
IndustryInsight
Standards Update

As illustrated in Figure 1, DDS creates
the illusion of a shared “global data space”
populated by data objects that applications
in distributed nodes can access via sim-
ple read and write operations. In reality,
the data does not really “live” in any one
computer s̓ address space. Rather, it lives
in the local caches of all the applications
that have an interest in it. Here is where the
publish/subscribe aspect becomes key.

In June 2004, the Object Management
Group finalized the Data Distribution
Service (DDS) Specification for Real-

Time Systems. This is the most signifi-
cant addition to the portfolio of specifi-
cations addressing the needs of real-time
systems that OMG has made in recent
years. Despite the novelty, the technology
is well proven. The DDS standard unifies
some of the best practices present in suc-
cessfully deployed real-time data distri-
bution middleware such as NDDS from
Real-Time Innovations and Splice from
Thales.

DDS enables applications to use a
much simpler programming model when
dealing with distributed data-centric ap-
plications. Rather than developing custom
event/messaging schemes or artificially
creating wrapper CORBA objects to ac-
cess data remotely, the application can
identify the data it wishes to read and
write using a simple topic name, and use
a data-centric API to directly read and
write the data.

Publish-Subscribe and Data
Distribution

The classic distributed shared mem-
ory model allows applications to access
data remotely using simple read and write
operations. However, these architectures
don t̓ scale beyond SMP computers or
tightly coupled clusters. The reason is that
the random access semantics of memory
and the implied totally reliable, “instan-

OMG Data Distribution Service:
Real-Time Publish/Subscribe
Becomes a Standard

The recently adopted Data Distribution Service standard from the Object
Management Group brings publish-subscribe data distribution middleware
technology to the realm of networked real-time applications.

by Gerardo Pardo-Castellote
Real-Time Innovations, and Chairman, DDS Standards Committee

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Data-object

Data-object

W

W

R

R

R

R

R

Figure 1 Overall DCPS model. Distributed nodes are able to read (R) and write (W)
data objects that live in a shared virtual global data space.

Reprinted from January 2005

IndustryInsightIndustryInsight

taneous” response cannot be implemented
transparently in a LAN or WAN where
computers can join and leave and com-
munication links can have sporadic faults.
Hiding all these details from the applica-
tion is not practical—the model is simply
not a good fit for the physical realities of a
distributed system.

The publish/subscribe model has
steadily gained popularity in the con-
text of programming distributed sys-
tems. The key concept behind publish-
subscribe is very simple. Applications
must be programmed in such a way that
the “declaration of information access
intent”—that is, what the application
wants to do—is separate from the infor-
mation exchange itself. This separation
allows the middleware to prepare itself
by reserving all the needed resources
such that the information access can be
as efficient as possible.

In the context of data distribution the
publish/subscribe approach means that
the application must declare its intent of
writing data and specify which data ob-
jects it wishes to write (i.e., define its pub-
lications) and similarly it must declare its

intent to read data and specify which data
objects it intends to read (i.e., define its
subscriptions) before it actually writes or
reads the data itself.

A key aspect of any publish/sub-
scribe system is how the applications
identify what they intend to publish or
subscribe to. As shown in Figure 2, most
publish/subscribe systems use a combi-
nation of an application-selected label
(called a “topic”) and a filter on the con-
tent of the data itself. DDS uses a slightly
more powerful approach that combines
topic, content and a special field (the
key), which identify each data object in
the global data space.

The DDS specification was devel-
oped with the needs of real-time systems
in mind. To this end, it defines a compre-
hensive list of quality of service (QoS)
parameters that allow the application
to finely tune the resources used by the
system. In addition, the API includes the
programmable call-back mechanism de-
signed to provide very high performance
in terms of latency and throughput.

 The basic concept of publish/sub-
scribe has been applied to things beyond

data distribution such as event and mes-
sage distribution. These other middle-
ware technologies differ in their infor-
mation exchange model, which is mes-
sage-centric instead of data-centric. In
other words, the application cannot think
in terms of being able to read or write
data. Rather it is restricted to viewing the
system in terms of sending messages (or
events) to other applications. In practi-
cal terms, this means that the data model
will have to be built by the user in a cus-
tom way at considerable development
cost. On the other hand, the DDS model
supports event propagation and messag-
ing by means of special QoS settings. In
that sense, the Data Distribution model
subsumes the capabilities of many event
distribution and messaging models.

