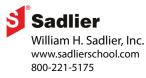
SADLIER

Common Core Progress Mathematics


Aligned to the

Wisconsin Common Core State Standards for Mathematics

Grade 7

Contents

- 2 Ratios and Proportional Relationships
- 3 The Number System
- 4 Expressions and Equations
- 5 Geometry
- 6 Statistics and Probability

Ra	tios and Proportional Relatior	nships	7.RP	
GRAI	DE 7 STANDARDS / DESCRIPTION	SADLIER CON	SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7	
the	alyze proportional relationships and use m to solve real-world and mathematical blems.			
1.	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	Lesson 1	Compute Unit Rates—pp. 10–17	
	For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.			
2.	Recognize and represent proportional relationships between quantities.			
	a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	Lesson 2	Identify Proportional Relationships —pp. 18– 25	
	b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Lesson 3	Identify the Constant of Proportionality—pp. 26–33	
	c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.	Lesson 4	Represent Proportional Relationships with Equations —pp. 34–41	
	d. Explain what a point (<i>x</i> , <i>y</i>) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, <i>r</i>) where <i>r</i> is the unit rate.	Lesson 5	Interpret Graphs of Proportional Relationships—pp. 42–49	
3.	Use proportional relationships to solve multistep ratio and percent problems.	Lesson 6	Problem Solving: Multi-step Ratio Problems—pp. 50–57	
	Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	Lesson 7	Problem Solving: Multi-step Percent Problems—pp. 58–65	

Tł	ne I	Number System		7.NS
GRA	GRADE 7 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7	
op	erati	and extend previous understandings of ons with fractions to add, subtract, y, and divide rational numbers.		
1.	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.			
	a.	Describe situations in which opposite quantities combine to make 0.	Lesson 8	Understand Addition of Integers—pp. 72–79
		For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.		
	b.	Understand $p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	Lesson 8	Understand Addition of Integers—pp. 72–79
	c.	Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	Lesson 9	Understand Subtraction of Integers —pp. 80– 87
	d.	Apply properties of operations as strategies to add and subtract rational numbers.	Lesson 10	Add and Subtract Rational Numbers—pp. 88– 95
2.	mu	ply and extend previous understandings of Iltiplication and division and of fractions to multiply d divide rational numbers.		
	a.	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	Lesson 11	Understand Multiplication of Integers —pp. 96–103
	b.	Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.	Lesson 12	Understand Division of Integers —pp. 104– 111

The Number System

GRADE 7 STANDARDS / DESCRIPTION

- c. Apply properties of operations as strategies to multiply and divide rational numbers.
- d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
- 3. Solve real-world and mathematical problems involving the four operations with rational numbers.¹

¹Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

Expressions and Equations

GRADE 7 STANDARDS / DESCRIPTION

Use properties of operations to generate equivalent expressions.

- Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- 2. Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to

– continued on next page –

7.NS

- Lesson 13 Multiply and Divide Rational Numbers—pp. 112–119
- Lesson 14 Convert Rational Numbers to Decimal Form—pp. 120–127
- Lesson 15 Apply Rational-Number Operations—pp. 128–135

7.EE

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7

Lesson 16	Lesson 16 Combine Like Terms to Simplify Linear Expressions — pp. 142–149			
Lesson 17	Expand and Factor Linear Expressions —pp. 150–157			
Lesson 16	Combine Like Terms to Simplify Linear Expressions —pp. 142–149			

Lesson 18 Problem Solving: Multi-step Problems with Rational Numbers — pp. 158–165

Expressions and Equations

- continued from previous page place a towel bar 9 3/4 inches long in the center of a door

GRADE 7 STANDARDS / DESCRIPTION

4.

a.

7.EE

that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.

Geometry

GRADE 7 STANDARDS / DESCRIPTION

Draw, construct, and describe geometrical figures and describe the relationships between them.

- 1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
- 2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7

Lesson 19	Solve Linear Equations—pp. 166–173
Lesson 20	Problem Solving: Linear Equations—pp. 174– 181

- Lesson 21 Solve Linear Inequalities—pp. 182–189
- Problem Solving: Linear Inequalities—pp. Lesson 22 190-197

7.G

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7

Lesson 23	Use Scale Drawings to Solve Problems—pp. 204–211
Lesson 24	Draw Shapes that Meet Given Conditions— pp. 212–219
Lesson 25	Construct Triangles Using Both Side Lengths and Angle Measures—pp. 220–227

235

Lesson 26

Geometry

GRADE 7 STANDARDS / DESCRIPTION

Describe the two-dimensional figures that result from 3. slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

- 4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
- 5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
- Solve real-world and mathematical problems involving 6. area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Statistics and Probability

GRADE 7 STANDARDS / DESCRIPTION

Use random sampling to draw inferences about a population.

- 1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
- 2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.

For example, estimate the mean word length in a book by randomly sampling words from the book: predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

7 G

_		
_	Lesson 27	Use Formulas for Area and Circumference of Circles—pp. 236–243
_	Lesson 28	Use Equations to Find Unknown Angle
_		Measures —pp. 244–251
	Lesson 29	Problem Solving: Area, Volume, and Surface Area—pp. 252–259

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7

Slice Three-Dimensional Figures—pp. 228-

7.SP

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7

Understand Sampling-pp. 266-273 Lesson 30

Lesson 31 Use Sampling to Draw Inferences—pp. 274-281

GRADE 7 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7	
	w informal comparative inferences about populations.		
3.	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.	Lesson 32	Use Visual Overlap to Compare Distributions—pp. 282–289
4.	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	Lesson 33	Use Sample Statistics to Compare Populations—pp. 290–297
	estigate chance processes and develop, e, and evaluate probability models.		
5.	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Lesson 34	Understand Probability of a Chance Event- pp. 298–305
5.	number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1	Lesson 34 Lesson 35	pp. 298–305
	number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the		Relate Relative Frequency and Probability-
	number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but		pp. 298–305 Relate Relative Frequency and Probability-

Statistics and Probability			7.SP		
GRADE 7 STANDARDS / DESCRIPTION			SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 7		
		– continued from previous page – For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.			
	b.	Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?	Lesson 37	Use a Chance Process to Develop a Probability Model—pp. 322–329	
8.		d probabilities of compound events using organized s, tables, tree diagrams, and simulation. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	Lesson 38	Find Probabilities of Compound Events —pp. 330–337	
	b.	Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	Lesson 39	Represent Sample Spaces for Compound Events—pp. 338–345	
	c.	Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?	Lesson 40	Simulate Compound Events—pp. 346–353	