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With the evolution of distributed IT systems and the advent 

of Web Services, applications can now make more informed de-

cisions by using real-time information from third-party sources. 

For example, today’s automated trading applications can make 

over 30 trades a second by analyzing stock trends, market 

movements, news, and events that may only be relevant for a 

fraction of a second. A trading algorithm may infer a negative 

stock trend line for the next tenth of a second and may short 

the stock for that bit of time. 

Such applications require Complex Event Processing (CEP) 
engines. These engines can detect patterns of activity from 
multiple data streams and infer events continuously. Many 

critical CEP use cases require peak performance from both the 
event engine and the data streams. In the example above, the trad-
ing algorithm can’t profi t from making buys and sells in a tenth of 
the second if the event engine and the data stream latency exceed 
the operable time window.
 This article will survey the suitability of OMG’s Data Distribution 

Service data streams in use cases that demand high performance 
from complex event processing systems.

What is Complex Event Processing?
 Consider the following example: The Securities and Exchange 
Commission has different margin and reserve requirements for 
traders classifi ed as “pattern day traders.” The term “pattern day 
trader” means any customer who executes four or more day trades 
in the same stock in fi ve business days. However, if the number of 
day trades is 6% or less of his total trades for the fi ve-business-day 
period, the customer won’t be considered a pattern day trader and 
the special margin and reserve requirements won’t apply. 
 With Complex Event Processing, we can detect a “pattern day 
trader” in real-time as follows. Each time a trader makes a transac-
tion, the system posts an executedTradeEvent <traderId, stockId> 
event. The CEP engine maintains a window of fi ve days and search-
es for cases where the count (count_n) of executedTradeEvents for 
a given trader and a stock exceeds four. Detecting such a pattern 
it counts the total number of trades done in the last fi ve days. If 
count_n is more than 6% of all trades in the last fi ve days then it 
posts a detectedDayTrader event. 
 Based on this example, we can describe many key characteristics 
of Complex Event Processing:

• Events are inferred: In the example, the trading application 
doesn’t and can’t send a detectedDayTrader event. This event 
has to be inferred by processing other events like execut-
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edTradeEvent, maintaining a count of events satisfying a query 
condition over a given period of time and integrating with non-
streaming content like the number of total trades stored in a 
relational database. 

• The system correlated the data from multiple sources to infer the 
event. In the example, it included explicit sources like the data-
base that stored the total number of trades for a customer and 
implicit sources like time.

• The system wouldn’t have sent a detectedDayTrader if there 
wasn’t a set of executedTradeEvents preceding it. The execut-
edTradeEvent plus some other criteria caused the detectedDay-
Trader event to occur.

 
 
 CEP engines manage event-driven information systems by 
employing techniques such as detecting complex patterns, build-
ing correlations, and relationships such as causality and timing 
between many events.
 From a black box view, a CEP engine takes as input a set of input 
streams like RTI, database files, or JMS. Most CEP engines use an 
SQL-like programming language such as the Continuous Computa-
tion Language (CCL) with extensions for event processing. 
 While discussing the entire semantics of CCL or CEP is beyond 
the scope of this article, here’s a simple example of how application 
developers can infer a weather event using the CCL programming 
language.
 In this example, the query searches for events from the input 
data stream WindIn in which the wind speed changes by more than 
five miles an hour in two seconds. The events matching the pattern 
are then inserted into an output data stream WindPatternOut:

INSERT INTO WindPatternOut (Location, Speed1, Speed2)
SELECT W1.Location, W1.WindSpeed, W2.WindSpeed
FROM WindIn W1, WindIn W2
MATCHING [2 SECONDS: W1 && W2]
ON W1.Location = W2.Location
WHERE (W1.WindSpeed - W2.WindSpeed) >= 5;

 As you can see from this example, CCL is loosely based on SQL 
semantics with extensions (such as matching patterns, viewing 
samples in a given time window) for complex events. The input and 
the output data streams are logically modeled as database tables, 
regardless of the underlying messaging protocol.

