

Target Audience

This book is written for senior development managers
and business executives who need to achieve the
optimal balance between speed and quality with
software applications that are the primary interface
with customers... and ultimately revenue. It provides a
business perspective on how to accelerate the SDLC
and release with confidence.

Today’s DevOps and “Continuous Everything” initiatives require the ability
to assess the risks associated with a release candidate—instantly and
continuously. Continuous Testing provides an automated, unobtrusive
way to obtain immediate feedback on the business risks associated with
a software release candidate. It guides development teams to meet
business expectations and helps managers make informed trade-o�
decisions in order to optimize the business value of a release candidate.

Continuous Testing is NOT simply more test automation. Given the
business expectations at each stage of the SDLC, Continuous Testing
delivers a quantitative assessment of risk as well as actionable tasks that
help mitigate risks before they progress to the next stage of the SDLC.
The goal is to eliminate meaningless activities and produce value-added
tasks that drive the development organization towards a successful
release—safeguarding the integrity of the user experience while
protecting the business from the potential impacts of application
shortcomings.

Continuous
Testing

For IT Leaders

Copyright © 2016 Parasoft

All Rights Reserved

Table of Contents

Preface: Evolving from Automated to
Continuous Testing for Agile and DevOps 2

Introduction 4
Testing: The Elephant in the Room 5

Continuous Testing is Not a Tool 7

The Value of Continuous Testing 8
What is “Business Risk”? 8

The Business Value of Continuous Testing 9

Re-Evaluating the Cost of Quality 11

Establishing Business Expectations 15
The Gap is Vast . . . and Growing 16

What’s Needed to Bridge the Gap? 18

Defining Business Expectations 20

Communicate the Impact of Failure 22

Provide Visibility into Process Adherence 23

Training on Business Expectations 24

A Platform to Assess Business Risks 25
A Development Testing Platform is a Central
“System of Decision” 26

More on the Time-Scope-Quality “Trade-off” 26

Development Testing Platform: Managing SDLC “Sensors” 28

Development Testing Platform: Key Capabilities 30

Openness and Ease of Integration 30

Driven by Policy 31

Execution 33

Process Intelligence 33

Prioritized Findings 35

The “Continuous” in Testing: What’s Involved? 37
Risk Assessment—Are You Ready to Release? 38

Technical Debt 39

Risk Mitigation Tasks 40

Coverage Optimization 40

Test Quality Assessment 41

Requirements Traceability—Determine if you are
“Done-Done” 44

Advanced Analysis—Expose Application Risks Early 45

Defect Prevention with Static Analysis 45

Change Impact Analysis 46

Scope and Prioritization 47

Test Optimization—Ensure Findings are Accurate
and Actionable 48

Management 50

Construction and Testability 50

Test Data Management 51

Maintenance 52

Test Environment Access and Simulation
(Service Virtualization) 53

Conclusion: From Testing to QA;
From Automated to Continuous 56

The Impetus for Change 57

From Testing to QA 57

From Automated to Continuous 58

From Causal Observations to Probabilistic Risk Assessment 59

From Defect Documentation to Simulated Replay 60

From Structured Data to Structured and Unstructured 60

From Dashboards to Business Policies 61

Final Thoughts on Continuous Testing (For Now) 63

About Parasoft 66
Overview 66

Development Testing Platform 66

Continuous Testing Platform 67

About the Authors 69

2

Preface: Evolving from
Automated to Continuous
Testing for Agile and DevOps

As agile development practices mature and DevOps

principles begin to infiltrate our corporate cultures,

organizations realize that there is a distinct opportunity to

accelerate software delivery. However, when you speed

up any process, immature practice areas and infrastructure

roadblocks become much more pronounced. It’s the

difference between driving over a speed bump at 5 MPH

versus 50 MPH … at 50 MPH, that speed bump is going to

be quite jarring.

Accelerating any business process will expose systemic

constraints that shackle the entire organization to its

slowest moving component. In the case of the accelerated

SDLC, testing has become the most significant barrier

to taking full advantage of more iterative approaches

to software development. For organizations to leverage

these transformative development strategies, they must

shift from test automation to Continuous Testing. Drawing

a distinction between test automation and Continuous

Testing may seem like an exercise in semantics, but the

gap between automating functional tests and executing a

Continuous Testing process is substantial.

The most fundamental shift required in moving from

automated to continuous is aligning “test” with business

risk. Especially with DevOps and Continuous Delivery,

3

releasing with both speed and confidence requires having

immediate feedback on the business risks associated with

a software release candidate. Given the rising cost and

impact of software failures, you can’t afford to unleash a

release that could disrupt the existing user experience or

introduce new features that expose the organization to

security, reliability, or compliance risks. To prevent this,

the organization needs to extend from validating bottom-

up requirements to assessing the system requirements

associated with overarching business goals.

4

Introduction

Executive Summary
Leading companies will differentiate themselves with innovative

software that bonds customers with the company, its products,

and its services. With software as the primary interface to the

business, companies must reassess the risk and cost of quality

and react strategically.

No matter what industry you’re in, software is increasingly

becoming the interface to your business. Organizations that

are able to increase the speed and quality of innovative

software releases will capitalize on differentiable competitive

advantages; those that cannot will languish behind competitors.

Although the preceding statement can seem worn, the number

of companies that become headline news due to software

failure is on the rise.

Not surprisingly, many enterprises have begun flirting with

the idea of accelerating the SDLC to drive innovation through

software. However, it’s critical to realize that there’s an optimal

balance between speed and quality with software delivery—as

with all engineered products. We’re in an era in which leading

organizations must reassess the true “cost of quality” for

software. Remember: the cost of quality isn’t only the price of

creating quality software—but also (and more importantly) it’s

the penalty or risk incurred by failing to deliver quality software.

5

Testing: The Elephant in the Room

As organizations begin to accelerate the SDLC, process bottle-

necks will become evident. One of the bottlenecks that contin-

ues to plague SDLC acceleration is testing. At best, testing has

been considered inevitable overhead—a “time-boxed” event

that occurs some time between code complete and the target

release date. At worst, organizations have pushed quality pro-

cesses to post-release, forcing a “real-time customer accep-

tance test.”

Testing has always been the elephant in the room. Psychologi-

cally, the malleable nature of software has given organizations

an excuse to defer investment in testing. However, this deferral

results in technical debt. Over time, technical debt compounds,

escalating the risk and complexity associated with each re-

lease.

Another obstacle to SDLC acceleration is the lack of a

coordinated, end-to-end quality process. If trustworthy and

holistic quality data were collected throughout the SDLC, then

more automated decision points could optimize downstream

processes. Unfortunately, at the time of the critical “go/no-go”

decision for a software release candidate, few organizations

release with confidence.

As the release date looms, development teams have become

accustomed to asking: “Are we done testing?” Fundamentally,

this is the wrong question. It ties the concept of “quality” to

static tests that produce multiple, independent, and primarily

binary data points of pass or fail. This approach results in a

lot of data points, but not the information needed to help the

business understand the real impact to the end user experience.

Understanding the specific risks associated with each release

6

candidate becomes mission critical as organizations attempt

to accelerate the release cycle. Without this visibility and

knowledge of the impacts to the business, managers are

unable to make the appropriate trade off decisions or timing

decisions for releasing software.

Instead of “Are we done testing,” we should be asking: “Does

the release candidate have an acceptable level of business

risk?” This new question is much more complex than it seems

at the surface. It carries a few critical assumptions:

1. The inherent business risks associated with a given

application and the particular release candidate are

well defined.

2. There is an understanding of how to measure each of

these defined business risks.

3. A baseline and thresholds are established for defining

what constitutes an acceptable level of risk. Some

business risks might have zero tolerance and no

thresholds for acceptance.

4. Automation is in place to continuously assess the state

of the application versus these defined risks.

This is why the concept of Continuous Testing is so critical.

It balances the traditional bottom-up tasks associated with

software development and testing with a top-down approach

focused on safeguarding the integrity of the user experience

while protecting the business from the potential impacts of

application shortcomings.

7

Continuous Testing is Not a Tool

Continuous Testing is NOT simply more automation. Rather, it

is the reassessment of software quality practices—driven by

an organization’s cost of quality and balanced for speed and

agility. Ultimately, Continuous Testing can provide a quantitative

assessment of risk and produce actionable tasks that will help

mitigate these risks before progressing to the next stage of the

SDLC.

When it comes to software quality, we are confronting the

need for true process re-engineering. Continuous Testing

is not a “plug and play” solution. As with all process-driven

initiatives, it requires the evolution of people, process, and

technology. We must accommodate the creative nature of

software development as a discipline, yet we must face the

overwhelming fact that software permeates every aspect of

the business—and software failure now presents the single

greatest risk to the organization.

We begin this book by exploring how Continuous Testing

accelerates the SDLC, promotes innovation, and helps mitigate

business risks. Next, we look at how to bridge the gap between

business expectations and development/testing activities.

Finally, we explain what’s involved in establishing a system

of decision that collects essential data across the SDLC and

transforms it into actionable risk mitigation tasks.

8

The Value of Continuous
Testing

Executive Summary
Continuous Testing creates a central system of decision that

helps you assess the business risk each application presents to

your organization. Applied consistently, it guides development

teams to meet business expectations and provides managers

visibility to make informed trade-off decisions in order to

optimize the business value of a release candidate.

