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ABSTRACT 

Thermostats are notorious for being difficult to use. 

Consequently, heating is manually controlled by 

occupants in most homes, including those with 

programmable thermostats. Conventional modeling 

approaches fail at capturing behavioral elements by 

relying on fixed setpoint schedules. To accurately 

assess the energy impact of thermostat operation 

requires two changes to the way simulations are carried 

out. First, thermostat setpoint programs must be defined 

based on how thermostats are actually operated instead 

of the usually assumed ideal behavior; and second, 

realistic occupancy schedules must be adopted instead 

of average schedules. This may require layering of 

behavioral logic atop thermostat logic. In this paper we 

present an approach for doing this using Energy Plus 

and American Time Use Survey (ATUS) data, together 

with some examples. 

INTRODUCTION 

For more than 30 years studies have examined occupant 

interaction with thermostats, more recently focusing on 

programmable thermostats (PTs) in particular. Their 

aim is usually to determine usability or existence of 

energy savings. Results are conflicting, where some 

researchers find that PTs result in savings, others find 

the opposite. Often this is due to occupants’ lifestyle or 

behavior, which can vary up to 26% (van Raaij and 

Verhallen 1983). This ultimately presents a challenge to 

those who endeavor to predict energy consumption 

through modeling, as this behavior does not conform to 

the rigid schedules currently input into simulation 

software. In response, advances in probabilistic and 

stochastic algorithms have been made. 

Perceptions of how HVAC systems work play an 

integral role in how an occupant interacts with the 

system (Peffer et al. 2011; Meier et al. 2010). Meier et 

al. cite some misconceptions including: 

 Thermostat is simply an on/off switch 

 Thermostat is a dimmer switch for heat (valve 

theory) 

 Turning down the thermostat does not reduce 

energy consumption (or not substantially) 

 Boiler thermostat is used to change the temperature 

in the room (as if it is a room thermostat) 

 People are afraid of using PTs (unknown terrible 

consequences) 

Others regard a thermostat as an accelerator, where 

turning it higher will heat faster (Kempton 1986). This 

is identical to the valve model. Still, others believe that 

turning up the heat in a cold space will consume more 

energy initially; therefore they maintain a constant 

temperature to avoid this surge in energy usage.  

Hoes et al. (2009) cite Degelman, who finds that 

occupant behavior has a greater impact on energy 

performance than the thermal processes of the façade. 

Their use of a stochastic sub-hourly occupancy control 

(SHOCC) model assumes an active user, or one who 

wants to save energy by operating windows and lights. 

The SHOCC, better for lower occupancies like 

residences, was used in conjunction with the User 

Simulation of Space Utilization (USSU) model, better 

for more sporadic occupancies such as open offices, to 

represent occupant behavior. The need for more 

advanced behavioral models was determined via 

flowchart, as presence and interaction are two major 

components. They also show that design robustness 

plays a factor.  

Richardson et al. (2008) present a high-resolution 

model for modeling occupancy in UK homes based on 

UK Time Use Survey data that relies on Markov-Chain 

techniques to generate occupancy profiles that are 

statistically similar to that of the survey data. This 

method is the most similar to the one we present. 

Haiad et al. (2004) found 59 models to represent human 

behavior, leading to over 300,000 simulations. They 

acknowledge that for the average energy investigation, 

this is prohibitive; however, their study in California, 

begins to examine thermostat interaction more 

precisely. They list the average heating and cooling 

setback temperatures, for example. Woods (2006) also 

considers average heating setpoint temperatures by 

month and models behavior using Shannon entropy, 

which examines consistency of the setpoint 

temperatures.  
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Nevius and Pigg (2000) found that even with PTs, 

17.2% and 26.7% of occupants do not use setbacks for 

night and day, respectively. According to a survey of 20 

low income homes in Wisconsin (Meier et al. 2010) 

85% claimed to use the programmable features of their 

thermostat; however, photographs of their thermostats 

belied their reports, as only 30% were programmed, 

45% were on hold, 5% were off. Their online survey 

found that 89% of respondents rarely or never used PT 

to set a weekly or weekend program, and 54% used the 

on/off switch at least weekly.  

Tanimoto et al. (2006), assess occupant behavior, but 

investigate all activities in a household, not adjustment 

of a thermostat, by developing a probablistic model 

based on time use data from Japan. Yamaguchi et al. 

(2011) agree that to more accurately represent occupant 

behavior in high resolution, stochastic modeling and 

time use data must be used. This is a good start. 

Similarly, insight can be gained from models for 

occupants’ behavior with operable windows, as in Yun 

et al. (2009), which also employs Markov chain and 

Monte Carlo models. One major drawback of these 

models is the inability to model day-to-day patterns. 

