
20 August 2007 www.SOA.sys-con.com

With the evolution of distributed IT systems and the advent

of Web Services, applications can now make more informed de-

cisions by using real-time information from third-party sources.

For example, today’s automated trading applications can make

over 30 trades a second by analyzing stock trends, market

movements, news, and events that may only be relevant for a

fraction of a second. A trading algorithm may infer a negative

stock trend line for the next tenth of a second and may short

the stock for that bit of time.

Such applications require Complex Event Processing (CEP)
engines. These engines can detect patterns of activity from
multiple data streams and infer events continuously. Many

critical CEP use cases require peak performance from both the
event engine and the data streams. In the example above, the trad-
ing algorithm can’t profi t from making buys and sells in a tenth of
the second if the event engine and the data stream latency exceed
the operable time window.
 This article will survey the suitability of OMG’s Data Distribution

Service data streams in use cases that demand high performance
from complex event processing systems.

What is Complex Event Processing?
 Consider the following example: The Securities and Exchange
Commission has different margin and reserve requirements for
traders classifi ed as “pattern day traders.” The term “pattern day
trader” means any customer who executes four or more day trades
in the same stock in fi ve business days. However, if the number of
day trades is 6% or less of his total trades for the fi ve-business-day
period, the customer won’t be considered a pattern day trader and
the special margin and reserve requirements won’t apply.
 With Complex Event Processing, we can detect a “pattern day
trader” in real-time as follows. Each time a trader makes a transac-
tion, the system posts an executedTradeEvent <traderId, stockId>
event. The CEP engine maintains a window of fi ve days and search-
es for cases where the count (count_n) of executedTradeEvents for
a given trader and a stock exceeds four. Detecting such a pattern
it counts the total number of trades done in the last fi ve days. If
count_n is more than 6% of all trades in the last fi ve days then it
posts a detectedDayTrader event.
 Based on this example, we can describe many key characteristics
of Complex Event Processing:

• Events are inferred: In the example, the trading application
doesn’t and can’t send a detectedDayTrader event. This event
has to be inferred by processing other events like execut-

Introduction to Complex Event
Processing & Data Streams
OMG’s Data Distribution Service data streams when you need
high performance from complex event processing systems

÷÷÷÷÷÷???????

WRITTEN BY SUPREET OBEROI

August 2007 21 www.SOA.sys-con.com

edTradeEvent, maintaining a count of events satisfying a query
condition over a given period of time and integrating with non-
streaming content like the number of total trades stored in a
relational database.

• The system correlated the data from multiple sources to infer the
event. In the example, it included explicit sources like the data-
base that stored the total number of trades for a customer and
implicit sources like time.

• The system wouldn’t have sent a detectedDayTrader if there
wasn’t a set of executedTradeEvents preceding it. The execut-
edTradeEvent plus some other criteria caused the detectedDay-
Trader event to occur.

 CEP engines manage event-driven information systems by
employing techniques such as detecting complex patterns, build-
ing correlations, and relationships such as causality and timing
between many events.
 From a black box view, a CEP engine takes as input a set of input
streams like RTI, database files, or JMS. Most CEP engines use an
SQL-like programming language such as the Continuous Computa-
tion Language (CCL) with extensions for event processing.
 While discussing the entire semantics of CCL or CEP is beyond
the scope of this article, here’s a simple example of how application
developers can infer a weather event using the CCL programming
language.
 In this example, the query searches for events from the input
data stream WindIn in which the wind speed changes by more than
five miles an hour in two seconds. The events matching the pattern
are then inserted into an output data stream WindPatternOut:

INSERT INTO WindPatternOut (Location, Speed1, Speed2)
SELECT W1.Location, W1.WindSpeed, W2.WindSpeed
FROM WindIn W1, WindIn W2
MATCHING [2 SECONDS: W1 && W2]
ON W1.Location = W2.Location
WHERE (W1.WindSpeed - W2.WindSpeed) >= 5;

 As you can see from this example, CCL is loosely based on SQL
semantics with extensions (such as matching patterns, viewing
samples in a given time window) for complex events. The input and
the output data streams are logically modeled as database tables,
regardless of the underlying messaging protocol.