You cannot fully appreciate the value of Continuous Testing

without understanding the concept of business risk. We’ve

mentioned the term “business risk” a few times so far; let’s take

a moment to define it before proceeding.

What is “Business Risk”?

In terms of software, a business risk is any application

shortcoming that impairs the end user’s (or customer’s)

expected experience and ultimately erodes confidence in

the business. A software business risk can manifest itself as

a headline news event such as a reservation system outage

which strands holiday travelers—damaging brand equity. Or it

could be a series of user-experience hiccups that eventually

drive customers to a competitor—directly impacting revenue

or a subscriber base.

9

The most infamous business risks associated with software

are tied to application security, which is a multi-million dollar

annual initiative for IT organizations. The loss of personal or

private information due to data theft, data breaches, or hackers

not only erodes brand equity but also brings distinct financial

penalties.

Many other risks pose an equally formidable threat to the

business, but garner far less attention. For example, risks can

fall into categories such as application resiliency, accessibility,

availability, reliability, and testability…to name just a few. Due to

the extremely varied nature of software development, the top

risks will inevitably vary across organizations, applications, and

releases. For instance, security could be absolutely critical in

the context of a banking application, but be considered trivial

in a public web service that reports a weather observation.

The Business Value of Continuous Testing

Given the business expectations at each stage of the SDLC,

Continuous Testing delivers a quantitative assessment of risk

as well as actionable tasks that help mitigate risks before they

progress to the next stage of the SDLC. The goal is to eliminate

meaningless activities and produce value-added tasks that

drive the development organization towards a successful

release.

Continuous Testing—when executed correctly—delivers four

major business benefits.

First, Continuous Testing results in clearly-delineated business

risks associated with each application in the organization’s

portfolio—including measurement standards for assessing

10

the level of risk. It guides business and technical teams to

collaboratively close the gap between business risk and

development activities.

Second, Continuous Testing establishes a safety net that allows

software developers to bring new features to market faster. With

a trusted test suite ensuring the integrity of the related application

components and functionality, developers can immediately

assess the impact of code changes. This not only accelerates

the rate of change, but also mitigates the risk of software defects

reaching your customers.

Third, Continuous Testing allows managers to make better

trade-off decisions. From the business’ perspective, achieving

a differentiable competitive advantage by being first to market

with innovative software drives shareholder value. Yet, software

development is a complex endeavor. As a result, managers are

constantly faced with trade-off decisions in order to meet the

stated business objective. By providing a holistic understanding

of the risk of release, Continuous Testing helps to optimize the

business outcome.

Fourth, when teams are continuously executing a broad set of

tests via “sensors” placed throughout the SDLC, they collect

metrics regarding the quality of the process as well as the state

of the software. The resulting metrics can be used to re-examine

and optimize the process itself, including the effectiveness of

the tests. This information can be used to establish a feedback

loop that helps teams incrementally improve the process.

Frequent measurement, tight feedback loops, and continuous

improvement are all key DevOps principles.

11

Re-Evaluating the Cost of Quality

A critical motivator for the evolution towards Continuous Testing

is that business expectations about the speed and reliability of

software releases have changed dramatically—largely because

software has morphed from a business process enabler into a

competitive differentiator.

For example, APIs represent componentized pieces of software

functionality which developers can either consume or write

themselves. In a recent Parasoft survey about API adoption,

over 80% of respondents said that they have stopped using

an API because it was “too buggy.” Moreover, when we asked

the same respondents if they would ever consider using that

API again, 97% said “no.” With switching costs associated with

software like an API at an all-time low, software quality matters

more than ever.

Another example is mobile check deposit applications In 2011,

top banks were racing to provide this must-have feature. By

2012, mobile check deposit became the leading driver for bank

selection—driving new deposits.1 Getting a secure, reliable

mobile check deposit application to market was suddenly

business critical. With low switching costs associated with

online banking, financial institutions unable to innovate were

threatened with customer defection.

With a focus on connectivity and a seamless end-user

experience, every business segment is being redefined—and

in many cases re-invented—with software:

1 http://www.mybanktracker.com/news/2012/03/13/bank-mobile-check-deposit-next-gen-stan-
dard/

12

 Taxi Cabs Uber, Lyft

 Music & Media iTunes

 Retail Amazon

 Automobiles Tesla

 Banking Capital One

 Auto Insurance Esurance

 Farm Equipment John Deere

In some cases, the industry incumbents have created the

new go-to market paradigm with forward-thinking research

and development. In most cases, we have seen aggressive

challengers come into markets and challenge the status quo.

For example, consider the meteoric rise in popularity of Uber

and Lyft versus a stagnant and heavily-fragmented taxi and

livery services.

This sea change focused on the customer experience also

comes with much greater expectations of software quality.

Today, software failures are highlighted in news headlines as

organizational failings with deep-rooted impacts on C-level

executives and stock prices. Parasoft analyzed the most

notable software failures from 2012 through 2015. In 2014,

each incident initiated an average -3.75% decline in stock price,

which equates to an average of negative $2.35 billion loss of

market capitalization. This is a tremendous loss of shareholder

value. Tracking the same type of software failure events in

2015, our findings suggest that the market is punishing news

of software failures even more aggressively. In 2015, each

13

incident initiated an average -4.06% decline in stock price,

which equates to an average of negative $2.55 billion loss of

market capitalization. In a single year, the penalty for software

failures increased by over 8%.

Figure 1 – From 2012 through 2015, software failures that made headline
news had an increasing average loss of market capitalization

Additionally, looking at organizations that endured multiple

newsworthy software failures in 2015, it is clear that the

market punishes repeat offenders even more acutely. Repeat

offenders suffered an average -5.68% decline in stock price,

which equates to an average of negative $2.65 billion loss of

market capitalization.2

2 From Parasoft equity analysis of the most notable software failures of
2012-2015.

14

Figure 2 – In 2015, public companies that had two software failures within
12 months were faced with steeper losses to market capitalization

The bottom line is that we must re-evaluate the cost of quality

for our organizations and individual projects. If your cost of

quality assessment exposes a gap in your quality process,

it’s a sign that now is the time to reassess your organization’s

culture as it relates to building and testing software. In most

organizations, quality software is clearly the intention, yet

the culture of the organization yields trade-off decisions that

significantly increase the risk of exposing faulty software to the

market.

15

Establishing Business
Expectations

Executive Summary
Today, there is a gap between how the business defines risk

and how development addresses these risks in software.

Given the growing importance of software, we must ensure

that development and testing efforts are focused on mitigating

the organization’s stated business risks. This is accomplished

by expressing objectives in policies that are clearly defined,

readily accessible, automatically measured, and managed by

exception.

There’s no doubt that the daily concerns of the CEO are

different than the daily concerns of developers and testers.

Yet the software development team that writes and tests code

for customer-facing applications could actually have a greater

impact on customer satisfaction and loyalty than the day-to-

day activities of the CEO. Unfortunately, due to the detailed

and technical nature of developers’ and testers’ jobs, it’s very

likely that they become divorced from the overarching business

drivers that concern the CEO and executive management.

Closing this gap between business expectations and technical

implementation will not only reduce business risk, but also

minimize the negative business impacts of faulty software.

When development has a firm grasp of business expectations

16

and how to translate them into the technical implementation,

business risks are significantly reduced.

There are several critical requirements for bridging the gap

between business expectations and technical implementation:

•	 Business	expectations	or	risks	must	be	clearly	communicated	

to development as policies. A policy converts management

expectations into actionable, measurable tasks. This helps

the organization ensure process consistency while agilely

adapting to evolving market trends, regulatory environments,

and customer demands.

•	 A	 real-time	 infrastructure	must	give	developers	 feedback	

on whether they’re meeting expectations. For this to work,

business expectations or risks must be mapped to non-

functional requirements that are automatically measured

and monitored. If it’s not fully automated and completely

unobtrusive (managed by exception with zero impact on

productivity), it simply won’t be feasible—especially for

teams who have adopted agile and/or DevOps.

•	 Executive	 sponsors	 must	 be	 clear	 that	 satisfying	 these	

expectations is non-negotiable. Executives must also be

able to automatically monitor compliance and assess the

level of business risk for each project or release candidate.

•	 Training	 must	 ensure	 that	 developers	 truly	 understand	

what’s expected and how it translates to the technical level

(i.e., how the application is developed and tested).

The Gap is Vast . . . and Growing

All too often, when the team is in the throes of developing and

testing a release candidate, they hyper-focus on the specific

17

technical aspects of the functional requirement or user story

in scope. What gets lost in the shuffle is a holistic perspective

of the user experience. For example, a team tasked with

implementing a more secure login mechanism might

inadvertently degrade application performance across critical

transactions. Without a proactive attempt to consistently align

their work with clearly-defined business requirements, the

team is likely to run fast—but not necessarily in the expected

direction. If the development and test teams’ hard work does

not yield the expected business result, you run the risk of

significantly hampering productivity and demoralizing the team.

This acute focus on validating bottom-up requirements or user

stories can be further exacerbated by the time-boxes intro-

duced by agile or more iterative development methodologies.