Page et al. (2007) take Tanimoto et al.’s approach one 

step further by considering time-independence, unlike 

transition probability based approaches, in which the 

current state of behavior is highly dependent on the 

state immediately-before. They call this a mobility 

parameter and it is used to consider absences of more 

than one day.  

Overall trends are seen between the papers. Yun and 

van Raajn classify users into behavioral categories – 

passive, average and active – not unlike the personas 

explored by Goldstein et al (2010). Occupants’ attitudes 

towards energy savings were also considered, with 

conflicting conclusions – being pro-energy efficiency 

did not always lead to savings. Cross and Judd, and 

Meier et al., give percentages of participants who 

behave in a particular manner. Nevis and Pigg, Haiad et 

al., and Woods give setpoint temperatures for certain 

periods of time. Many authors report users being 

confused by their thermostat, while the amount of 

available features is increasing.  

MODELING OCCUPANT BEHAVIOR 

Few occupants operate their thermostats predicatbly. 

Preliminary data from an ongoing thermostat field 

study corroborate this. Not only do people fail at 

programming thermostats correctly, they also operate 

them inconsistently. This is not surprising given the 

prior work describing how people mentally model 

thermostats.  

Accordingly, we envision that it is possible to create 

logical models based on statistical variability to better-

simulate the action of thermostats in households. 

Subsquent field testing could enable the determination 

of the prevalence of each mental model, thus enabling 

more accurate impact analysis. 

Two main kinds of behavioral interaction may take 

place with a thermostat. One has to do with making 

adjustments to the thermostat, e.g., overriding the 

current setpoint. And the other has to do with the actual 

programming of the thermostat. In this paper, we deal 

only with manual adjustments to thermostats, however 

thermostat programs could easily be integrated into this 

methodology.  

Behavior-driven variability may occur in several ways. 

First, in the temperatures that are selected, and second, 

in the frequency with which a thermostat is adjusted. 

The temperature selection may depend on several 

factors, such as who is present, what clothing is worn, 

and a person’s beliefs about how a thermostat works.  

A given household may have a typical range of prefered 

temperatures. In another case, the occupants may 

operate the thermostat with a consistent temperature 

overshoot (following the valve or accelerator mental 

model of thermostat operation), followed by a 

subsequent overcorrection (e.g., opening the window, 

or shutting off the heating system completely). In yet 

another case, a family may operate their thermostat 

according to a permanent temperature hold, or perhaps 

according to a rationally-set program. Each of these 

behaviors will produce a different energy consumption 

result, and many will produce a substantial variation.  

Instead of oscillating between two fixed setpoints, users 

may choose a temperature based on random factors that 

cannot be known within the scope of a building 

simulation. To account for this variability, setpoint 

temperatures may be modeled as a random variable 

within a typical range. With random number generators 

present in most spreadsheet programs, such behavior 

can be readily modeled.  

In addition to user behavior, one must also be able to 

model when the behavior takes place. Most 

importantly, with the exception of highly-advanced 

thermostats, users can only adjust the thermostat when 

they are at home. Behavior could be modeled such that 

the thermostat is adjusted when someone leaves or 

enters the house. Alternatively, a specified number of 

random adjustments could be made while occupants are 

at home. In the next section, we look at ways of 

modeling occupancy in better detail. 

MODELING OCCUPANCY PATTERNS 

Average schedules are not typical schedules. Normally, 

modelers define fixed schedules for thermostat 

setpoints and building occupancy based on average or 

ideal conditions. Figure 1 shows the likelihood of a 

person being found at home according to the time of 

day (BLS 2011). Yet, on a given day, actual occupancy 



patterns can differ substantially from the average. 

People come and go. Each line in Figure 2 represents 

the binary occupancy patterns of 20 individuals on a 

given day.  

 

 

Figure 1 Average probability of being at home 

 

Figure 2 Actual occupancy patterns of 20 individuals 

 

Since occupancy schedules can differ substantially from 

day to day, so can the need for heating or cooling. This 

is especially true when thermostats are operated 

manually according to desire for comfort while at 

home. From a modeling perspective, this is important, 

because buildings have a thermal memory due to the 

heat capacity of materials. This is why having a setpoint 

of 60 degrees during the night and 80 degrees during 

the day is not the same as having a setpoint of 70 

degrees all the time. Variability in thermostat setpoints, 

as caused by occupants, may significantly impact 

energy use predictions. This can lead to incorrect 

conclusions about the effectiveness of programmable 

thermostats. 

