Home Energy Management: Products and Trends

Kurt Roth, Ph.D. October 10th, 2012

Home Energy Management

- Home Energy Management (HEM): A class of technologies including sensors, control systems, and feedback devices to manage residential energy consumption
 - Energy savings potential of up to 22%
- Ongoing technology trends increase HEM market viability:
 - Pervasive in-home communication
 - More "smarts" in devices / Rollout of smart meters
 - Low-cost sensors
 - Interest in electrical demand response

Reference: Ehrhardt-Martinez et al. (2010)

Outline

HEM Taxonomy

General Trends

Subgroup Product Classes

Subgroup Discussions

- We devised the following classification system for all types of HEM products available in the residential market
 - Enabling Technologies
 - User Interfaces
 - Control Devices
- These categories are meant to capture key aspects of typical HEM devices and are not mutually exclusive
- List of products in LaMarche et al. (2012) not exhaustive, products come and go

Category 1: Enabling Technologies

- The underlying framework supporting obtaining, processing, and communicating information about energy usage
 - Sensing: Acquisition of dynamic variables within the home environment
 - Smart meters, temperature sensors, occupancy sensors
 - *Communications*: Physical devices to support the network
 - Gateways, range extenders, routers, modems, local area networks
 - Communications Protocols: Standards for communication
 - ZigBee, X10, UPB, Insteon, Z-wave

Category 2: User Interfaces

- Provide either raw (kWh, \$/hr, watts) or processed (comparisons, budgets, tips, etc.) energy feedback to consumers via display
 - Wide range of media and designs
 - Home Energy Display (HED)
 - Web portal
 - Smartphone application
 - Other (e.g., TV)
- Unless a consumer has a smart meter, many software approaches require hardware that must first be installed

Category 3: Control Devices

- Allow the consumer or utility to actively control energy use, with varying degrees of automation/human-in-the-loop
 - Centralized: Multiple devices managed from a single location
 - Home automation systems, lighting control systems
 - Device-Level: Single device or function with standalone control
 - Lighting control by sensor/remote, thermostats, smart plugs
 - On-Board: Control functionality is integrated into the device
 - Smart appliances, computer power management

Outline

HEM Taxonomy

General Trends

Subgroup Product Classes

Subgroup Discussions

General Trends – Nascent Market

- Despite this potential, the HEM market has very limited uptake
- Products frequently announced, come to market, leave
 - Much innovation and product diversity "killer app" not yet found
 - Significant players shifted focus lack of consumer interest, scalability

Image Credits: Cisco, Google, Microsoft.

Several Barriers to HEM Adoption

- Consumer awareness of HEM products is low
- Cost considerable, unpredictable return
- Often limited or negligible HEM non-energy benefits
- Consumers must learn how to find and navigate current products that are:
 - Complex in terms of installation or setup
 - Confusing in terms of pricing, home requirements
 - Ephemeral (vaporware)

These factors limit the demand for HEM technology among the general population

Outline

HEM Taxonomy

General Trends

Subgroup Product Classes

Subgroup Discussions

Product Classes

- Home Energy Displays (HEDs)
- Device-level Power Management
- Advanced Power Strips
- Lighting Controls
- Programmable Thermostats
- Centralized Home Automation Systems

Home Energy Displays

- Raw and processed information
- Large energy savings potential 4-12% of wholehouse energy – but persistence!
- Field effectiveness variable
- Consumer attention and interest very limited
 - <1 minute/day typical</p>
- People want access via multiple media
- Emerging trends
 - Make "big data actionable"
 - Tips and alerts e.g., My Eragy, Tendril
 - Disaggregation?
 - Social media integration e.g., People Power
 - Games e.g., Simple Energy, Joulebug,
 - Incentives e.g., Efficiency 2.0

Device-level Power Management

- "Smart" Appliances networked
 - Automated DR
 - Track appliance energy consumption
 - Potential to enhance convenience
 - Vendor lock-in?
- Plug-level solutions
 - Lower cost (e.g., ~\$50) may enable users to transition into a home automation lifestyle
 - Select on/off schedules, track power
 - Best for loads with higher electricity consumption: Window AC, entertainment center, commercial

Image Credits: Plugwise, ThinkEco, Whirlpool

Advanced Power Strips (APS)

- Can address Miscellaneous and Electronic Loads
 - Master-slave control, remote control, occupancy control, scheduling
 - Some monitor power draw
 - Savings: ~100-625kWh/year (entertainment, IT)
- Many products are available
 - Most APS work as intended except USB
 - Market issues: ~75% never heard of this product class, poor marketing, confusion w/ basic units
 - Costs typically \$30-70 more than basic units
- Actual savings depend greatly upon effective user behavior
 - Unclear real-world residential savings