In a recent survey, Parasoft discovered an inverse correlation

between more iterative development methodologies and the

likelihood for teams to measure compliance to system-level

(non-functional) requirements.

Figure 3 – In a recent Parasoft survey, respondents who identified themselves
as Agile or agile-ish were less likely to monitor compliance to system-level
(non-functional) requirements

18

Agile and agile-ish teams had a 38% likelihood of monitoring

compliance to system-level (non-functional) requirements.

Compare this to waterfall teams, which had a 58% likelihood

of measuring compliance to system-level (non-functional)

requirements. Based on these results, as well as interviews

with customers, it seems that the time constraints associated

with short development iterations compel teams to focus their

resources on validating the user stories in scope.

When getting each story “done done” within constrained agile

timelines is already a challenge, it’s hard to justify spending time

validating whether the modified application satisfies broader

system-level expectations. And this problem is certain to escalate

as DevOps adoption increases. After all, if this level of checking

is not feasible when you’re working on two week sprints, how

could it possibly work when you start releasing multiple times a

day?

What’s Needed to Bridge the Gap?

Especially in light of agile and DevOps, if you truly want to

assess the business risks associated with a release candidate,

it’s essential to have an automated, unobtrusive way to

continuously assess the overarching business expectations in

the context of an evolving application. This mechanism needs

to be based on clear and convincing business expectations,

driven by strong executive sponsorship, and supported by an

effective training infrastructure.

Let’s start by looking at what’s needed to take a policy and put

it into practice.

19

Figure 4 – A policy cannot just be a declaration; it must be dissected
into actionable requirements, supported by acceptance thresholds, and
automatically monitored.

Policy: The primary element is a definition of the business

expectation: what we refer to as a “policy.” Policy definition,

training, and monitoring is covered in more detail later in this

chapter.

Non-Functional Requirements: Each policy is supported by an

array of non-functional requirements (NFRs). Whereas functional

requirements define what the system should do, non-functional

requirements describe how the overall system should behave.

Non-functional requirements could include application resiliency,

accessibility, availability, reliability, and testability—to name just

a few. Policy has a one-to-many relationship with non-functional

requirements. In other words, multiple NFRs might be needed

to assess the exposure to a specific business risk that’s defined

in a policy.

20

KPIs and Acceptance Thresholds: Once NFRs are established,

the business and development team must collaborate to define

the key performance indicators. Furthermore, if the organization

is exploring exception-based workflows or automated decision

nodes, then the teams need to work together to establish

acceptance thresholds: criteria for triggering a notification and/

or stopping a release from progressing through the delivery

pipeline.

Automated Measurement and Monitoring: A policy and

accompanying NFRs without an automated method to measure

and monitor can only be considered a guideline.

For example, an organization with a mobile shopping application

could have a policy associated with the customer experience

as related to network performance. Under certain latency

conditions, the business would like to inform its users that

performance degradation is caused by network issues rather

than the application itself. The organization would construct

a policy for network performance and associate the NFRs

for application performance and resiliency to the policy. The

organization would then establish the expected performance

as well as set the threshold that should trigger a warning

about network performance. The development team would

need access to a test environment that could simulate a broad

range of network performance conditions and continuously

test the evolving release candidate as part of the Continuous

Integration process.

Defining Business Expectations

Given that the ultimate goal of the above pyramid is to

automatically assess whether release candidates satisfy

21

business expectations at any given point in time, let’s take a

closer look at how to best craft and enact policies for meeting

those expectations.

The key for any software development manager is to ensure

that the team truly understands the business impact of the

application they’re working on, as well as the potential business

risks associated with application failure.

Quantifying risk is an important step in achieving a credible

and compelling reason for action. For example, this might

involve quantifying the cost of an outage or understanding the

impact to brand equity in quantifiable terms. Far too often, the

concept of software quality is addressed in a “fluffy” manner of

fear, uncertainty, and doubt rather than of known quantifiable

impacts. With an understanding of business demands,

development teams can then focus their efforts on the aspects

of the application that are truly most important to the business.

Demonstrating Executive Sponsorship

The lack of executive sponsorship is the single biggest failure

point in relation to quality initiatives. Without an executive

manager establishing the importance of the tasks or activities

associated with quality, testing practices run the risk of being

deemed unfavorable and will rapidly decay. In other words,

you end up with elective guidelines rather than policies. “Wash

your hands after using the restroom” and “Look both ways

before crossing the street” are both guidelines: they’re great

suggestions, but unless they’re mandated and monitored,

compliance will be highly variable. The lack of a clear policy

is also exacerbated by highly-distributed development teams

or teams that utilize third-party contributors. It’s very easy for

22

directions that were intended as requirements to be interpreted

as guidelines. For example, “You should do peer code review”

is typically understood to mean “Do peer code review if you

feel you have time” while the intent is quite the opposite.

Communicate the Impact of Failure

After the true business impact is assessed and quantified, the

executive sponsor needs to communicate this with developers

and testers. It’s important to focus on the actual impact of

failure rather than the theoretical impact of failure. Tangible

stories are key for achieving this purpose. Also, it’s invaluable

to have the executive personally communicating this to the

team, placing a name and face to the risks and concerns. It

is one thing to read about the potential for risk in a training

manual; it’s another to have executive management stop by

to highlight its importance. This truly humanizes the impact of

business failure.

The impact of failure should also be detailed within the

description of a policy. For example:

•	 “A	data	breach	is	estimated	to	cost	our	organization	about	

$250 per record—not including the impact to brand and

shareholder value.”

•	 “A	 news	 event	 associated	 with	 faulty	 software	 in	 our	

industry has an average of a negative $2.5 billion decline in

shareholder value.”

•	 “A	production	outage	equates	to	a	$66,000	per	minute	loss	

of revenue.”

•	 “The	cost	to	recall	and	fix	an	embedded	software	component	

runs the company $1,750 per vehicle.”

23

•	 “The	physical	cost	of	a	medical	device	recall	would	run	over	

$18.5 million—not including the damages associated with

inevitable lawsuits.”

Provide Visibility into Process Adherence

The executive sponsor and direct reports must have sufficient

insight into policy compliance to be able to identify emerging

issues and know when it’s appropriate to step in and ask

questions. To provide this level of visibility, a central platform

must aggregate data and deliver warnings when desirable

thresholds are exceeded. Ultimately, what the executive

sponsor needs is enough information to make optimal process

and resources decisions. For example:

•	Why	won’t	we	meet	the	expectation	associated	with	

the policy?

•	 Is	there	something	wrong	in	terms	of	resources?	

•	 Is	there	something	wrong	in	terms	of	tooling?	

•	 Did	we	underestimate	the	level	of	effort?

•	 Are	we	missing	critical	process	steps?

•	 Are	certain	process	steps	not	delivering	the	

expected outcome?

24

Training on Business Expectations

Ensuring that developers understand business demands and

feel compelled to satisfy them is one thing; preparing them to

actually meet those expectations is another. That’s why training

is a critical component.

The first aspect of effective training is to provide a formal

venue for outlining policies and training on how to meet the

expectations encapsulated in those policies. The new habits

will eventually become second nature to your long-term team

members as time goes on. This is great; however, when senior

team members are mentoring new ones, core concepts will

inevitably be overlooked. To ensure that new hires receive the

same level of training that was provided when the policy was

first introduced, training needs to be a formalized, continuous

process.

Second, training must also involve a repository that centralizes

access to all relevant artifacts as well as provides objective, real-

time feedback on whether activities are meeting expectations.

This ties back to the policy pyramid presented at the beginning

of this chapter. The least disruptive way to help team members

ensure that they’re on the right track is with an exception-based

notification system. If developers perform the expected actions

(as defined by the policy), then the system remains passive and

does not engage them. Notifications are generated only when

deliverables don’t align with policy definitions. The result is that

experienced team members who understand and execute the

company’s policies have the freedom to write code and test

without interruption, while those who are new to the team can

be gently nudged in the right direction.

25

A Platform to Assess Business
Risks

Executive Summary
Continuous Testing requires an infrastructure to apply policies

consistently across individuals, teams, projects and divisions.

A Development Testing Platform translates policies into

prioritized tasks in order to mitigate the defined business risks.

It also provides managers insight and control over the process

of creating quality applications.

SDLC acceleration requires that distinct quality objectives

are automatically validated at each stage of the SDLC. With

Continuous Testing, the team needs to always be aware of the

state of the application versus the actual business objectives

that either define “quality” or mitigate risks. This is key for

ensuring that the team meets the expected objectives before

progressing to the next stage—significantly reducing the

need for manual intervention or late-stage functional or non-

functional requirement validation.

If speed is the primary definition for team success, quality will

inevitably suffer unless you have established expectations

that are automatically monitored for compliance. Making

quality expectations non-negotiable sets the boundaries for

acceleration while reducing the risks associated with project,

application, or business failure.

26

A Development Testing Platform is a Central “System
of Decision”

Being able to automatically assess whether a release candi-

date meets the organization’s specific definition of software

quality requires a method to federate quality information from

multiple infrastructure sources (source code management,

build management, defect management, testing, automated

analysis, etc.). A Development Testing Platform is this central

“system of decision”; it transforms policies into prioritized tasks

as well as delivers insight and control over the process of cre-

ating quality applications.