To model when people are at home, we used data from 

the American Time Use Survey (ATUS) to determine 

both actual and average occupancy behaviors across the 

survey population. Each survey participant recorded the 

time, duration, and location of all their activities 

throughout one day. Figure 3 represents the daily 

schedules of all 13,259 survey participants, with each 

column representing one person’s day from morning to 

evening. The lower graphs show the variability among 

different kinds of days (e.g., weekdays, weekends, and 

holidays). A standard occupancy schedule does not 

capture this variability.  

 

 

 

 
 

Weekdays Only Weekends Only Holidays Only 

Employed 
  

 59.2% n=3,942 
 

 72.1% n=3,956 
 

 70.4% n=120 

Unemployed 
  

 82.1%  n=2,550 
 

 81.3%  n=2,603 
 

 82.1% n=88 

All Surveyed 
  

 67.9% n=6,492 
 

 76.1% n=6,559 
 

 73.6% n=208 

Figure 3 Daily whereabouts of Americans: Each vertical stripe represents one person’s day. 

Green= at home; Red=at work or school; Yellow=other location. Percentages= time spent at home. 
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A model developed by Richardson et al. (2008) can 

create synthetic daily occupancy patterns similar to 

those in Figure 2, based on weekend or weekday 

patterns and household size. Taking this technique one 

step further, it is possible to focus on subsets of the 

population to develop even more representative 

schedules, akin to the personas explored by Goldstein 

et al. (2010) for commercial buildings. Such finer-

grained models can better address specific 

demographics, such as those who work night shifts, 

live alone, are retired, or travel frequently. As an 

example, the lower portion of Figure 3 shows the 

differences in reported occupancy schedules between 

the employed and the unemployed. Whereas the 

unemployed spend about 82% of their time at home, 

regardless of the day of the week, the employed are at 

home 72% of the time on weekends, and 59% of the 

time on weekdays. Such differences in occupancy 

could produce significantly different temperature 

setpoint schedules, resulting in different estimates for 

energy use.  

One way of modeling occupancy is by randomly 

sampling daily schedules from the ATUS dataset to 

populate a spreadsheet of hourly occupancy values. 

This is the most straightforward way. Sampling can be 

done restrictively. You could, for instance, select daily 

schedules by matching specific critiera of the 

responders, such as household size, employment status, 

or income. Sampling based on weekend or weekday 

may or may not matter, depending on the criteria. 

Another way of modeling occupancy is to develop a 

Markov-Chain model of state-transitions. For example, 

you could calculate the probability of occupancy 

changing from one state to another from one hour to 

the next, like Yamaguchi. This allows the creation of 

new occupancy patterns that have the same 

characteristics of those from the survey. The advantage 

of this approach is that once the state transition 

probabilities are determined for the population you 

wish to model, you no longer need to rely on the 

original dataset. The disadvantage is that it requires 

more analytical effort.  

For the simulations in this paper, we use both fixed and 

sampled schedules.  

SIMULATIONS 

Here we illustrate the modeling approach with a few 

examples, all of which are based on the same building 

input file and climate (Zone 5A, Chicago). For each 

case we focus only on annual natural gas heating 

energy (GJ). For simplicity, in the fixed schedules, we 

ignore the differences between weekends and 

weekdays.  

The input file represents a 2 bedroom, 1 bathroom, 

single-story residential building of 1,000 ft
2
 (40ft x 

25ft), created using BEopt (NREL 2012) default 

parameters and exported as an EnergyPlus IDF file.  

Next, we modified the thermostat setpoint schedules in 

the IDF file to reference an external spreadsheet of 

hourly values. Each column of this spreadsheet 

represents a unique annual temperature schedule (8,760 

rows, one for each hour of the year).  

Using a Python script, we generated a batch of input 

files, each pointing to a different column in the 

thermostat spreadsheet. With the Energy Plus grouping 

feature, we batched together all the input files and ran 

them at once.  

Finally, using another Python script, we extracted the 

heating energy values from the output spreadsheets for 

analysis.  

Once set up, the entire process can be repeated in a 

matter of minutes. Experimenting on the effect of 

different schedules can be done simply by modifying 

the temperature schedule file and re-running the 

simulation batch. For reference, simulating 100 

schedules in the simple residential building takes about 

10 minutes on a modern laptop.  

 

Fixed Occupancy Schedule Examples 

Ex. 1: Fixed Setpoint 

As a baseline, we begin with a simple parametric 

simulation to model the dependence of annual heating 

energy demand on a fixed setpoint temperature. 

Unsurprisingly, the results in Figure 4 indicate the 

rising need for heating energy as setpoint temperature 

increases. 

