriers	1E-02 to 1E-03
Multilayer	1E-05
Nano-particle pore sealing	As low as 1E-08

SOURCE: Chu et al, Solid State Technology, March 08

SOURCE: Semiconductor International, 5/1/08

© Fraunhofer USA 2010

More Suitable Module Testing Standards Are Needed


- Standard "Peak Power" Conditions:
 - 1000 W/m²
 - Irradiation normal to module plane
 - am 1.5 spectrum
 - 25 °C
- Real-Life Conditions:
 - Light intensity changes with time of day and seasons
 - Diffuse light (cloudy, early or late in day)
 - Angle of irradiation changes
 - Efficiency of modules decreases as they heat up under high irradiation
- Most Important Economic Metric: Total kWh Generated by System

Electrical Characteristics ²	SX 3200	SX 3195	
Maximum power (P _{max}) ³	200W	195W	
Voltage at P _{max} (V _{mp})	24.5V	24.4	
Current at P _{max} (I _{mp})	8.16A	7.96A	
Warranted minimum P _{max}	182.0W	177.5W	
Short-circuit current (I _{sc})	8.7A	8.6A	
Open-circuit voltage (V _{oc})	30.8V	30.7V	
Temperature coefficient of I _{sc}	(0.065±0.0	015)%/°C	
Temperature coefficient of V _{oc}	-(111±1	0)mV/°C	
Temperature coefficient of power	-(0.5±0	.05)%/°C	
NOCT (Air 20°C; Sun 0.8kW/m ² ; wind 1m/s)	47 -	2°C	
Maximum series fuse rating	15	βA	
Maximum system voltage	600V (U.S	5. NEC rating)	

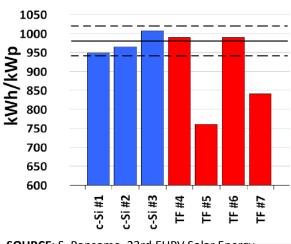
SOURCE: BP Solar SX3200 200W module data sheet

Thin Film Modules Can Perform More Favorably Than x-Si

- Low/Diffuse Light:
 - Some thin film modules become more efficient
 - x-Si becomes less efficient
- Increased Temperature:
 - Power output of x-Si modules typically decreases by 0.5% / °C above nominal operating temperature

Temp Coefficient				
Product	/ ° C	Source		
mc-Si	-0.47%	Schott litterature		
a-Si (Triple Junct)	-0.31%	NREL		
CIGS	-0.60%	Shell litterature		
CdTe	-0.20%	First Solar litterature		
X-Si	-0.47%	Schott litterature		
a- Si (Tandem Junct)	0.00%	Sanyo brochure (a-Si)		

SOURCE: IBIS report for XsunX: Levelized Cost of Electricity



Performance of Thin Film Modules

- Performance difficult to compare
- Rating kWh/kWp relates generated power to nameplate power
- Developing better metrics to compare thin films with x-Si on "energy harvesting" capabilities

Test facilities at ISET, Kassel

SOURCE: S. Ransome, 23rd EUPV Solar Energy Conference, 2008, Valencia, Spain

© Fraunhofer USA 2010

Summary

- Thin films represent a promising opportunity:
 - Possibility of lower costs
 - Opportunity to significantly improve efficiencies
- Technical challenges exist and need to be worked out:
 - Moisture protection is badly needed
 - New testing standards and methodologies must be developed and utilized