A Development Testing Platform assists the organization to

work smarter—limiting the nature and degree in which business-

critical quality tasks can be discounted. A Development Testing

Platform also assists business managers to balance the three

project variables which always seems to be at odds with one

another: time, scope, and quality.

More on the Time-Scope-Quality “Trade-off”

It’s important to note that the current trends in SDLC optimization

(e.g., DevOps, lean, bi-modal, agile) all advocate the optimization

of time, scope, and quality—not the traditional trade-off among

them.

27

What’s the reason for this shift? It’s the manifestation of software

as the core method to reach and retain customers. It means

that software quality is no longer optional—and the definition

of software quality in context of specific business applications

will need to become as tightly-defined as accounting principles

or human resource policies.

A Development Testing Platform is like a navigation/mapping

application that discovers an optimal route predicated on

multiple, automated inputs. You have a much greater chance of

reaching your destination faster if you’re using today’s mapping

applications like Waze, Google Maps, and Apple Maps than

you would by relying on news radio’s traffic reports. Given that

navigating a release cycle is more like driving in a crowded city

center like Los Angeles than cruising through the country side,

advanced navigation is critical if you want to avoid bottlenecks.

Figure 5 – A Development Testing Platform is like a mapping application;
multiple inputs from various data sources are leveraged to present an
optimal route to the given destination

28

Development Testing Platform: Managing SDLC
“Sensors”

As they begin evolving to Continuous Testing, every

development team will inevitably have a disparate collection

of tools providing data on a wide array of measures ranging

from defect trends, to performance monitoring metrics, to code

optimization opportunities, to unit test suite effectiveness. This

is a great foundation: these tools all collect key observations

about the current state of the software. However, most

organizations tend to adopt and deploy tools in an ad-hoc

manner, which compromises the consistency and accuracy

of the findings. Moreover, the configuration and execution of

these tools is typically divorced from business expectations—

so their results do not provide the needed insight on whether a

release candidate is meeting business expectations.

The goal of a Development Testing Platform is to take all of these

tools and place them in the context of a larger system that:

•	 Drives	consistent	deployment	and	adoption—ensuring	

consistency and accuracy

•	 Aligns	execution	with	business	expectations—ensuring	

business-relevant results

•	 Performs	advanced	multivariate	analysis	across	different	

tools, test runs, and over time—identifying application

hotspots that harbor hidden defects

The tools serve as “sensors” placed throughout the SDLC. The

more sensors the better, the more data the better—as long as

we have an automated method to collect raw observations and

process the raw observations into valuable findings. We will go

into more detail about managing this data later.

29

With tools collecting data via automated analysis or from

the output of an artifact like a test, we can aggregate raw

observations. The aggregation of raw observations would

make little sense to a human observer, given both the scope

and volume of data. At this point, we need a mechanism to

cull through the raw observations and give SDLC practitioners

valuable and actionable findings that will help them prevent

software defects and meet corporate compliance objectives.

This where policy truly shines. In conjunction with a post-

analysis engine (process intelligence engine), a policy allows

the system of decision to filter the noise from raw observations

and highlight valuable and prioritized findings.

Figure 6 – SDLC domain based APIs collect data as raw observations;
policies and a Process Intelligence Engine convert raw observations into
actionable, prioritized findings

30

Development Testing Platform: Key Capabilities

The following sections outline, from a more technical

perspective, what characteristics a Development Testing

Platform needs in order to drive this process of converting

sensor observations into prioritized, actionable findings.

Openness and Ease of Integration

Leveraging a Development Testing Platform requires openness:

the platform should furnish well-defined APIs that allow

information and data from associated software development

infrastructure systems to be consumed and published with

ease. The ease of integrating data from disparate systems will

be the key to truly establishing a system of decision.

Furthermore, the APIs that drive the integration should enable

various infrastructure domains, making canonical data elements

associated with various SDLC systems, quality practices, or

artifact types readily available. This eases integration and allows

for much more flexible downstream data transformation, analysis,

and processing. Software development domain-specific APIs are

a core differentiator between a Development Testing Platform

and a general Business Intelligence (BI) tool. Native integrations

with well-known software infrastructure systems (defect, source

code, build, static analysis, unit testing, code review, IDEs…)

speed system configuration and management.

One of the primary considerations for adopting a commercial

Development Testing Platform versus building one yourself

should be access to an ecosystem of add-ons or value-added

plugins to the platform. A marketplace for plugins significantly

reduces the time and effort required to either customize data

filtering or integrate with niche tools.

31

Driven by Policy

As we have alluded to in previous sections, a policy is a

business expectation translated for the development and

testing staff. A Development Testing Platform is the central

repository for putting those policies into action consistently

across the organization. A Development Testing Platform

correlates policy with automated analysis techniques and

testing practices that assess the level of policy adherence on a

continuous timeline. The platform also generates notifications

and tasks by exception, guiding the team to achieve the stated

policy objectives.

Although a policy is established to mitigate business risks, a

policy can cause tension with developers and testers if the

intent of the policy is not clearly understood. All policies need

to be continuously reviewed and improved upon, but policies

that cause tension need to be seriously re-evaluated. There

are four root causes of policy failure:

1. The policy is not properly aligned to a business objective.

2. There is a lack of understanding or training about the

policy’s true business intention.

3. The policy is superfluous and causes unnecessary

re-work.

4. There is insufficient automation to achieve or measure the

implementation of the policy.

In broader terms, you can think of a policy as a container for

one or more non-functional requirements. For example, you

could have the “Company X - Secure Coding Policy.” This policy

would define the minimum criteria for how code should be

32

constructed to prevent and/or eliminate potential application

vulnerabilities. The policy must be enforced automatically;

in this case, it could be enforced via static code analysis (to

prevent vulnerabilities) and application penetration testing (to

root out any vulnerabilities that slipped through your prevention

efforts and reached the built application).

A policy must have (at least) three components:

1. Human Readable. It must be human-accessible, readable,

and understandable. A business expectation should be

associated with each policy. A sample policy could read,

“Company X is a 125 year old financial institution that bases

its success on earning the trust of our clients. Part of that trust

includes information security and privacy. A single security

breach could erode the trust that we have built with our

clients. Additionally, a breached security vulnerability has a

physical cost of $250 per record as well as severe negative

impacts to stock price and brand equity. This is why our

secure coding guidelines have been formally defined and

supported by our CEO…”

2. Automatically Enforced. It must be enforceable via an

automated, exception-based notification system. Managing

the policy itself should not impede productivity. A process

that forces developers and testers to manually report on

policy adherence is not sustainable.

3. Measureable. It must be measurable and visible to

management. Furthermore, the volumes of detailed data

generated from development and test teams needs to be

filtered and translated so that the business impacts of the

data is readily understandable by both senior technical

33

managers and business managers. Through a simple,

intuitive reporting interface, managers must be able to

rapidly assess policy compliance—and, more importantly,

determine what actions to take to address non-compliance.

Execution

To ensure speed and accuracy when executing specific

analyses or tests, it’s imperative to have a platform that offers

flexibility—from execution options natively available within the

platform, to an API that’s specifically designed for executing

test artifacts over distributed resources. First, the API must be

callable by popular build management, continuous integration

(CI) and DevOps tools. Second, the API must provide

appropriate operations that orchestrate the execution of test

artifacts at the desired stage of the SDLC. This flexibility is key

for ensuring speed as well as achieving actionable outcomes

that can ultimately mitigate business risks prior to release.

Considering the myriad execution scenarios that could

transpire, having the flexibility to run the right tests at the

right time becomes the critical path. The flexibility to execute

specific sets of tests also requires access to a complete test

environment. This is where simulated test environments (via

Service Virtualization) become an indispensable component of

your development and test infrastructure.

Process Intelligence

Process control throughout the SDLC requires the ability

to observe and synthesize data across systems, analysis

techniques, and testing practices. “Siloed” or one-off reports

generated by single analysis types provide only a small fraction

34

of the process story. Ultimately, the aggregation and intelligent

interpretation of the data generated from various sub-systems

should deliver suggestions for optimizing the process and

mitigating the risks prioritized by the business.

As the central system of decision for SDLC quality, the

Development Testing Platform must readily manage multiple

data inputs from various infrastructure sources. The collection

of raw observations across systems is the first step in

transforming compartmentalized data points into process

intelligence. The second step is the ability to process raw

observations through correlation, advanced analysis, and

the application of patterns. At the final step, observations are

filtered based on the organization’s policies to more accurately

pinpoint findings that represent the highest risks associated

with the specific stage of the SDLC.

The ability to perform domain-specific advanced analysis is a

core differentiator between a Development Testing Platform

and a general Business Intelligence (BI) tool. Being able to

rapidly apply specific analysis tools (e.g., pattern recognition

tools, multivariate analysis, inference engines, correlation

analysis, etc.) allows for systemic risks to be rapidly identified

and continuous improvement opportunities to be highlighted.

The effective application of advanced data analysis will enable

the organization to systematically prevent defects. Process

intelligence also assists the organization to detect inefficiencies

or waste in the SDLC that can hamper acceleration and

advanced automation.

35

Prioritized Findings

The primary challenges associated with adopting development

testing tools are managing expected outcomes and presenting

information in a way that’s valuable (and actionable) to

managers and practitioners.

