Distributed Systems

Data Centric Design for
Networked Applications

Inthis article Gordon A. Hunt, principal engineer at Real-Time Innovations presents a data-
oriented approach that enables seamless integration of different commmunication and data

storage models in a real-time system

oday's embedded systems are becoming increasingly
complex. Applications are becoming more distributed
and individual systems (nodes) are becoming more
heterogeneous. Additional complexity is added with
real-time and dynamically-changing data requirements.

Just to make the problem even more interesting, systems are
required to enable seamless access to the data they contain
through a variety of methods. Low-level messaging,
publish/subscribe, data storage and SQL (Structured Query
Language), and web service technologies are expected to be
fully integrated, scalable and upgradeable in today's distributed
applications.

By moving from a message-centric point-to-point solutions,
which tend to be operating system specific and/or proprietary
implementation oriented to standards-based data-centric tech-
nologies, we can develop systems that are inherently more
robust, maintainable and upgradeable to meet changing cus-
tomer and market requirements. Such a data-oriented approach
decouples the system implementation in time, space and func-
tion, which significantly simplifies lifecycle development of the
distributed system.

Recognising that it's the data that is critical in your system, by
defining the data and its transient states you can completely
define your system. You can then enable your application devel-
opers to use the development tools most familiar to them. Such
an approach simplifies integration between nodes and
addresses the issues of running on and connecting between
heterogeneous real-time nodes and back-end Unix systems. For
real-time access to data you can use standards-based
publish/subscribe peer-to-peer technologies that facilitate high-
speed deterministic connectivity, while your back-end system
developers, which are more familiar with the enterprise space,
can use SQL for their data processing needs and can access
localised data or data on the real-time nodes. The following
example will illustrate these concepts and ideas.

Example

The following diagram depicts a typical distributed system
problem we are trying to solve, using this data-oriented
approach. The goal in this example is to maintain the temperature
in many buildings, using embedded controllers each hooked to a
number of sensors. Each of these sensors and control processes
are connected through a transport mechanism such as Ethemet,
shared memory, or bus backplane technologies.

_ Aprl 2006 m ELECTRONICS WORLD

Basic protocols such as TCP-UDP/IP or higher-level protocols
such as HTTP can be used to provide standardised communica-
tion paths between each of the nodes. To achieve data integrity
and fail-over capabilities, multiple controllers and sensors can be
deployed in each building. Additionally, depending on the size of
the building, multiple controllers, each with appropriate backups
could be distributed for the different zones. Controllers within a
building need to collaborate and all data collected from the vari-
ous sensors is stored real-time in web-accessible databases.
With the inclusion of these distributed databases, we are pro-
viding a standards-based way for external applications to obtain,
process and manipulate real-time sensor data without having to
know the specifics of the real-time data infrastructure. The
external access and monitoring applications can simply receive
real-time updates from any sensor as well as issue commands
to the various controllers via SQL, ensuring that optimal temper-
ature is maintained. This simply stated example is surprisingly
complex, containing many elements of real-time messaging,
data integrity and failover capabilities, integration with
databases, web services, as well as scalability and modularity
concerns.

Data model

In order to simplify this example, we will only focus on the data
the sensors send to their controller and how it can be distributed
throughout the entire system. The first step in a data-centric
approach is to carefully describe the data format in a standards-
based way, either IDL or XML, and give it a “Topic” name.
Topics are the element of the Data Distribution Service (DDS)
middleware publish-subscribe standard (see sidebar) which
identify the data objects and provide the basic connection
between publishers and subscribers. Subscribers, in this case
the Controllers, register Topics with the middleware they wish to
receive. Publishers, the individual sensors in this example, reg-
ister topics with the middleware they will send. If Topics do not
match, communication will not take place.

Topics enable one to find specific information sources and
sinks when architecting a loosely coupled system. A loosely
coupled system is one in which you do not know a priori how
many sensors or controllers there are going to be or where they
all are. The controller can simply subscribe to “TempSensor”,
the Topic’s name, and receive all the sensor updates for that
building. Similarly, a sensor does not need to know if it is
sending its data to one or multiple controllers.

31




l Distributed Systems

Specification of the Topic's name is a key element in a data-
centric approach to creating open real-time systems. One could
name each sensor’s topic based on its unique location in the
building, “Floor12Room3Sensor14” for example, but the con-
troller would then need to be configured every time a sensor is
added or removed from the system. Topics (name and type)
define the standard interface for the distributed system and
should be chosen appropriately.