Image Credits: Belkin, Visible Energy

References: Earle and Sparn (2012), Ecos (2009), Fraunhofer (2011), Ryan and Grant (2012)

Lighting Controls

- Lighting ~14% of residential electricity consumption
- Timers, occupancy sensors
 - Plug-level controls can also perform this function
 - Central control systems
- Challenges
 - Energy savings potential not understood how much "waste" exists?
 - Limited potential non-energy benefits that save energy
 - Ambience, security, convenience

Reference: DOE/EIA (2011)

Programmable Thermostats (1 of 3)

- Heating and cooling comprise 42% of total source residential energy
- Rule of thumb: 2 to 3% reduction in heating energy consumption per 1°F reduction in setpoint temperature
- Most U.S. households own either a programmable (37%) or manual (48%) thermostat (if they know what that means)
- Large energy saving opportunity BUT:
 - Unclear if programmable thermostats reliably save energy relative to manual thermostats!
 - LBNL and EPA Thesis:
 - Significant in-lab variations in thermostat usability
 - Higher thermostat usability will lead to greater real-world use of energy-saving features and energy savings

References: Sachs et al. (2012); DOE/EIA (2011); Meier et al. (2011).

Programmable Thermostats (2 of 3)

- Fraunhofer Field Study 63 affordable housing units
- Installed new thermostats as part of weatherization
- Randomly gave units high and low usability thermostats
- Evaluated nighttime setbacks using indoor temperature and furnace state monitors
- Findings:
 - **Negligible** use of nighttime setback both groups
 - **Comfort trumps energy**
 - Need to increase **motivation** and **trigger action**

Image Credits: Fraunhofer CSE, Honeywell/Amazon.com

Reference: Sachs et al. (2012)

USA

\$17

Programmable Thermostats (3 of 3)

- Newer "smart" thermostats beginning to address challenges identified
 - People prioritize comfort
 - Lack of understanding how thermostats work
- Smart thermostats are gaining traction
 - Learning through interaction and occupancy sensing, e.g., NEST
 - HVAC feedback, e.g., OPOWER + Honeywell
 - Wireless communications
- Challenges
 - Real-world energy savings data???
 - Price \$249 for a thermostat?!?

Image Credits: Cnet.com, Nest.

Centralized Home Automation Systems (1 of 2)

- Currently costly, labor intensive and complex
 - Limits widespread adoption
- Integrating HEM with existing home systems
 - Existing home automation players, e.g., Control4, offers home theatre, video, and security in addition to lighting controls
 - Verizon, Comcast, etc. offering subscription services for energy management, security
 - Cost: Verizon ~ \$250-300 + ~\$10/month

Image Credits: Control4, HAI

Centralized Home Automation Systems (2 of 2)

- Modular, customizable systems
 - e.g., Intel, Microsoft prototype consoles, customizable for each users' home devices through app, store
 - Potential to provide non-energy benefits Health, security, entertainment
 - Could increase engagement
- Non-energy benefits like health, comfort, entertainment, and security may to appeal to a wider audience.
 - e.g., Lowe's + AlertMe cloud-based management system "Alerts you when your child arrives home from school"
 - Control of home electronics, lights, thermostat

Fraunhofer

Acknowledgements

- Fraunhofer Team: Janelle LaMarche, Olga Sachs, Kate Cheney, Craig Akers
 - "Home Energy Management: Products & Trends", LaMarche et al. (2012), Proc. ACEEE Summer Study.
- Fraunhofer CSE Supporters
 - Commonwealth of Massachusetts
 - Fraunhofer Institute for Solar Energy Systems
 - Fraunhofer Society
 - National Grid

Image Credits: eGauge, Eragy, LaMarche et al. (2012).

Outline

HEM Taxonomy

General Trends

Subgroup Product Classes

Subgroup Discussions

HEM Taxonomy (LaMarche et al. 2012)

Category		Description	Examples
Control Devices Actively control energy use; varying degrees of automation/ human-in- the-loop.	Centralized Control Device-Level Control On-Board Control	Manages multiple control devices from a single location User controls a single device or function, standalone control Control functionality integrated in the device	Whole home automation or lighting controls Thermostats; smart plugs; power strips Smart appliances; IT power management
User Interfaces (UI) Provide energy feedback to consumers, display both raw and processed data.	Home Energy Display (HED) Web Dashboard/ Portal Smartphone Application	Stand-alone in-home display; often portable Online interface accessible from Internet-enabled device Device-specific interfaces for iPhones, Android phones, etc.	Many HEDs can integrate with multiple media.
Enabling Technologies Support obtaining, processing, and communicating energy usage information.	Sensing Communications	Acquisition of dynamic variables within the home environment Physical devices supporting network	Temperature sensor, smart meter Gateways, LAN, wireless routers, modems
	Protocols	to communicate	wave, ZigBee

