Buildings XI Conference – Workshop 2: Thermal Mass IV

Assessing Thermal and Moisture Control Benefits of PCM Components by Hygrothermal Simulation

Hartwig M. Künzel, Fraunhofer Institute for Building Physics

Contents:

Introduction Façade Moisture Control Energy Efficiency Benefits in Winter Conclusions and Outlook

Introduction – Field Testing

Introduction – Field Testing

Introduction – Hygrothermal Simulation

"Tiger" pattern caused by wind driven rain

"Leopard" pattern caused by exterior condensation

Microbial growth on EIFS façades

Field tests comparing façade sections

Test wall sections facing west

 $U = 0.3 \text{ W/m}^2\text{K}$

Temperature recordings at field test site

Frequency of load occurrence

Hygrothermal simulation results for masonry with 10 cm (4") EIFS

Field test

Brick wall with EIFS (10 cm EPS; 5 mm stucco) Location: Holzkirchen Orientation: North

Solarimeter (short wave 0.3 – 2.8 µm)

Pyrgeometer (long wave 5 – 25 µm)

Continuous recording of short and long wave incident radiation as well as stucco surface temperature

Effect of low-E paint

Field test results

Durability of Low-E Paint

Stucco with phase change materials (PCM)

Field test results

Example case: Office with large window facing south Hygrothermal building simulation

Window Parameters

Main Parameters

U	[W/m2K] 1,5	
Frame factor	[+]0,7	
SHGC hemispherical	[·] 0,53	
Emissivity of external surface	[+]0,2	

SHGC detailed

Incident Angle [*]	SHGC [-]
0	0,6
60	0,51
80	0,21

Parameters

Reduction factor of solar radiation (b-value)	[•]	0,4
Thermal resistance supplement	[m*KW]	0
Operation mode		Reduce overheating / Cooling

PCM characteristics

Name Gypsum Board; PCM													
Basic values		_ Opt	ional Data										
Bulk density [kg/m²]	800	Moi	sture Storage Fund id Transport Coeff	ction icient Suction				⁶¹⁰⁰⁰ Г					
Porosity [m³/m³]	0,65	Liqu	id Transport Coeff	icient, Redistribu	tion								
Spec. heat capacity [J/kgK]	1200	The	rmai Conductivity, rmal Conductivity,	temperature-depend	ent ende	nt		48800					
Thermal conductivity [W/mK]	0,2	Wa Ent	ter vapour diffusior halpy, temperature	n resistance facto -dependent (PCN	or, mo 1)	pisture-dependent	E	+0000					
Water vapour diffusion resistance factor [-]	8	1			ĺ		D.Ki						
Additional Data			Temperatura	Enthalau			alpy	36600 -				1	
Typical Built-In Moisture [kg/m³]	8	No.	(°C)	[J/kg]			f						
Thermal Conductivity Supplement [%/M%]	8	1	0	0		🗋 New	cific I	24400					
Color		2	5	6000		👗 Delete	Bpec						
		3	11,25	13983		눸 Сору		12200		$ \land$			
		4	14,5	18838		🖺 Insert							
		5	17	23083		New/Insert:							
		6	18	24943		after 🗾		Ű	6	12	18	24	30
		7	19	27075	•					Tempe	rature (°	C]	

Light-weight external walls (without PCM)

Assembly (Id.2): Lightweight timber framed wall outside inside Homogenous layers 1 2 6 4 Thermal resistance: 4,17 m2KAV Heat Transfer Coefficient(U-value): 0,23 W/m²K 10 0,02 **P**. | 0.15 Thickness [m] Thickness: 0,2 m Thickness Material/Layer λ. С ρ Nr. (from outside to inside) [W/mK] [kg/m3] [J/kg] [m] Spruce, radial 455 1500 0,09 0,019 1 2 Air Layer 25 mm 1.3 1000 0,155 0,023 60 minute Building Paper 280 1500 12 0,001 3 Mineral Wool (heat cond.: 0,04 W/mK) 60 850 0,04 0,15 4 PE-Membrane 0,15 mm (sd = 70 m) 5 130 2200 2,2 0.001 Gypsum Board 0,012 6 850 850 0,2

Floor assembly with PCM

Assembly (Id.3): jah_Bodenaufbau

		outsi	de		inside		
1101	nogenous layers	þ 2	3	5 6	7		
The	ermal resistance: 5,124 m2K/W	Ï		i i			
Hea	at Transfer Coefficient(U-value): 0,19 W/m²K						
		۲۱ ۵.۵	D6 D,18	0,010 32,03	; 0,1		
Thi	ckness: 0,4 m		Thic	kness (m)			
h.L.,	Material/Layer	ρ	с	λ	Thickness		
INF.	(from outside to inside)	[kg/m3]	[J/kg]	[W/mK]	[m]		
1	Gypsum-Fibreboard	1153	1200	0,32	0,01		
2	Flax Insulation Board DP	38	1660	0,036	0,06		
3	Softwood	400	1500	0,09	0,18		
4	Felt	70	2500	0,04	0,008		
5	Pearlite fill	165	850	0,06	0,032		
6	Oriented Strand Board (density: 630 kg/m³)	630	1500	0,13	0,025		
7	Gypsum Board; PCM_jah	800	1200	0,2	0,1		