Data type

Specification of the Topic’s data type is equally important as the
Topic’s name. For this example we are using Interface Definition
Language (IDL) because it is an open standard and readily maps
to XML and SQL semantics.

In the definition of the Topic’s type, one or more data elements
can be chosen to be a “Key”. Keys provide scalability and the
communication infrastructure can use the key to sort and order
data from many sensors. In this example, without Keys, one
would need to create individual Topics for each sensor. Topic
names for these topics might be: Sensor_1, Sensor_2, and so
on. Therefore, even though each Topic is comprised of the same
data type, there would still be multiple Topics. With keys, there is
only one topic, “TempSensor”, used to report temperatures.

New sensors can be added without creating a new Topic. The
publishing application would just need to set a new ID when it
was ready to publish. An application can also have a situation
where there are multiple publishers of the same Topic with the
same Key defined. This enables the application to provide
redundancy. Using our example, we can put two sensors in the
same room, giving them the same Key value states so they are
measuring the same piece of information. Managing the redun-
dancy, should one or both sensors report to the controller, is
accomplished though Quality-of-Service (QoS).

Data-centric QoS

Data-centric communication using DDS provides the ability to
specify various parameters like the rate of publication, rate of
subscription, how long the data is valid and many others. These
QoS parameters allow system designers to construct a dis-
tributed application based on the requirements for, and avail-
ability of, each specific piece of data. A data-centric environment
allows you to have a communication mechanism that is custom
tailored to your distributed application’s specific requirements
yet remains a loosely coupled design and architecture.

The ability to set QoS on a per-entity basis is a significant
capability provided by DDS. Being able to specify different QoS
parameters for each individual Topic, Publisher or Subscriber,
gives developers many options when designing their system.
Through the combination of these parameters, a system archi-
tect can construct a distributed application to address an entire
range of requirements, from simple communication patterns to
complex data interactions.

The following briefly details how one might leverage a few of
the QoS in DDS for this example.
> Domain — A Domain is the basic DDS construct used to bind
individual publications and subscriptions together for communi-
cation. A distributed application can select to use single or multi-

32

ple domains for its data-centric communications. In the
example, different buildings map to different Domains. Domains
isolate communication, promote scalability and segregate diffe-
rent classifications of data.

> Partition - The Partition QoS is a way to logically separate
Topics within a Domain. The value is a string. If Subscriber sets
this string, then it will only receive messages from Publishers
that have set the same string. In the context of our example,
Partitions can be used to group sensors on different floors. For
example, we want to divide the building into different zones,
where each zone is controlled by a dedicated controller, the
sensor and controller could set the Partition to “Floor 1” and
“Floor 1-6" respectively. Here, the controller will receive data
from all sensors on floors 1 through 6. So, using Partitions make
it easy to group the sensors that are ‘hooked’ to a controller.

A controller can take over a different zone by changing or adding
to its Partition list.

> Ownership — The Ownership QoS specifies whether or not
multiple publishers can update the same data object and also
how you achieve fault-tolerance using DDS.

Returning to our example, if we have multiple sensors in the
same room and we only want to get data from the primary (as
long as it is functioning) then the Ownership QoS policy is set to
Exclusive, stating that only one sensor can update that keyed
value. Setting the Ownership policy to Shared is stating that we
can have multiple sensors in the same room all reporting the
same piece of keyed data. In this case the controller would get
all updates from all sensors and treat the values as the same
measurement.
> Durability — The Durability QoS specifies whether past sam-
ples of data will be available to newly joining subscribers.
Considering our example, if a controller were to reboot, rather
than require all sensors to resend their data, or require the data
to be sent at a periodic rate in case the system reboots, one
simply gets the latest published value for every attached sensor.
This effectively decouples the system in time and provides a
high degree of data integrity.
> History — History specifies how many data samples will be
stored for later delivery. Specifically, a rebooted controller may
want the last five samples from its sensors, so that it can make
sure that readings are consistent.
> Reliablity — Finally, the Reliability QoS may be set on a per
Topic basis and informs the middleware that the Subscription
should receive all data (no missed samples) from a Publication
even over non-reliable transports. Generally, for periodic publi-
cations, Reliability doesn't need to be set since you can just get
the updated value one sample period later. Although periodic
sensor data doesn't need to be delivered reliably, synchronisa-
tion commands between Controllers in this example could be.

