
Best Practices in Qt
Quick/QML

Langston Ball
Senior Qt Developer

ICS, Inc.

Topics

• Introduction
• Integrating C++ and QML
• Anchors Are Your Friend
• Keyboard and Input Handling
• Closing

Introduction

(Delete if not used)

Integrating C++ and QML

• Rationale

• Integration techniques

• Using a controller between C++ & QML
– Exporting controller objects

– Using controller objects

• Comparison of approaches

• Design differences

Integrating C++ and QML

The goal is maximum functionality for the
application.
● Integration of specialized hardware

components and controls into the GUI
● Advanced data processing and long running

operations.
● Providing clean, maintainable interfaces and

extendable applications.

Any QObject-derived class can be registered as a qml type or
injected into the QML context

Two well documented and efficient techniques:
● Injection of a c++ object into the qml context, making it a

global object accessible to the qml engine
● Registering your c++ object as a type in QML

○ qmlRegisterType()
○ qmlRegisterInterface()
○ qmlRegisterUncreatableType()
○ qmlRegisterSingletonType()

Integrating C++ and QML

● QML , signals, and slots.
○ QML can utilize the signal of your c++ objects and its properties
○ It can also utilize slots inside those objects

■ public slots as well as ones marked with Q_INVOKABLE macro

○ These features make using c++ backends ideal for controlling the UI and
allow for a clean seperation of UI and logic.

Integrating C++ and QML

● Writing a QML plug-in
○ QQmlExtensionPlugin
○
○ Using plug-ins

Data Models and Views

● What is a model? What is a view?
○ Kinds of models
○ Kinds of views

● ListModels
○ Static
○ Dynamic
○ Delegate

■ Special delegate properties
○ C++ Models with QML Views
○ What about trees?

Closing

• (Fill in)

Anchors are Your Friend

● Principles of layout
● Property bindings
● Issues with bindings
● Complex property bindings
● Anchor lines
● Introduction to anchors

○ Margins

Implementation of Property Bindings

● Each QML Item is actually a QObject under the covers.
● It emits signals in response to property changes.
● Signals, when emitted, are processed by Qt's event loop

and propagated to all connected objects.
● QML binding expressions are implemented as pre-

compiled JavaScript closures, evaluated at runtime.
● Even though Qt's signal/slots are really efficient, each of

those steps requires several cycles to be completed.
● Complex JavaScript expressions also need to be re-

evaluated on value change.

Anchor Lines
● Each Item has seven invisible anchor lines,
● implemented privately in C++ as QDeclarativeAnchors in Qt Quick 1 and

QQuickAnchors in Qt Quick 2.
● AnchorLine is a non-creatable type in QML.
● Anchor lines contain no value, only a reference to an Item and an enum value

for which line it is referring to.
● Six anchor lines for an Item are shown in Figure 1.2.

Figure 1.2. Anchor Lines

The seventh line is called the baseline. It is either:
● The line on which text would sit in that Item
● The same line as top, for an Item with no text

http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/anchorline.html
http://qt-project.org/doc/qt-5.1/anchorline.html
http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/item.html

Introduction to Anchors
● The anchors attached property is used to establish unidirectional relationships

between anchor lines of different Items.
● This provides a convenient way to position an item.
● Figure 1.3 shows two rectangles that grow as the parent window grows.

Figure 1.3. A Rescalable Screen with Two Rectangles

(before resize) (after resize)

Keyboard and Input Handling

● The overall picture
● Tab and arrow key navigation
● Focus scopes and object hierarchy

○ Focus scopes with dynamic items
○ Debugging keyboard focus

● Keyboard event forwarding
● Keyboard input simulation

The Overall Picture

QML Item behavior related to keyboard handling may not be
obvious from the Qt documentation:
● focus property is false by default on all built-in items.
● When the scene loads, an item with statically set focus,

that should also have the active focus, actually acquires it
after the onCompleted() handlers run.