Why Use Complex Event Processing?
 From an oversimplified view, applications have implemented 
functionality for inferring events from existing data for a very long 
time. Credit and fraud-risk applications, for example, have existed 
for decades without an explicit design and implementation for CEP. 
However, the data avalanche produced by edge devices like Radio 
Frequency Identification (RFID) readers and sensors is rapidly 
changing design-detection algorithms and the need for a configu-
rable and flexible way to detect patterns is becoming more vital. 
Here are some situations in which software architects might con-
sider incorporating CEP into their application technology stack:

• Only the “processed” data is useful: In applications where edge 
devices such as sensors or RFID readers connect to the enterprise, 
all the raw data samples aren’t of equal interest to the enterprise 
business process. The data might need to be cleansed, validated, 
and enriched before it’s useful. In the wind example, the applica-
tion isn’t interested in each sensor read of the wind speed. The 
application is only interested when the wind speed changes by 
more than five miles an hour in two seconds, possibly inferring a 
hurricane or tornado.

• Software development cycles can’t keep up with the changes in 
algorithms for detecting patterns: In trading applications, patterns 
for detecting buy and sell events may only be competitive for a 
few months, or even a few weeks. In some cases, new patterns are 
discovered, implemented, and deployed in a day. In such cases, it’s 
necessary to parameterize and abstract out the pattern detection 
layer of the application. Having the trading algorithm embedded in 
the application code is not a good design practice.

• Event processing has to be done in real-time: Not all event 
processing requires a CEP engine. Data warehouse applications 
analyze trends by correlating multiple dimensions of the data in an 
“offline” manner (for example, send Home Depot discount promo-
tions to all residents who have moved to zip code 95138 in the last 
two months). However, in many applications, events have to be 
inferred in real-time and the applications simply can’t wait for the 
raw data to be persisted and analyzed. For example, radar track-
ing applications must process events in real-time. A trading desk 
application seeks a competitive advantage by analyzing an event 
microseconds ahead of its competition. Traditional event-detec-
tion applications require that the data is persisted first and then 
correlated. This methodology is too slow for applications such as 
trading desks where the data has to be analyzed for event patterns 
in real-time.

• Event processing has to scale: The media is now heralding the 
arrival of truly ubiquitous computing, where tiny microproces-
sors in our ambient surroundings communicate to deliver a more 
intelligent service. For example, in healthcare monitoring, pressure 
sensors in the shoes of patients at risk of a heart attack can moni-
tor any change in their pattern of walking and alert the healthcare 
provider, who can immediately schedule a check-up. Enterprise 

Figure 1 Architectural block diagram for a CEP engine
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applications that integrate with the edge have to cope with a large 
number of sensors simultaneously sending high rates of data. Tra-
ditional applications won’t be able to handle this impedance mis-
match of high data rate and volume. Using a CEP engine designed 
for performance, one can take steps to manage the load. Selecting 
the right messaging protocol for the data stream is the other step.

How To Select the Right Messaging Protocol  
for Your CEP Engine
 Selecting the right CEP engine is only one part of building your 
event processing solution. The other significant part of the architec-
ture is selecting the right messaging bus for your data stream. With 
the correct selection, you can fully leverage the high-performance 
CEP engine, scale to a large number of nodes, and do more. Con-
sider the use case of trading desk applications where microseconds 
matter in identifying a trend for buying or selling a stock. Regard-
less of how fast the CEP engine may be a typical JMS implementa-
tion that usually delivers messages in tens of milliseconds will be a 

non-starter.
 Here are some of the criteria to consider in adopting a messaging 
bus for your complex event processing needs:

• Latency: CEP isn’t about speed. It’s about correlating data from 
different data streams. However, chances are that if you’re 
considering using CEP then latency is a significant concern for 
developing a successful application. In algorithmic trading, com-
mand and control, and fraud detection applications for electronic 
trades low latency of the entire application solution is critical. In 
trading desk applications, even the physical proximity of the trad-
ing floor to the exchange has become a critical issue. The extra 
nanosecond that a remote trade takes to register could cost the 
bank a deal. Many applications that rely on high-performance 
data streams simply can’t afford the periodic (JVM) garbage col-
lection that can degrade overall performance. Messaging prod-
ucts like implementations of OMG’s Data Distribution Service, 
which have been designed and deployed for real-time mission-
critical applications, can deliver event samples with a latency an 
order better than traditional JMS applications. In addition, while 
the overhead of Data Distribution Service depends on the mes-
sage size and transport used. For reasonably sized messages and 
standard transports (100 Mbit-1 Gbit Ethernet) the overhead is 
typically less than 15% above the raw transport.