Throughout the SDLC, there are numerous opportunities to

collect raw observations; however, there is usually very limited

time to investigate, research, and remediate potential defects.

A Development Testing Platform must automatically deliver

prioritized findings that directly correlate to the reduction of

risk. Additionally, it must be flexible enough to deliver the

findings as actionable remediation tasks at the optimal stage

of the project. Systems that triage results through a human

reviewer cannot scale sufficiently for Continuous Testing to be

effective.

Advanced analysis and testing is critical for success— yet, without

a centralized process to systematically generate prioritized

tasks in order to fix the discovered defects, quality practices will

typically disintegrate and then resurface when the organization

faces a painful or highly-publicized failure. A Development

Testing Platform must make defect remediation achievable

by prioritizing the actionable findings and automatically

distributing tasks to the correct resource. The tasks should be

accessible not only within the Development Testing Platform,

but also via an open API that provides access to tasks within

workflows of other, complementary process tools.

In addition to driving a central process for defect remediation,

the Development Testing Platform should also offer actionable

information to managers. Rows of data do not deliver readily-

36

accessible analysis about risk. Data must be converted to

manager-friendly dashboards that help the team make optimal

trade-off decisions.

Teams looking to apply advanced automation throughout the

SDLC must consider that there is a vast difference between

data presented in a dashboard and actionable findings that

are correlated to a release candidate. If go/no-go decisions

are predicated on predetermined policies and thresholds,

a dashboard that aggregates data is far too passive of a

technology for extreme automation. A dashboard requires

human interpretation as well as all the inefficient human-to-

human negotiation that comes with compelling an individual or

team to take action.

A system of decision is much different than a dashboard.

Generally speaking, once a finding makes its way onto a

dashboard or report, it becomes one of many things to

do—overwhelming management, developers, and testers.

Prioritized findings, driven by policies, must become part of a

go/no-go punch list with full transparency across the team.

37

The “Continuous” in Testing:
What’s Involved?

Executive Summary
Continuous Testing does not mean do more of the same

“bottom-up” tasks with greater automation. To achieve a real-

time, objective assessment of the business risks associated with

a release candidate, organizations must consider the efficacy

of test artifacts and analysis techniques that ultimately drive the

assessment of quality or risk.

Consider this: if software quality efforts have traditionally been

a “time-boxed” exercise, then we can’t possibly expect that

accelerating the SDLC will yield better results from a testing

perspective. If organizations want to accelerate software

releases, they must reassess the current testing practices

in order to keep quality as status quo. However, in order to

improve software quality in conjunction with SDLC acceleration,

organizations will have to truly consider re-engineering the

process of creating quality software.

As you begin the transformation from automated testing to

Continuous Testing, the following elements are necessary for

achieving a real-time assessment of business risks.

38

Risk Assessment—Are You Ready to Release?

As we review the elements of Continuous Testing, it’s hard to

argue that one element is more important than the rest. If we

present our case well enough, it should become obvious that

each element is critical for overall process success. However,

we need a place to start, and establishing a baseline to measure

risk is the perfect place to begin as well as end.

Figure 7 – Continuous Testing is synonymous with continuous improvement;
it requires constant re-evaluation of risk and the infrastructure in place to
mitigate prioritized risks

One overarching aspect to risk assessment associated with

software development is continuously overlooked: If software

is the interface to your business, then developers writing and

testing code are making business decisions on behalf of the

business.

39

Assessing the project risk upfront should be the baseline by

which we measure whether we are done testing and allow

the SDLC to continue towards release. Furthermore, the risk

assessment will also play an important role in improvement

initiatives for subsequent development cycles.

The definition of risk cannot be generic. It must be relative to the

business, the project, and potentially the iterations in scope for

the release candidate. For example, a non-critical internal appli-

cation would not face the same level of scrutiny as a publically-

exposed application that manages financial or retail transactions.

A company baseline policy for expectations around security,

reliability, performance, maintainability, availability, legal, etc.

is recommended as the minimum starting point for any de-

velopment effort. However, each specific project team should

augment the baseline requirement with additional policies to

prevent threats that could be unique to the project team, ap-

plication, or release.

SDLC acceleration requires automation. Automation requires

machine-readable instructions which allow for the execution

of prescribed actions (at a specific point in time). The more

metadata that a team can provide around the application,

components, requirements, and tasks associated with the

release, the more rigorous downstream activities can be

performed for defect prevention, test construction, test

execution, and maintenance.

Technical Debt

The concept of technical debt has gained popularity over the past

few years. Its measurement has become core to the assessment

of the SDLC and it can be an effective practitioner-level metric.

40

A Development Testing Platform will help prevent and mitigate

types of technical debt such as poorly-written code, overly-

complex code, obsolete code, unused code, duplicate code,

code not covered by automated tests, and incomplete code.

The uniform measurement of technical debt is a great tool

for project comparison and should be a core element of a

practitioner’s dashboard.

Risk Mitigation Tasks

All quality tasks requested of development should be 100%

correlated to a policy or an opportunity to minimize risk.

A developer has two primary jobs: implement business

requirements (or user stories) and reduce the business risk

associated with application failure. From a quality and testing

perspective, it is crucial to realize that quality initiatives

generally fail when the benefits associated with a testing task

are not clearly understood.

A risk mitigation task can range from executing a peer code

review to constructing or maintaining a component test.

Whether a risk mitigation task is generated manually at the

request of a manager or automatically (as with static code

analysis), it must present a development or testing activity that

is clearly correlated with the reduction of risk.

Coverage Optimization

Coverage is always a contentious topic—and, at times, a religious

war. Different coverage techniques are better-suited for different

risk mitigation goals. Fortunately, industry compliance guidelines

are available to help you determine which coverage metric or

technique to select and standardize around.

41

Once a coverage technique (line, statement, function, modified

condition, decision, path, component, service, application,

etc.) is selected and correlated to a testing practice, the

Development Testing Platform will generate reports as well as

tasks that guide the developer or tester to optimize coverage.

The trick with this analysis is to optimize versus two goals. First,

if there is a non-negotiable industry standard, optimize based

on what’s needed for compliance. Second (and orthogonal to

the first), optimize on what’s needed to reduce business risks.

Coverage analysis is tricky because it is not guaranteed

to yield better quality. Yet, coverage analysis can certainly

help you make prioritization decisions associated with test

resource allocation. Coverage analysis delivers great data that

should be used in conjunction with other SDLC “sensors.” For

example, coverage data in conjunction with rich application

component metadata that profiles risk can establish parameters

for exploratory testing or expanded simulation conditions.

Coverage analysis in conjunction with cyclomatic complexity

can highlight an application hotspot that must be investigated.

Test Quality Assessment

Processes and test suites have one thing in common: over time,

they grow in size and complexity until they reach a breaking

point when they are deemed “unmanageable.” Unfortunately,

test suite rationalization is traditionally managed as a batch

process between releases. Managing in this manner yields to

sub-optimal decisions because the team is forced to wrangle

with requirements, functions, or code out of context of the time

or user story that drove them.

42

Continuous Testing requires reliable, trustworthy tests. When

test suite results become questionable, there is a rapid decline

in how and when team members react to test failures. This

leads to the test suite becoming out-of-sync with the code—

and application quality ultimately out of control.

With this in mind, it is just as important to assess the quality

of the test. Automating the assessment of the test is critical

for Continuous Testing. Tests lie at the core of software risk

assessment. If these risk monitors or sensors are not reliable,

then we must consider the process to be out of control.

Policy Analysis—Keep up with Evolving Business
Demands

Policy analysis through a Development Testing Platform is key

for driving development and testing process outcomes. The

primary goal of process analysis to ensure that policies are

meeting the organization’s evolving business and compliance

demands.

Most organizations have a development or SDLC policy that

is passive and reactive. This policy might be referenced when

a new hire is brought onboard or when some drastic incident

compels management to consult, update, and train on the

policy. The reactive nature of how management expectations

are expressed and measured poses a significant business

risk. The lack of a coordinated governance mechanism also

severely hampers IT productivity (since you can’t improve what

you can’t measure).

Policy analysis through a Development Testing Platform is the

solution to this pervasive issue. With a central interface where a

43

manager or group lead defines and implements “how,” “when,”

and “why” quality practices are implemented and enforced,

management can adapt the process to evolving market

conditions, changing regulatory environments, or customer

demands. The result: management goals and expectations

are translated into executable and monitor-able actions that

reduce business risk.

The primary business objectives of policy analysis are:

•	 Expose	trends	associated	with	dangerous	patterns	in	the	

code

•	 Target	areas	where	risks	can	be	isolated	within	a	stage

•	 Identify	higher	risk	activities	where	defect	prevention	

practices need to be augmented or applied

With effective policy analysis, “policy” is no longer relegated to

being a reactive measure that documents what is assumed to

occur; it is promoted to being the primary driver for risk mitigation.

As IT deliverables increasingly serve as the “face” of the

business, the inherent risks associated with application failure

expose the organization to severe financial repercussions.

Furthermore, business stakeholders are demanding increased

visibility into corporate governance mechanisms. This means

that merely documenting policies and processes is no longer

sufficient; we must also demonstrate that policies are actually

executed in practice.

This centralization of management expectations not only

establishes the reference point needed to analyze risk, but

also provides the control required to continuously improve the

process of delivering software.