 
Figure 4 Heating energy vs. fixed setpoint temperature 

 

Ex. 2: Variable Setpoints, Random Values 

In this case, we assume that at 8am and 6pm daily, 

someone in the household adjusts the setpoint to a 

random integer value between 65 and 75 degrees 

inclusive. We repeat this experiment 100 times to 

determine the influence of random behavior on energy 

consumption. 
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The average setpoint temperature was the same as in 

Ex. 1 (70.0°F), yet the calculated energy consumption 

was always higher (3.7% higher on average) than for 

fixed setpoints as shown in Figure 5. The x-axis 

temperatures in this figure represent the average 

setpoint temperature during the heating season (Oct. 1 

to May 31).  

 
Figure 5 Heating energy vs. setpoint temperature 

 

Ex. 3: Daytime Off, Ideal Behavior 

In this example we model the ideal behavior of 

someone who leaves for work at 8am and returns at 

6pm daily. Instead of using a setback temperature, this 

person turns off their heating system completely.  

 

Ex. 4: Nighttime Setback, Ideal Behavior 

In this example we model an ideal night setback to 

60°F, beginning at 11pm and ending at 6am. During 

the remaining hours, the temperature is set to the value 

shown on the x-axis of Figure 6. Not surprisingly the 

nighttime setback provides better savings than the 

daytime setback, since daytime temperatures tend to be 

warmer and because of solar gains. 

 
Figure 6 Heating energy vs. setpoint temperature. 

 

Ex. 5: Nighttime Setback, Realistic Behavior 

In this example, we model the same case as in Ex. 4, 

but with the introduction of variable occupant 

behavior. Here we assume the occupant has a 50% 

chance of remembering to turn down the heat to 60°F 

at 11pm, and at 6am, the temperature is reset to 70°F 

without fail. The model is run 100 times to show the 

variation due to chance.  

The results in Figure 7 show the significance of 

behavioral variability. As expected, the results lie 

between the fixed and ideal setback examples, yet the 

spread between maximum and minimum energy 

consumption spans about one third of their difference.  

 

Figure 7 Heating energy vs. setpoint temperature 

 

Variable Occupancy Schedule Examples 

Ex. 6: Realistic Occupancy, Ideal Setback 

In this example, we created 100 unique annual 

schedules of 365 unique workdays by randomly 

sampling daily schedules from the population of 

employed survey responders. Again, we neglect 

weekends in this study to keep things simple. To model 

the ideal behavior with the random schedule, we assign 

70°F whenever the person is home and 60°F when they 

are away. 

Results in Figure 8 show the best savings yet, but again 

with a significant range in variability. At worst, this 

strategy appears to perform only slightly better than the 

case of ideal nighttime setback, but at best it does 5% 

better. 

 

Figure 8 Heating energy vs. setpoint temperature 
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Analysis of the 100 generated schedules revealed that 

the entire sample was at home 59.8% of the time, 

compared with 59.2% for the raw data, indicating that 

the sampling technique is fairly representative. If 

higher certainty is desired, more trials could be run. 

 

Ex. 7: Realistic Occupancy, Variable Behavior 

In this final example, we model schedules based on 

both the realistic occupancy schedules of Ex. 6 and the 

irregular behavior of the occupants.  

Here we assume that whenever occupants leave the 

house, they remember 50% of the time to set the 

thermostat to a random temperature between 59-61°F, 

otherwise the setpoint remains as it was. When people 

return home, they randomly adjust the temperature to a 

value between 65 and 75°F, where it remains until they 

leave again. 

Figure 9 shows that this case has the widest range of 

variability among the cases investigated. The results 

are far worse than the ideal case of Ex. 6, even though 

the same set of randomized schedules were used in 

each case. The difference between the means of Ex. 6 

and 7 could represent the potential energy savings 

benefit of a smart thermostat as compared to typical 

operation. 

 

Figure 9 Heating energy vs. setpoint temperature 

 

CONCLUSIONS 

In this paper we have demonstrated a practical 

stochastic approach for modeling occupant behavior 

and realistic occupancy patterns, using existing tools 

and readily available data.  

Variations in energy use caused by irregular occupant 

behavior and occupancy can be significant (on the 

order of 5%), making it difficult to properly evaluate 

true savings of some energy efficiency measures. 

Using this approach can lead to better understanding of 

the building-user interaction, which may ultimately 

lead to better strategies for reducing energy 

consumption in buildings. 

Data from future thermostat field studies (one is 

currently underway) will help guide the selection of the 

probablistic parameters that will make these models 

even more useful.  
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