● activeFocus being true guarantees that an item will be the
first to receive keyboard events.

● If, for example, you would like to bind to a property of a
text input item in some complex scene to know for sure
whether it is "active" (i.e. has a blinking cursor, etc), you
should bind to activeFocus, instead of focus.

The Overall Picture

● Invisible items can have active focus (and focus), but are
skipped during keyboard-driven navigation and key event
forwarding.

● Disabled items (i.e. those with enabled set to false), on
the other hand, are not excluded from the key event
forwarding chain (but are still skipped during keyboard-
driven navigation).

● A disabled item can not have active focus.
● If the user switches to another window, and that window

starts getting keyboard input, activeFocus value changes
to false.

The Overall Picture
Item {
 width: 200; height: 100
 Rectangle {
 anchors { fill: parent; margins: 25 }
 color: activeFocus? "red": "black"

 focus: true
 onFocusChanged: console.log("focus changed to: " + focus)
 onActiveFocusChanged: console.log("active focus changed to: " +
activeFocus)

 Component.onCompleted: console.log("onCompleted(), focus: " + focus
 + " activeFocus: " + activeFocus)
 }
}

http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/item.html
http://qt-project.org/doc/qt-5.1/rectangle.html
http://qt-project.org/doc/qt-5.1/rectangle.html
http://qt-project.org/doc/qt-5.1/component.html
http://qt-project.org/doc/qt-5.1/component.html

Tab and Arrow Key Navigation

Things to note about the built-in means of keyboard
navigation in QML:
● both disabled and invisible items are excluded from the

focus chain
● invisible items still get keyboard input and can have active

focus
● navigation chains don't wrap by themselves

Tab and Arrow Key Navigation

● when an item with active focus becomes invisible or
disabled, active focus does not move to the next item in
the navigation chain automatically.

● if at some point the item becomes visible and enabled
again, active focus returns (but only if no other item in the
scene acquired active focus between these events).

● the navigation chain may be dynamically changed.
● the enabled property, introduced in Qt 5, is handy when

implementing "navigable" controls.

Tab and Arrow Key Navigation
Item {

 width: row.width + 100; height: row.height + 100

 Row {

 id: row

 anchors.centerIn: parent

 spacing: 25

 Item { 1

 width: first.width; height: first.height

 FocusableButton {

 id: first

 KeyNavigation.tab: second 2

 text: "First"

 onClicked: console.log("First")

 }

 }

 FocusableButton {

 id: second

 KeyNavigation.tab: third

 text: "Second"

 onClicked: console.log("Second")

 }

continued...

Tab and Arrow Key Navigation
 FocusableButton {

 id: third

 KeyNavigation.tab: first 3

 text: "Third"

 onClicked: console.log("Third")

 }

 FocusableButton { 4

 focusOnClick: false 5

 text: "Make First " + (first.visible? "Invisible": "Visible")

 onClicked: {

 first.visible = !first.visible

 console.log("first.visible set to: " + first.visible)

 }

 }

 FocusableButton { 6

 focusOnClick: false 7

 text: (first.enabled? "Disable": "Enable") + " First"

 onClicked: {

 first.enabled = !first.enabled

 console.log("first.enabled set to: " + first.enabled)

 }

 }

 }

}

Focus Scopes and Item Hierarchy

Important things to know about keyboard scope in QML:
● From the application's point of view, the state of focus and

activeFocus properties of all items in a QML scene are
always consistent.

● Even when something changes, the QML runtime first
makes all the necessary updates, and only then emits the
notification signals.

● Even in onFocusChanged or onActiveFocusChanged,
there can never be any item with two focus scope children
having focus at the same time, or two items (anywhere
within the scene) with active focus.