44

Requirements Traceability—Determine if you are
“Done-Done”

All tests should be correlated with a business requirement. This

provides an objective assessment of which requirements are

working as expected, which require validation, and which are

at risk. This is tricky because the articulation of a requirement,

the generation or validation of code, and the generation of a

test that validates its proper implementation all require human

interaction. We must have ways to ensure that the artifacts are

aligned with the true business objective—and this requires

human review and endorsement.

A Development Testing Platform helps the organization keep

business expectations in check by ensuring that there are

effective tests aligned to the business requirement. By allowing

extended metadata to be associated with a requirement, an

application, a component, or iteration, the Develop-ment

Testing Platform will also optimize the prioritization of tasks.

During “change time,” continuous tests are what trigger

alerts to the project team about changes that impact

business requirements, test suites, and peripheral application

components. In addition to satisfying compliance mandates,

such as safety-critical, automotive, or medical device standards,

real-time visibility into the quality status of each requirement

helps to prevent late-cycle surprises that threaten to derail

schedules and/or place approval in jeopardy.

45

Advanced Analysis—Expose Application Risks Early

Defect Prevention with Static Analysis

It’s well known that the later in the development process a

defect is found, the more difficult, costly, and time-consuming

it is to remove. Mature static analysis technologies, managed

in context of defined business objectives, will significantly

improve software quality by preventing defects early.

Writing code without static code analysis is like writing a term

paper or producing a report without spell check or grammar

check. A surprising number of high-risk software defects are

100% preventable via fully-automated static code analysis. By

preventing defects from being introduced in the first place, you

minimize the number of interruptions and delays caused by the

team having to diagnose and repair errors. Moreover, the more

defects you prevent, the lower your risk of defects slipping

through your testing procedures and making their way to the

end-user—and requiring a significant amount of resources

for defect reproduction, defect remediation, re-testing, and

releasing the updated application. Ultimately, automated

defect prevention practices increase velocity, allowing the

team to accomplish more within an iteration.

At a more technical level, this automated analysis for defect

prevention can involve a number of technologies, including

multivariate analysis that exposes malicious patterns in the

code, areas of high risk, and/or areas more vulnerable to risk.

All are driven by a policy that defines how code should be

written and tested to satisfy the organization’s expectations

in terms of security, reliability, performance, and compliance.

46

The findings from this analysis establish a baseline that can

be used as a basis for continuous improvement.

Pure “defect prevention” approaches can eliminate defects

that result in crashes, deadlocks, erratic behavior, and per-

formance degradation. A security-focused approach can ap-

ply the same preventative strategy to security vulnerabilities,

preventing input-based attacks, backdoor vulnerabilities, weak

security controls, exposure of sensitive data, and more.

Change Impact Analysis

It is well known that defects are more likely to be introduced

when modifying code associated with older, more complex

code bases. In fact, a FDA study of medical device recalls found

that an astonishing “192 (or 79%) [of software-related recalls]

were caused by software defects that were introduced when

changes were made to the software after its initial production

and distribution.”3

From a risk perspective, changed code equates to risky code.

We know that when code changes, there are distinct impacts

from a testing perspective:

•	 Do	I	need	to	modify	or	eliminate	the	old	test?	

•	 Do	I	need	a	new	test?

•	 How	have	changes	impacted	other	aspects	of	

the application?

3 http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocu-
ments/ucm085281.htm#_Toc517237928

47

The goal is to have a single view of the change impacts from

the perspective of the project as well as the perspective of

the individual contributor. Optimally, change impact analysis is

performed as close to the time of change as possible—when

the code and associated requirements are still fresh in the

developer’s or tester’s mind.

If test assets are not aligned with the actual business requirements,

then Continuous Testing will quickly become unmanageable.

Teams will need to spend considerable time sorting through

reported failures—or worse, overlook defects that would have

been exposed by a more accurate test construction.

Now that development processes are increasingly iterative

(more agile), keeping automated tests and associated test

environments in sync with continuously-evolving system

dependencies can consume considerable resources. To

mitigate this challenge, it’s helpful to have a fast, easy, and

accurate way of updating test assets. This requires methods

to assess how change impacts existing artifacts as well as a

means to quickly update those artifacts to reflect the current

business requirements.

Scope and Prioritization

Given a software project’s scope, iteration, or release, some

tests are certainly more valuable and timely than others.

Advanced analysis techniques can not only help teams identify

these higher-priority tests, but also assist them in selecting

the appropriate set of tests for various stages of the release

timeline.

48

Advanced analysis should also deliver a prioritized list of

regression tests that need review or maintenance.

Leveraging this type of analysis and acting on the prioritized

list for test creation or maintenance can effectively prevent

defects from propagating to downstream processes—where

defect detection is more difficult and expensive. There are two

main drivers for the delivery of tasks here: the boundaries for

scope and the policy that defines the business risks associated

with the application.

For example, the team might be working on a composite

application in which one component is designed to collect

and process payment cards for online transactions. The cost

of quality associated with this component can be colossal if

the organization has a security breach or fails a PCI DSS4 audit.

Although code within the online transaction component might

not be changing, test metadata associated with the component

could place it in scope for testing. Furthermore, a policy

defined for the PCI DSS standard (as well as the organization’s

internal data privacy and security) will drive the scope of testing

practices associated with this release or iteration.

Test Optimization—Ensure Findings are Accurate
and Actionable

To truly accelerate the SDLC, we have to look at testing much

differently. In most industries, modern quality processes are

focused on optimizing the process with the goal of preventing

defects or containing defects within a specific stage.

4 PCI DSS is the Payment Card Industry Data Security Standard

49

With software development, we have shied away from this

approach, declaring that it would impede engineering creativity

or that the benefits associated with the activity are low, given

the value of the engineering resources. With a reassessment of

the true cost of software quality, many organizations will have

to make major cultural changes to combat the higher penalties

for faulty software. Older, more established organizations

will also need to keep up with the new breed of businesses

that were conceived with software as their core competency.

These businesses are free from older cultural paradigms that

might preclude more modern software quality processes and

testing practices.

No matter what methodology is the best fit for your business

objectives and desired development culture, a process to drive

consistency is required for long-term success.

Test optimization algorithms help you determine what tests you

absolutely must run versus what tests are of lower priority given

the scope of change. Ideally, you want intelligent guidance on

the most efficient way to mitigate the greatest risks associated

with your application. Test optimization not only ensures that the

test suite is validating the correct application behavior, but also

assesses each test itself for effectiveness and maintainability.

50

Management

Test optimization management requires that a uniform

workflow is established and maintained associated with the

policies defined at the beginning of a project or iteration. A

Development Testing Platform must provide the granular

management of queues combined with task workflow and

measurement of compliance. To achieve this:

•	 The	scope	of	prescribed	tasks	should	be	measurable	at	

different levels of granularity, including individual, team,

iteration, and project.

•	 The	test	execution	queues	should	allow	for	the	prioritization	

of test runs based on the severity and business risk

associated with requirements.

•	 Task	queues	should	be	visible	and	prioritized	with	the	

option to manually alter or prioritize (this should be the

exception, not the norm).

•	 Reports	on	aged	tasks	should	be	available	for	managers	

to help them determine whether the process is under

control or out of control.

Construction and Testability

With a fragile test suite, Continuous Testing just isn’t feasible.

If you truly want to automate the execution of a broad test

suite—embracing unit, component, integration, functional,

performance, and security testing—you need to ensure that

your test suite is up to the task. How do you achieve this?

Ensure that your tests are…

•	 Logically-componentized: Tests need to be logically-

componentized so you can assess the impact at change

51

time. When tests fail and they’re logically correlated to

components, it is much easier to establish priority and

associate tasks to the correct resource.

•	 Incremental: Tests can be built upon each other, without

impacting the integrity of the original or new test case.

•	Repeatable: Tests can be executed over and over again

with each incremental build, integration, or release process.

•	Deterministic and meaningful: Tests must be clean and

deterministic. Pass and fail have unambiguous meanings.

Each test should do exactly what you want it to do—no more

and no less. Tests should fail only when an actual problem

you care about has been detected. Moreover, the failure

should be obvious and clearly communicate what went

wrong.

•	Maintainable within a process: A test that’s out of sync

with the code will either generate incorrect failures (false

positives) or overlook real problems (false negatives). An

automated process for evolving test artifacts is just as

important as the construction of new tests.

•	Prescriptive workflow based on results: When a test does

fail, it should trigger a process-driven workflow that lets

team members know what’s expected and how to proceed.

This typically includes a prioritized task list.

Test Data Management

Access to realistic test data can significantly increase the

effectiveness of a test suite. Good test data and test data

management practices will increase coverage as well as drive

more accurate results. However, developing or accessing test

52

data can be a considerable challenge—in terms of time, effort,

and compliance. Copying production data can be risky (and

potentially illegal). Asking database administrators to provide

the necessary data is typically fraught with delays. Moreover,

delegating this task to dev/QA moves team members beyond

their core competencies, potentially delaying other aspects of

the project for what might be imprecise or incomplete results.

Thus, fast and easy access to realistic test data removes a sig-

nificant roadblock. The primary methods to derive test data are:

•	 Sub-set	 or	 copy	 data	 from	 a	 production	 database	 into	 a	

staged environment and employ cleansing techniques to

eliminate data privacy or security risks.