• Managing network bandwidth: Many developers who are con-
sidering CEP engines are also concerned with managing network 
bandwidth efficiently. In trading desk applications, the total 
volume of stocks traded daily has been following its own Moore’s 
Law, doubling every 18 months since the start of electronic trad-
ing. This means the amount of data that must be processed fol-
lows the same curve (because the houses have to track all trades, 
not just their own). In addition, they have internal consumers of 
the data whose demands are expanding. New trading strategies 
are being developed that run in parallel with existing ones. Each 
model requires input and generates output.

 Some messaging vendors can manage the network bandwidth 
more efficiently by packing more event samples into the network 
pipe and by sending only the relevant data over the network.
 For example, with the Data Distribution Service, middleware can 
apply content-based filtering using SQL-like patterns so that only 
relevant data is sent over the network. 
With pub-sub implementations of the Data Distribution Service, 
developers can configure the rate at which event samples have to 
be transmitted on a per data stream basis. 
Consider the example of a market-data application that sends all 
stock ticks to the trading application. However, using CEP, send-
ing a snapshot of the five-second stock high and low may not be 
required. By configuring a different transmission rate for the stock 
tick feed, and the “five-second high-low” feed, we can preserve 
network resources. 
 In addition, with intelligent network middleware for data 
streams, we can conserve network bandwidth by determining if the 
data has to be transmitted at all. For example, with the Data Distri-
bution Service applications can subscribe to topics of interest such 
as stock news relating to a particular symbol or specific content 
within the topics of interest. If there are no subscribers for a given 
topic, RTI won’t put the event samples on the network.

• Quality of Service (QoS) for data streams: QoS refers to a ser-
vice contract made between two entities. Each data stream has 
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Figure 2 Comparison of latency for JMS and RTI’s implementation of the Data 
Distribution Service

Figure 3 Network throughput comparison between JMS and RTI’s implementa-
tion of the Data Distribution Service
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unique attributes or characteristics. For example, a trading desk 
application may require resending all lost stock ticker change 
events (reliable transmission). However, a security surveillance 
application may only require that the data stream for video 
transmission use best-effort (rather than reliable) techniques. 
The Data Distribution Service provides a rich set of QoS contracts 
that can be enforced out-of-the-box. Some examples of such 
pre-built contracts include ownership strength (selecting the 
right data source when multiple sources are generating the same 
data for failover), history (how many event samples are needed 
for late-joining consumers of information), reliability, time- and 
content-based filtering of event samples at the source, and per-
sistence (in case the publisher dies and a late-joiner consumer of 
the information arrives). 

• Number of messages a second: Use cases requiring Complex 
Event Processing typically demand that messages be transmit-
ted at a rate of 1,000/second to 500,000/sec. This is understand-
able considering that the CEP application typically integrates 
with edge devices or, as in trading applications, process a large 
amount of market data from multiple exchanges to make trend 
inferences. In such cases high-performance middleware should 
be capable of intelligently compressing the messages to fit the 
given system’s MTU. Vendors such as 29West and RTI provide 
performance numbers in this range. For example, with RTI the 
user can transmit up to 10 million four-byte messages a second.

• Supporting heterogeneous platforms: From one point-of-view, 
CEP engines are about integrating data streams from different 
sources. While different data streams can use their own messaging 
protocols, this poses a needless headache for application architects 
by having multiple technology stacks for their data stream imple-
mentations. Messaging protocols like JMS are supported on major 
enterprise platforms, but aren’t prevalent in embedded ecosystems 
where edge devices reside. Traditionally, the Data Distribution Ser-
vice implements a vast set of architectures including, but not lim-
ited to, enterprise platforms like Linux, Solaris, and Windows and 
embedded platforms like VxWorks, LynxOS, and Integrity operating 
systems. 

Summary
 Remember the mid-90s? Some people still assembled their own 
PCs by purchasing the right combination of motherboards, proces-
sors, and disk. But a non-optimal combination of motherboard and 
processor ensured that you didn’t get the right performance from 
your system. Similarly, while CEP engines herald the promise of 
delivering high-performance event detection and generation, you 
need to ensure that they run with data streams with compatible 
aims of low latency, high availability, throughput, and flexibility.  
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