Focus Scopes and Item Hierarchy
FocusScope {
 width: row.width + 100; height: row.height + 100
 focus: true
 onActiveFocusChanged: assert()
 Rectangle {
 anchors.fill: parent; color: "grey"
 }
 Row {
 id: row
 anchors.centerIn: parent
 spacing: 50
 Input {
 id: input1
 width: 100
 focus: true
 onFocusChanged: assert()
 onActiveFocusChanged: assert()
 }
 Input {
 id: input2
 width: 100
 onFocusChanged: assert()
 onActiveFocusChanged: assert()
 }

Focus Scopes and Item Hierarchy
 }
 property bool noFocus: !input1.focus && !input2.focus
 property bool excessiveFocus: input1.focus && input2.focus
 property bool noActiveFocus: activeFocus &&
 (!input1.activeFocus && !input2.activeFocus)
 function assert() {
 if (noFocus || excessiveFocus || noActiveFocus)
 console.log("Inconsistent focus!")
 }
 onNoFocusChanged: if (noFocus) console.log("no focus")
 onExcessiveFocusChanged: if (excessiveFocus) console.log("excessive focus")
 onNoActiveFocusChanged: if (noActiveFocus) console.log("no active focus")
}

Focus Scopes and Item Hierarchy

The focus-related properties of a scene item cannot be
brought into an inconsistent state, even if there are changes
to the item with active focus, or to the window's active state.
Knowing that items' focus properties are always in a
consistent state can be extremely useful in several situations,
for example:
● If an item loses focus, you can always obtain the state of

other items from the signal handler
● Sometimes it is necessary to differentiate between focus

acquisition by another item and the whole window
becoming inactive, and not only bind to the root focus
scope's activeFocus, but also make some changes to
onFocusChanged or onActiveFocusChanged code.

Focus Scopes and Item Hierarchy

Other things to note about focus scopes:
● Not every focus scope is a FocusScope. Actually, on the

C++ side, for an item to behave like a focus scope it is
enough to have the QQuickItem::ItemIsFocusScope flag
set.

● QQuickFocusScope (known as FocusScope on the QML
side) differs from the plain QQuickItem it inherits only by
setting this flag in the constructor.

● The built-in view elements (ListView, GridView and
PathView) are also focus scopes which inherit from a
"private" QQuickItemView class that sets the flag.

● Loader's implementation (QQuickLoader) also sets the
flag.

Focus in Dynamic Item Hierarchies

● When items change focus, QML focus behavior is quite
complicated.

● It becomes really obscure when you attempt to add items
with focus.

● For dynamically created items, several ways to give focus
(and active focus) to an instantiated item may seem
obvious, but not all of them appear to actually work.

Focus in Dynamic Item Hierarchies
FocusRect {

 id: root

 width: 300; height: 300

 focus: true

 Component {

 id: focusedComponent

 FocusRect { focus: true }

 }

 Component {

 id: noFocusComponent

 FocusRect {}

 }

 function createAddItem(component, createWithFocus, number) {

 var nextXY = children.length*25 + 25

 var properties = createWithFocus

 ?{ "x": nextXY, "y": nextXY, "text": number, "focus": true }

 :{ "x": nextXY, "y": nextXY, "text": number }

 return component.createObject(root, properties)

 }

Focus in Dynamic Item Hierarchies

 Keys.onDigit1Pressed: createAddItem(focusedComponent, false, 1)

 Keys.onDigit2Pressed: createAddItem(focusedComponent, true, 2)

 Keys.onDigit3Pressed: createAddItem(noFocusComponent, false, 3)

 Keys.onDigit4Pressed: createAddItem(noFocusComponent, true, 4)

 Keys.onDigit5Pressed: createAddItem(noFocusComponent, false, 5).focus = true

}

More on Focus Scopes

● Nested focus scope behavior is not always obvious.
● QML comes with a simple visual tool for testing

assumptions about various focus situations.

Handling Focus and Keyboard Input in
Standard Items

The onAccepted handler conveniently handles both
Enter and Return key presses in TextInput, but has
the following peculiarities:

● onAccepted will not be called if the relevant key press
event (Enter or Return) is accepted by the item (this is
currently not documented explicitly).