•	 Leverage	 Service	 Virtualization	 (discussed	 later	 in	 this	

chapter) to capture request and response traffic and reuse

the data for subsequent scenarios. Depending on the origin

and condition of the data, cleansing techniques might be

required.

•	 Generate	 test	data	synthetically	 for	various	scenarios	 that	

are required for testing.

In all cases, it’s critical to ensure that the data can be reused and

shared across multiple teams, projects, versions, and releases.

Reuse of “safe” test data can significantly increase the speed

of test construction, management, and maintenance.

Maintenance

All too often, we find development teams carving out time

between releases in order to “clean-up” the test suites. This

ad-hoc task is usually a low priority and gets deferred by

high-urgency customer feature requests, field defects, and

53

other business imperatives. The resulting lack of ongoing

maintenance typically ends up eroding the team’s confidence in

the test suite and spawning a backlog of increasingly-complex

maintenance decisions.

Test maintenance should be performed as soon as possible

after a new business requirement is implemented (or, in the

case of TDD-like methodologies, prior to a requirement being

implemented). The challenge is to achieve the optimal balance

between creating and maintaining test suites versus the scope

of change.

Out-of-sync test suites enter into a vicious downward spiral

that accelerates with time. Unit, component, and integration

tests that are maintained by developers are traditionally the

artifacts at greatest risk of deterioration. Advanced analysis of

the test artifact itself should guide developers to maintain the

test suite. There are five primary activities for maintenance—all

of which are driven by the business requirement:

•	 Delete	the	test

•	 Update	the	test

•	 Update	the	assertions

•	 Update	the	test	data

•	 Update	the	test	metadata

Test Environment Access and Simulation (Service
Virtualization)

With the convergent trends of parallel and iterative

development, increasing system complexity/interdependency,

and DevOps, it has become extremely rare for a team to have

54

ubiquitous access to all of the dependent applications required

to execute a complete test. The ability to accurately assess the

risk of a release candidate for today’s composite applications

is becoming a tall order.

You have highly-distributed development and test teams that

need simultaneous on-demand access to a release candidate—

as well as its myriad APIs and dependencies that must be

present in the test environment—in order to continuously test

throughout the software lifecycle. Using a conventional on-

premise infrastructure to build out complete test environments

that closely resemble production is typically slow, technically

challenging, extraordinarily expensive, and infeasible due to

dependencies that can’t be reproduced in the test environment.

To eliminate these constraints, teams must leverage innovative

system cloning and simulation technologies to rapidly

configure, provision, scale, and reproduce complete dev/

test environments. The application stacks that are under your

control (cloud-ready) can be imported and imaged via an

elastic Environment-as-a-Service (EaaS) in a cloud. Service

Virtualization then allows you to simulate the behavior of

those dependencies you cannot easily image (e.g., third-party

services, SAP regions, mainframes, not-yet-implemented APIs,

etc.), or those you want to stabilize for test coverage purposes.

EaaS environments are becoming more ubiquitous within

DevTest organizations, yet most organizations are just now

discovering Service Virtualization.

By leveraging Service Virtualization or simulation to remove

these constraints, an organization can gain full access to (and

control over) the test environment—enabling Continuous

Testing to occur as early and often as needed.

55

Want to start testing the component you just built even though

not much else is completed? Don’t have 24/7 access to all

the dependencies involved in your testing efforts—with all the

configurations you need to feel confident that your test results

are truly predictive of real-world behavior? Tired of delaying

performance testing because access to a realistic environment

is too limited (or too expensive)? Service Virtualization can

remove all these constraints.

With Service Virtualization, organizations can access simulated

test environments that allow developers, QA, and performance

testers to test earlier, faster, and more completely. Organizations

that rely on interconnected systems must be able to validate

system changes more effectively—not only for performance

and reliability, but also to reduce risks associated with security,

privacy, and business interruption. Service Virtualization is the

missing link that allows organizations to continuously test and

validate business requirements in order to bring higher quality

functionality to the market faster and at a lower cost.

56

Conclusion: From Testing
to QA; From Automated to
Continuous

Executive Summary
We’re at a strategic inflection point when it comes to defining

software quality and building a process to achieve it. To release

engaging software faster, we need to evolve from a world where

QA is focused on constructing and executing bottom-up tests to

a paradigm where the entire organization plays a role in defining

and mitigating business risks through an end-to-end quality

process.

Compared to the rigor of the quality process for discrete or

manufactured products, software has a ways to go. A past

generation of end users have become accustomed to restarts,

shut downs, and Task Manager “end tasks.” However, this

acquiescent attitude towards faulty software has run its

course—millennials have significantly different expectations

for software quality, and future generations will likely be even

less tolerant of disruptions to the user experience. With the

ease of integrating software at an all-time high and the cost of

switching applications at an all-time low, it’s easier now than

ever to replace applications or move to another subscription

service.

57

The Impetus for Change

As we referenced in Figure 1, the penalty for exposing faulty

software is at an all-time high. Public companies with a “software

glitch” that made headline news experienced a -4.08% drop

in their stock price. This should be enough of an incentive to

place organizations on notice that software quality matters.

Although it’s not quality related, consider the impact of the

Volkswagen emissions cheating scandal in relation to the

evolving SDLC. The Volkswagen scandal was a pure act of

questionable ethics—carried out via software. As of the writing

of this book, the total financial impact of the scandal is yet to be

determined, but the impact to software development shops will

be indelible. The event has pushed software into the spotlight of

compliance—irrevocably highlighting software as a substantial

business risk.

From Testing to QA

We cannot expect that the software testing practices of

the past will suffice for the modern software development

methodologies and SDLC processes that are being evolved

today.

Across the array of roles and responsibilities for the post-agile

(or more iterative) development methodologies, the job of QA

has experienced the most profound change. At the same time

that the defined window for the task of testing disappeared,

the primary method for executing tests became obsolete.

Even though the term “QA” is derived from “quality assurance,”

the QA role on software development teams has been more

or less focused on tactical testing. For the more modern

58

collaborative process initiatives (DevOps, lean, agile…) to take

hold, the role of QA must shift back to quality assurance. In this

case, QA is responsible for defining and enabling a continuous,

proactive process that identifies and prevents business risks

throughout the software lifecycle.

If you accept the above definition, then the idea of QA being

focused on creating and managing functional test scripts will

seem strange; this task is neither preventative nor process

oriented. This leads us to one of our primary conclusions for

Continuous Testing: organizations must make a concerted

effort to separate the activity of testing from the concept of

quality. The concept of quality and how it is defined is an

organizational and business responsibility that should be

reflected in the company’s culture. Testing is just one of many

activities that ensure the organizational quality targets are

being achieved.

From Automated to Continuous

There is a vast schism between automated testing and

Continuous Testing—and this schism will be bridged over time

as the process of delivering software matures. Both internal

and external influences will drive the evolution of Continuous

Testing. Internally, agile, DevOps, and lean process initiatives

will be the main drivers that generate the demand for change.

Externally, the expense and overhead of auditing government

and industry-based compliance programs will be the primary

impetus for change. Any true change initiative requires the

alignment of people, process, and technology—with technology

being an enabler and not the silver bullet. Yet there are some

basic technology themes we must explore as we migrate to a

59

true quality assurance process. In general, we must shift from

a sole focus on test automation to automating the process of

measuring risk. To begin this journey, we must consider the

following:

Figure 8 – Driven by business objectives, organizations must shift to more
automated methods of quality assurance and away from the tactical task of
testing software from the bottom up

From Causal Observations to Probabilistic Risk Assessment

With QA traditionally executing manual or automated tests,

the feedback from the testing effort is focused on the event of

a test passing or failing—this is not enough. Tests are causal,

meaning that tests are constructed to validate a very specific

scope of functionality and are evaluated as isolated data

points. Although these stand-alone data points are critical,

we must also use them as inputs to an expanded equation for

statistically identifying application hotspots.

60

The SDLC produces a significant amount of data that is rather

simple to correlate. Monitoring process patterns can produce

very actionable results. For example, a code review should be

triggered if an application component experiences all of the

following issues in a given CI build:

•	 Regression	failures	greater	than	the	average	

•	 Static	analysis	defect	density	greater	than	the	average

•	 Cyclomatic	complexity	greater	than	a	prescribed	threshold

From Defect Documentation to Simulated Replay

The ping-pong between testers and developers over the

reproducibility of a reported defect has become legendary. It’s

harder to return a defect to development than it is to send back

an entrée from a world-renowned chef. Given the aggressive

goal to accelerate software release cycles, most organizations

will save a significant amount of time by just eliminating this

back and forth.

By leveraging Service Virtualization for simulating a test envi-

ronment and/or virtual machine record and playback technolo-

gies for observing how a program executed, testers should be

able to ship development a very specific test and environment

instance in a simple containerized package. This package

should isolate a defect by encapsulating it with a test, as well

as give developers the framework required to verify the fix.

From Structured Data to Structured and Unstructured

The current tools and infrastructure systems used to manage

the SDLC have made significant improvements in the generation

and integration of structured data (e.g., how CI engines import

61

and present test results). This data is valuable and must be

leveraged much more effectively (as we stated above in the

“From Causal Observations to Probabilistic” section.