Temperature set-points with night-time and weekend set-backs

21°C / 16°C

Tempe	emperature Relative Humidity Ventilation Max. CO2 Concentration													
Minim	ial (hea	iting) Maxi	mal (co	ioling)										
	Use data from extern file													
Peri	Periods													
Nr.		Begin		End	Мо	Tu	We	Th	Fr	Sa	Su			
1	01.09	.2009	01.05.	2010	✓	✓	✓	✓	◄	✓	✓	🗋 New		
2	01.01	.2010	01.01.	2011	•	•	✓	•	•			😹 Delet	e	
3	01.01	.2010	01.01.	2011						✓	✓	🛅 Сору		
	💦 Insert													
												New	/Insert	:
												Jarter		
Day	-profile	•												
H	our	Value °C	•											
0		16		🗋 New										
7		21		🐰 Delete										
20		16		🗎 Сору										
				🔁 Insert										
				New/:	insert:	-								
				Jaiter										
Min.	. Temp	erature (hea	ating) [°l	C]								Daily ave	erage: 1	8,71
	2													
	20													
	19	9												
	10	8												
	17	7												
	10	6 2	4	6	8	10	12 Time	14 [h]	+ 1	6 1	8 2	20 22	2	4
1	ime [h]													

Internal heat and moisture sources

21°C / 16°C

Nr.	Regin	End	Mo	т.,	Wa	Th	Fr	C 2	Su		
111.	01 09 2009	01.05.2010			e			-34 	Ju I	D New	
2	01.03.2003	01.05.2010									
_	01.00.2000	01.00.2010									
										New/Incert:	
										after 💌	
Dav	profile										
Hou	Heat conv.	Heat radiant	M g/h	oisture	•	CO: 1/h	2	Hur act	man ivity iet]		
0	0	0	0		0			0		🗋 New	Calculate
7	80	41	59		36	i,3		1,16		🔏 Delete	inner sourc
18	0	0	0		0			0		🗈 Сору	
										🔁 Insert	
										New/Insert:	
										after 💌	
Heat gain convective [W] Daily sum: 880											
пеа	80								-		
пеа	48										
nea	48 32 16										

Calculation results

Calculation results

Heavy-weight external walls

Asse	mbly (Id.2): Masonry wall				
Hoi	mogenous layers	outsi	de 1 2	3	inside
He	at Transfer Coefficient(U-value): 0,18 VV/m²K	0.	108 ^M	0,2	0,17 ⁴
Thi	ckness: 0,5 m	·	Thic	kness (m)	
Nr.	Material/Layer (from outside to inside)	р [kg/m3]	c [J/kg]	λ [W/mK]	Thickness [m]
1	Solid Brick Masonry	1900	850	0,6	0,108
2	Air Layer 20 mm	1,3	1000	0,13	0,02
3	Mineral Wool (heat cond.: 0,04 W/mK)	60	850	0,04	0,2
4	Concrete, C35/45	2220	850	1,6	0,17
5	Cement Lime Plaster (stucco)	1900	850	0,8	0,015

Heavy-weight floor

Assembly (Id.4): jah_Boden, massiv

		outsi		inside	
Hor	nogenous layers	h	2	3 4	6 7 8 9
The	rmal resistance: 5,181_m2K/W				
Hea	at Transfer Coefficient(U-value): 0,19 W/m²K				
		۲I	0,2	0,175	ואשש
Thi	ckness: 0,5 m		Thic	kness (m)	
b Lu	Material/Layer	ρ	С	λ	Thickness
INF.	(from outside to inside)	[kg/m3]	[J/kg]	[W/mK]	[m]
1	Interior Plaster (Gypsum Plaster)	850	850	0,2	0,015
2	Concrete, C12/15	2200	850	1,6	0,2
3	Wood-Fibre Insulation Board	155	2000	0,042	0,03
4	Mineral Insulation Board	115	850	0,043	0,175
5	PE-Membrane (Poly; 0.07 perm)	130	2300	2,3	0,001
6	Concrete Screed, bottom layer	1990	850	1,6	0,023
7	Concrete Screed, mid layer	1970	850	1,6	0,023
8	Concrete Screed, top layer	1890	850	1,6	0,023
9	Hardwood	650	1500	0,13	0,02

Calculation results

Calculation results

PCM in stucco of EIFS may help to reduce night-time surface condensation if phase-change temperature range is adapted to local climate conditions

PCM may reduce the heating energy demand of light-weight buildings in winter by making better use of solar heat gains

For both applications a small hysteresis is not a problem. It could be even beneficial

Conclusions and Outlook

Introducing PCM hysteresis into hygrothermal simulation models