Why Use Complex Event Processing?
 From an oversimplified view, applications have implemented
functionality for inferring events from existing data for a very long
time. Credit and fraud-risk applications, for example, have existed
for decades without an explicit design and implementation for CEP.
However, the data avalanche produced by edge devices like Radio
Frequency Identification (RFID) readers and sensors is rapidly
changing design-detection algorithms and the need for a configu-
rable and flexible way to detect patterns is becoming more vital.
Here are some situations in which software architects might con-
sider incorporating CEP into their application technology stack:

• Only the “processed” data is useful: In applications where edge
devices such as sensors or RFID readers connect to the enterprise,
all the raw data samples aren’t of equal interest to the enterprise
business process. The data might need to be cleansed, validated,
and enriched before it’s useful. In the wind example, the applica-
tion isn’t interested in each sensor read of the wind speed. The
application is only interested when the wind speed changes by
more than five miles an hour in two seconds, possibly inferring a
hurricane or tornado.

• Software development cycles can’t keep up with the changes in
algorithms for detecting patterns: In trading applications, patterns
for detecting buy and sell events may only be competitive for a
few months, or even a few weeks. In some cases, new patterns are
discovered, implemented, and deployed in a day. In such cases, it’s
necessary to parameterize and abstract out the pattern detection
layer of the application. Having the trading algorithm embedded in
the application code is not a good design practice.

• Event processing has to be done in real-time: Not all event
processing requires a CEP engine. Data warehouse applications
analyze trends by correlating multiple dimensions of the data in an
“offline” manner (for example, send Home Depot discount promo-
tions to all residents who have moved to zip code 95138 in the last
two months). However, in many applications, events have to be
inferred in real-time and the applications simply can’t wait for the
raw data to be persisted and analyzed. For example, radar track-
ing applications must process events in real-time. A trading desk
application seeks a competitive advantage by analyzing an event
microseconds ahead of its competition. Traditional event-detec-
tion applications require that the data is persisted first and then
correlated. This methodology is too slow for applications such as
trading desks where the data has to be analyzed for event patterns
in real-time.

• Event processing has to scale: The media is now heralding the
arrival of truly ubiquitous computing, where tiny microproces-
sors in our ambient surroundings communicate to deliver a more
intelligent service. For example, in healthcare monitoring, pressure
sensors in the shoes of patients at risk of a heart attack can moni-
tor any change in their pattern of walking and alert the healthcare
provider, who can immediately schedule a check-up. Enterprise

Figure 1 Architectural block diagram for a CEP engine

22 August 2007 www.SOA.sys-con.com

applications that integrate with the edge have to cope with a large
number of sensors simultaneously sending high rates of data. Tra-
ditional applications won’t be able to handle this impedance mis-
match of high data rate and volume. Using a CEP engine designed
for performance, one can take steps to manage the load. Selecting
the right messaging protocol for the data stream is the other step.

How To Select the Right Messaging Protocol
for Your CEP Engine
 Selecting the right CEP engine is only one part of building your
event processing solution. The other significant part of the architec-
ture is selecting the right messaging bus for your data stream. With
the correct selection, you can fully leverage the high-performance
CEP engine, scale to a large number of nodes, and do more. Con-
sider the use case of trading desk applications where microseconds
matter in identifying a trend for buying or selling a stock. Regard-
less of how fast the CEP engine may be a typical JMS implementa-
tion that usually delivers messages in tens of milliseconds will be a

non-starter.
 Here are some of the criteria to consider in adopting a messaging
bus for your complex event processing needs:

• Latency: CEP isn’t about speed. It’s about correlating data from
different data streams. However, chances are that if you’re
considering using CEP then latency is a significant concern for
developing a successful application. In algorithmic trading, com-
mand and control, and fraud detection applications for electronic
trades low latency of the entire application solution is critical. In
trading desk applications, even the physical proximity of the trad-
ing floor to the exchange has become a critical issue. The extra
nanosecond that a remote trade takes to register could cost the
bank a deal. Many applications that rely on high-performance
data streams simply can’t afford the periodic (JVM) garbage col-
lection that can degrade overall performance. Messaging prod-
ucts like implementations of OMG’s Data Distribution Service,
which have been designed and deployed for real-time mission-
critical applications, can deliver event samples with a latency an
order better than traditional JMS applications. In addition, while
the overhead of Data Distribution Service depends on the mes-
sage size and transport used. For reasonably sized messages and
standard transports (100 Mbit-1 Gbit Ethernet) the overhead is
typically less than 15% above the raw transport.