Integration with databases

The final element of our example system is the integration of
real-time data and traditional relational databases. Since both
these technologies are data-centric and complementary, they
can be combined to enable a new class of applications. In par-
ticular, DDS can be used to enable a truly decentralised data
structure for distributed database management system (DBMS),

ELECTRONICS WORLD m ~pril 2006




Distributed Systems

while DBMS technology can be used to provide persis- [

Building . . . n

tence for real-time DDS data.
Working with the example, each building can main-

Building 2

tain the history of the various building sensors in a
locally maintained database. The application that
manages all buildings would have its own automati-
cally maintained database of the specific data stores
(tables) from each building that the application
needed. Information is pushed to where it is needed,
not senselessly replicated throughout the distributed
system.

IDL data models can be automatically and cleanly
mapped to SQL table schemas. For example, the
Topic “TempSensor” becomes a table named
“TempSensor” and the data contents, identified by the
Key, become rows in the table.

Essentially, the database is simply another subscrip-
tion to the sensors’ update and automatically receives -

Floor 1 Controller

Data Table

Building 1

Floor 2 Controller

Floor...n Controller

Intelligent
Temp.
Sensor

Floor 1

Intelligent
Temp.
Sensor

Inteiligent
Temp.
Sensor

Floor..n

Floor 2

current data from all the distributed sensors. Changes to the
database are pushed to entities that are interested in that partic-
ular topic/table name. Embedded applications don'’t need to
know SQL or OBDC semantics, and the database applications
don’t need to know publish/subscribe semantics. This is a crit-
ical point when building large systems: get the data to where it
needs to go in a format that is native to the developers.

For true data integrity and scalability, databases should be dis-
tributed as well.

RTI's SkyBoard implements a distributed shared database,
where fragments of the shared database are kept in the data
caches of the hosts in the network on an as-needed basis. Thus,
the database becomes a combination of the data stores dis-
tributed throughout the system. When a node updates a table by
executing a SQL INSERT, UPDATE or DELETE statement on the
data cache, the update is proactively pushed to other hosts that
access this table via real-time publish-and-subscribe mes-
saging, enabling real-time replication and synchronisation of any
number of remote data stores.

Finally, once data is automatically entered and maintained in a
DBMS, using standard tools, one can build a web application
that accesses and manipulates the database data. Thus, the
web application does not need to know how many buildings,
sensors or controllers there are in the system. Nor does the web
application need to know the middleware specifics that the tem-
perature control system is using to distribute data. The applica-
tion can just use SQL and ODBC to read and change all of the
available real-time data in the system decoupling implementa-
tion specifics across the system.

Summary

By starting with the data model and designing the systems fol-
lowing a data-centric approach, we demonstrated building a
system that seamlessly integrates a variety of different commu-
nication trends and data store trends (database and embedded
local data types), while still achieving a high degree of data
integrity.

_ April 2006 m ELECTRONICS WORLD

The DDS Standard =
The Data Distribution Service (DDS) specification
standardises the software application programming
interface (API) by which a distributed application can
use “Data-Centric Publish-Subscribe” (DCPS) as a
communication mechanism.
The DDS standard has three main goals:
1. To define a model for communication as pure data-centric
exchanges, where applications publish (supply or stream) data,
which is then available to remote applications that are inter-
ested in it.
2. To provide a mechanism of specifying the available resources
and providing policies that allow the middleware to align the
resources to the most critical requirements, giving system
designers the ability to control Quality of Service (QoS) properties
that affect predictability, overhead and resource utilisation.
3. To permit systems to scale to hundreds or thousands of
publishers and subscribers in a robust manner.

Since DDS is implemented as an “infrastructure” solution, it
can be added as the communication interface for any software
application.

Advantages of DDS:

 Based on a simple “publish-subscribe” communication trend

e Flexible and adaptable architecture that supports “auto-dis-
covery” of new or stale endpoint applications

e Low overhead — can be used with high-performance systems

e Deterministic data delivery

= Dynamically scalable, efficient use of transport bandwidth

e Supports one-to-one, one-to-many, many-to-one and many-
to-many communications

» Large number of configuration parameters that give devel-
opers complete control of each message in the system.

DDS provides an infrastructure layer that enables many dif-

ferent types of applications to communicate with each other.

The DDS specification is governed by the Object Management

Group (OMG), which is the same organisation that governs the

specifications for CORBA, UML and many other standards. A

copy of the DDS specification can be obtained from the OMG

website at www.omg.org

Remote
Database
& Billing
System

33