The wealth of unstructured quality data scattered across both

internal and publicly-accessible applications often holds the

secrets that make the difference between happy end users and

unhappy prospects using a competitor’s product. For example,

developers of a mobile application would want constant

feedback on trends from end user comments on:

• iTunes app store

•	 Android	app	store

•	 Stackoverflow

•	 Twitter

•	 Facebook

•	 The	company’s	release	announcements

•	 Competitors’	release	announcements	

This data is considered unstructured since the critical findings

are not presented in a canonical format: parsing and secondary

analysis are required to extract the valuable information.

Although these inputs might be monitored by product

marketers or managers, providing these data points directly

to development and testing teams—in terms that practitioners

can take action on—is imperative.

From Dashboards to Business Policies

In a Continuous Everything world, quality gates will enable a

release candidate to be promoted through the delivery pipeline.

62

Anything that requires human validation clogs the pipeline.

Dashboards require human interpretation—delaying the process.

Dashboards are very convenient for aggregating data,

providing historical perspectives on repetitive data, and

visualizing information. However, they are too cumbersome for

real-time decision making because they do not offer actionable

intelligence.

Business policies help organizations evolve from dashboards

to automated decision making. By defining and automatically

monitoring policies that determine whether the release

candidate is satisfying business expectations, quality gates will

stop high-risk candidates from reaching the end user. This is

key for mitigating the risks inherent in rapid and fully-automated

delivery processes such as Continuous Delivery.

From Tool Dependent to SDLC Sensors

Let’s face it—it’s cheap to run tools. And with the availability

of process intelligence engines, the more data observations

we can collect across the SDLC, the more opportunities will

emerge to discover defect prevention patterns.

Given the benefit of a large and diverse tool set, we need

to shift focus from depending on a single “suite” of tools

from a specific vendor (with a specific set of strengths and

weaknesses) to having a broad array of SDLC sensors scattered

across the software development lifecycle. And to optimize

both the accuracy and value of these sensors, it’s critical to

stop allowing tools to be applied in the ad hoc manner that is

still extremely common today. Rather, we need to ensure that

they are applied consistently and that their observations are

63

funneled into a process intelligence engine, where they can

be correlated with other observations across tools, across test

runs, and over time. This will not only increase the likelihood of

identifying application hotspots, but will also decrease the risk

of false negatives.

Final Thoughts on Continuous Testing (For Now)

Over the past decades, business initiatives that focused on

software quality for the sake of improving software quality

have yielded underwhelming results. There are many reasons

why these types of initiatives failed:

•	 The	business	felt	powerless	negotiating	with	“techies”	

•	 There	was	a	perception	that	a	software	failure	did	not	have	

extenuating business impacts

•	 The	development	team	had	greater	organizational	power	

over QA, enabling development to resist shift-left

•	 The	QA	organization	was	historically	(mis)aligned	with	

development, rather than with the business

•	 The	initiatives	lacked	executive	management	sponsorship

In other words, software quality initiatives isolated to the

development and testing teams lacked a compelling business

driver to promote organizational change. However, now we

are in a new era of software. The business is expecting more—

and existing software processes are not meeting demands for

quality and speed. The time is ripe for true process change.

So why invest in the shift to Continuous Testing today? We are

in the midst of a rapid paradigm shift from the age of the vendor

to the age of the customer. If your business leverages software

64

to attract, enable, or retain customers, then you are witnessing

some unprecedented market shifts:

•	Prospects are judging you before you interact with them:
Today’s prospec-tive customers enjoy abundant access

to information, with blogs, reviews, reports, and customer

reviews universally accessible from an array of devices.

Before you actually get in touch with a prospect, they have

probably already researched you (and your competitors) and

developed a bias based on their unguided exploration and

your online reputation.

•	 Lower switching costs: Switching costs for software are at

an all-time low and dropping. Gone are the days of multi-

million dollar system integration projects. With APIs being

ubiquitous and easy to use, the cost of switching software

applications or devices is at an all-time low. Think of a banking

application or a mobile phone—in the past five years, it has

become significantly easier to transfer data. This form of

vendor lock-in has been eroding over the past decade and

it will continue to erode as more devices, applications, and

back-end systems are able to interconnect. The ubiquity of

data access will be challenged or halted only by security

and data privacy issues.

•	 Increased demand for compliance: For most large

industries that hold data which could be considered private

or confidential, the need to comply with government

or industry standards will inevitably increase. Inability

to demonstrate compliance or inability to comply with

standards in a cost-effective manner will erode customer

and prospect confidence.

65

•	 Increased cost of quality: The cost of software quality is on

the rise and will continue to escalate as industry-leading

companies rely on software for more and more core

interactions. The cost of quality is the penalty or risk incurred

by failing to deliver quality software—and this is relative. In

other words, if an entire industry is delivering an average user

experience via software, then the cost of software quality

is not as high in that market. However, if one organization

manages to deliver an exceptional user experience, this

could be a valuable competitive differentiator.

The undeniable truth is that meeting your customers’

expectations with quality software drives brand loyalty. Without

a software quality process that is well defined and continuously

improved, an organization will become laggards among its

competitors and the brand will slip from the market.

In the chapter The Value of Continuous Testing, we presented

a few examples of companies that transformed markets via

software. Market transformation does not stop with those

examples—every industry is under fire to deliver an exceptional

user experience via software or face extinction.

Today, every organization is entrusting their software

development team to deliver an exceptional end user

experience—just like an airplane pilot is entrusted with

transporting passengers to their destination. Trying to ensure a

positive user experience without a constant awareness of the

business risks inherent in each release candidate is like trying

to land a jet at a busy airport without air traffic control. If you

have immediate and continuous feedback on the nature and

severity of the risks you’re facing, you’ll have a much better

likelihood of landing safely.

66

About Parasoft

Overview

Parasoft develops automated software quality solutions that

prevent and detect risks associated with application failure.

To help organizations produce top-quality software consistently

and efficiently as they pursue agile, lean, DevOps, compliance,

and safety-critical development initiatives, Parasoft offers a

Development Testing Platform and Continuous Testing Platform.

Development Testing Platform

Parasoft Development Testing Platform (DTP) enables

Continuous Testing. Leveraging policies, DTP consistently

applies software quality practices across teams and throughout

the SDLC. It enables your quality efforts to shift left–delivering

a platform for automated defect prevention and the uniform

measurement of risk.

Parasoft DTP helps organizations:

67

•	 Leverage	policies	to	align	business	expectations	with	

development activities

•	 Prevent	software	defects	and	eliminate	rework–reducing	

technical debt

•	 Focus	development	efforts	on	quality	tasks	that	have	the	

most impact

•	 Comply	with	internal,	industry,	or	government	standards

•	 Integrate	security	best	practices	into	application	

development

•	 Leverage	multivariate	analysis	to	discover	application	

hotspots that harbor hidden defects

Continuous Testing Platform

Today’s DevOps and “Continuous Everything” initiatives re-

quire the ability to assess the risks associated with a release

candidate—instantly and continuously. Parasoft Continuous

Testing helps organizations rapidly and precisely validate

that their applications satisfy business expectations around

functionality, reliability, performance, and security.

Parasoft Continuous Testing Platform features the following core

capabilities:

•	Service Virtualization: Provides on-demand access to com-

plete, realistic test environments by simulating constrained

dependencies (APIs, services, databases, mainframes,

ERPs, etc.)

•	API Testing: API/service unit testing, end-to-end functional

testing, load/performance testing, and security testing

68

•	Test Environment Management: On-demand provisioning

of complete test environments in order to rapidly evaluate

a release candidate; allows your automated tests to run

continuously versus complete test environments

•	Test Data Management: Centralized creation and

management of secure test data that can be applied across

all solutions and integrated tools (including open source

tools), as well as across team roles and test types (unit,

integration, performance, security…)

69

About the Authors

Wayne Ariola, Chief Strategy Officer, leads the development

and execution of Parasoft’s strategy. He leverages customer

input and fosters partnerships with industry leaders to ensure

that Parasoft solutions continuously evolve to support the ever-

changing complexities of real-world business processes and

systems. Ariola has contributed to the design of core Parasoft

technologies and has been awarded numerous patents for his

inventions. A recognized leader on topics such as the SDLC,

Service Virtualization, SOA and APIs, quality policy governance,

and business strategy, Ariola is a frequent contributor to business

publications—as well as a sought-after speaker at key industry

events. Ariola brings more than 20 years strategic consulting

experience within the technology and software development

industries. Prior to joining Parasoft, Ariola was the Senior Director of

Strategy at Fasturn, Inc., a company he helped to start. Previously,

Ariola was an Associate Director for PricewaterhouseCoopers,

where he was recognized as a leader in the Strategic Change

practice. Ariola joined Parasoft in March of 2003. He has a BA

from UCSB and an MBA from Indiana University.

Cynthia Dunlop, Lead Technical Writer, authors technical and

marketing communications for Parasoft—currently specializing

in Service Virtualization, API testing, DevOps, and Continuous

Testing. She has over 15 years of experience writing for the

software development industry, including numerous articles

for industry publications and books for Wiley and Wiley-IEEE.

Dunlop holds a BA from UCLA and an MA from Washington

State University.

70