• Managing network bandwidth: Many developers who are con-
sidering CEP engines are also concerned with managing network
bandwidth efficiently. In trading desk applications, the total
volume of stocks traded daily has been following its own Moore’s
Law, doubling every 18 months since the start of electronic trad-
ing. This means the amount of data that must be processed fol-
lows the same curve (because the houses have to track all trades,
not just their own). In addition, they have internal consumers of
the data whose demands are expanding. New trading strategies
are being developed that run in parallel with existing ones. Each
model requires input and generates output.

 Some messaging vendors can manage the network bandwidth
more efficiently by packing more event samples into the network
pipe and by sending only the relevant data over the network.
 For example, with the Data Distribution Service, middleware can
apply content-based filtering using SQL-like patterns so that only
relevant data is sent over the network.
With pub-sub implementations of the Data Distribution Service,
developers can configure the rate at which event samples have to
be transmitted on a per data stream basis.
Consider the example of a market-data application that sends all
stock ticks to the trading application. However, using CEP, send-
ing a snapshot of the five-second stock high and low may not be
required. By configuring a different transmission rate for the stock
tick feed, and the “five-second high-low” feed, we can preserve
network resources.
 In addition, with intelligent network middleware for data
streams, we can conserve network bandwidth by determining if the
data has to be transmitted at all. For example, with the Data Distri-
bution Service applications can subscribe to topics of interest such
as stock news relating to a particular symbol or specific content
within the topics of interest. If there are no subscribers for a given
topic, RTI won’t put the event samples on the network.

• Quality of Service (QoS) for data streams: QoS refers to a ser-
vice contract made between two entities. Each data stream has

??????????

Figure 2 Comparison of latency for JMS and RTI’s implementation of the Data
Distribution Service

Figure 3 Network throughput comparison between JMS and RTI’s implementa-
tion of the Data Distribution Service

24 August 2007 www.SOA.sys-con.com

?????????

unique attributes or characteristics. For example, a trading desk
application may require resending all lost stock ticker change
events (reliable transmission). However, a security surveillance
application may only require that the data stream for video
transmission use best-effort (rather than reliable) techniques.
The Data Distribution Service provides a rich set of QoS contracts
that can be enforced out-of-the-box. Some examples of such
pre-built contracts include ownership strength (selecting the
right data source when multiple sources are generating the same
data for failover), history (how many event samples are needed
for late-joining consumers of information), reliability, time- and
content-based filtering of event samples at the source, and per-
sistence (in case the publisher dies and a late-joiner consumer of
the information arrives).

• Number of messages a second: Use cases requiring Complex
Event Processing typically demand that messages be transmit-
ted at a rate of 1,000/second to 500,000/sec. This is understand-
able considering that the CEP application typically integrates
with edge devices or, as in trading applications, process a large
amount of market data from multiple exchanges to make trend
inferences. In such cases high-performance middleware should
be capable of intelligently compressing the messages to fit the
given system’s MTU. Vendors such as 29West and RTI provide
performance numbers in this range. For example, with RTI the
user can transmit up to 10 million four-byte messages a second.

• Supporting heterogeneous platforms: From one point-of-view,
CEP engines are about integrating data streams from different
sources. While different data streams can use their own messaging
protocols, this poses a needless headache for application architects
by having multiple technology stacks for their data stream imple-
mentations. Messaging protocols like JMS are supported on major
enterprise platforms, but aren’t prevalent in embedded ecosystems
where edge devices reside. Traditionally, the Data Distribution Ser-
vice implements a vast set of architectures including, but not lim-
ited to, enterprise platforms like Linux, Solaris, and Windows and
embedded platforms like VxWorks, LynxOS, and Integrity operating
systems.

Summary
 Remember the mid-90s? Some people still assembled their own
PCs by purchasing the right combination of motherboards, proces-
sors, and disk. But a non-optimal combination of motherboard and
processor ensured that you didn’t get the right performance from
your system. Similarly, while CEP engines herald the promise of
delivering high-performance event detection and generation, you
need to ensure that they run with data streams with compatible
aims of low latency, high availability, throughput, and flexibility.

About the Authors

Supreet Oberoi is vice-president of engineering at RTI, with over a decade of experience in

building and deploying Web-based enterprise applications. He was a founding member and di-

rector of engineering for Trading Dynamics, which was acquired by Ariba in 1999. Later, he led

the engineering organization for the Mohr-Davidow (MDV)-funded start-up, oneREV, Inc., that

was acquired by Agile Software in 2002. Most recently, Supreet served as director of engineer-

ing at Agile Software. He received his BS in computer sciences with highest honors from the

University of Texas at Austin and an MS in computer sciences from Stanford University.

supreet.oberoi@authors.sys-con.com