● onAccepted itself is not a keyboard event handler: there
is no event parameter supplied, and thus no way to accept
the event and stop it from propagating to the parent item.

http://qt-project.org/doc/qt-5.1/textinput.html

Debugging Keyboard Focus

● Since QML keyboard focus obeys somewhat complicated rules, and
due to the "invisible" nature of focus itself, simpler debugging
means (like outputting state changes to the console, or stepping
through code and watching variable values) may prove ineffective in
non-trivial cases, when several-level deep scope hierarchies mix
with keyboard navigation and event propagation.

● Things can get especially troublesome when some focus changes
trigger further ones via onFocusChanged() and
onActiveFocusChanged() handlers, leading to mysterious binding
loop warnings.

Debugging Keyboard Focus

An interesting solution to the problem of debugging focus is using
visual debug elements to display the state of items' focus and
activeFocus properties:

● Focus debug items can display the state of non-visual items as well
as visual ones.

● There's no need to devote extra screen estate to the debug items,
as they can be small (conveying just two bits of information per
item) and naturally placed on top of the items they relate to.

● Having all necessary focus state displayed on top of the "debugged"
items allows to track it with ease, comfortably checking one's
assumptions about the application focus state and behavior and
catching (otherwise tricky) errors early.

Keyboard Event Forwarding

Qt documentation on keyboard event forwarding is only one
paragraph long (plus a small code example), but the forwarding
logic has important nuances. Getting to know the not yet
documented peculiarities of key event forwarding may be helpful to:

● Avoid possible traps it introduces even in simple cases.
● Implement complex keyboard event handling logic with much less

code.
● Achieve what is otherwise impossible, like sending input key event

sequence to a TextInput or an alike element with it correctly
handling special keys like backspace and arrows.

Keyboard Event Forwarding

Forwarded key event processing follows these rules:

● If the event is not accepted by the item it is forwarded to, it
propagates up the parent chain until it is accepted, or the next item
in chain is the one with active focus.

● If there are no more items in the forward chain, an event which is
not accepted yet is processed by the handlers of the item with
active focus.

● The forwarded event may go through the same handler multiple
times, if the items in the Keys.forwardTo list share a common
ancestor.

Keyboard Event Forwarding

● Items without active focus still forward key events, which may
highly complicate event handling (unless forwarding is disabled in
the absence of active focus).

● Disabled items still get forwarded keyboard input, but invisible items
don't.

● Built-in text editing items can be fed forwarded input, TextInput's
onAccepted() will be triggered when a forwarded Enter or Return
press is received.

Keyboard Input Simulation

Sometimes it is necessary to send a keyboard event to an item
without the user actually pressing keys. For testing scenarios, Qt
offers the following well-documented options:

● On the QML side, TestCase item (http://qt-project.org/doc/qt-5.1
/qtquick/qml-testcase.html, part of QtTest module), provides means
to emulate both keyboard and mouse input.

● On C++ side, QTest namespace (http://qt-project.org/doc/qt-5.0
/qttestlib/qtest.html) gives similar possibilities.

Keyboard Input Simulation

● However, for the production setup, there are no pure-QML means to
simulate keyboard input, and on the C++ side of things, some of
seemingly natural approaches like using QApplication::
sendEvent() do not work (though, strangely, work with mouse
input).

● A working C++ side solution involves using bool QQuickWindow::
sendEvent(QQuickItem * item, QEvent * e) to an item obtained
(after a cast) from QGuiApplication::focusObject().

Summary

1. Understanding keyboard focus handling requires knowledge of focus
scopes.

2. Enabled and visible properties affect item's focus, as well as
keyboard navigation and key event forwarding.

3. Using some of the built-in items, like ListView or TextInput, may
require keeping in mind slight peculiarities of their keyboard
handling behavior.

4. Sometimes, the best way to debug keyboard focus is doing it
"visually".

5. Key events can easily be simulated with C++.

Back-up Slides