In data-centric systems, the informa-
tion exchanges refer to values of an imagi-
nary global data object. Given that new
values typically override prior values,
both application and middleware need to
identify the actual instance of the global
data object to which the value applies. In
other words, a publisher writing the value
of a data object must have the means to
uniquely indicate the data object it is writ-
ing. This way, the middleware can distin-
guish the instance being written and de-
cide, for example, to keep only the most
current value.

As shown in Figure 3, DDS uses the
combination of a topic object introduced
above and a key to uniquely identify
data-object instances. The representation
and format of the key depend on the data
type. However, since a topic is bound to a
unique type, the service can always inter-
pret the key properly given the topic and
the value of a data object.

The combination of a fixed-type
topic and a key is sensible for data-centric
systems because the topic represents a set
of related data objects that are treated uni-
formly (e.g., track information of aircraft
generated by a radar system) where each
individual aircraft can be distinguished
by the value of a data field (such as the
flight number), which is interpreted as the
key. Alternatively, a topic can be associ-
ated with a unique data stream (e.g., an
Alert) in the case where the topic does not
define any keys.

The presence and definition is made
by the application and it can be different

Alarm Temp Temp Temp
Pressure Pressure Pressure

Alarm

Subscriber 3Subscriber 2Subscriber 1Publisher 2Publisher 1

Figure 2 Topic-based publish/subscribe. Topic is an application-selected label—such
as “pressure” or “temp”—used to identify publications and subscriptions.

Global Data Space

Topic “Track” Topic “Alert”

Data-object (TrackId = 73)

Data-object (TrackId = 31)

Data-object (TrackId = 47)

Instance

Figure 3 Topic and key identify data objects. A data object is identified by the
combination of a topic (such as “Track”) and a topic-specific key (such as
a TrackId). Some topics (e.g., “Alert” above) may have no key indicating the
reads/writes apply to a single data stream.

Reprinted from January 2005

IndustryInsightIndustryInsight

for each topic. It is possible for the key to
be a single value within the data object
(e.g., a serial number field) or a combina-
tion of fields (e.g., airline name and flight
number). This use of a key is unique to
data-centric systems and is used neither
in “enterprise” publish/subscribe systems
nor in event-distribution systems.

Quality of Service
A key aspect of the DDS standard is

the pervasive use of Quality of Service
(QoS) to configure the system and the in-
troduction of middleware-brokered QoS
contracts between publishers (who offer a
maximum level for each QoS policy) and
subscribers (who request a minimum level
for each QoS policy).

QoS contracts provide the performance
predictability and resource control required
by real-time and embedded systems while
preserving the modularity, scalability and
robustness inherent to the anonymous pub-
lish/subscribe model. Table 1 lists some of
the supported QoS policies.

In addition to the ones in Table 1, the
following QoS policies are also supported:
USER_DATA, TOPIC_DATA, GROUP_
DATA, DURABILITY, PRESENTA-
TION, LATENCY_BUDGET, OWN-
ERSHIP, OWNERSHIP_STRENGTH,
LIVELINESS, PARTITION, TRANS-
PORT_PRIORITY, LIFESPAN, DES-
TINATION_ORDER and RESOURCE_
LIMITS.

Data, Message or Event
Propagation

The information transferred by data-
centric communications can be classified
into Signals, States and Events/Messages.

Signals represent data that is continu-
ously changing (such as the readings of a
sensor). Signal publishers typically set the
RELIABILITY QoS to best efforts and
HISTORY QoS to KEEP_LAST.

States represent the state of a set of
objects (or systems) codified as the most
current value of a set of data attributes or
data structures. The state of an object does
not necessarily change with any fixed pe-
riod. Fast changes may be followed by
long intervals without change. Consumers
of “state data” are typically interested in
the most current state. Moreover, as the
state may not change for a long time, the
middleware will have to ensure that the

most current state is delivered reliably. In
other words, if a value is missed, then it
is not generally acceptable to wait until
the value changes again. State data pub-
lishers typically set the RELIABILITY
QoS to reliable and HISTORY QoS to
KEEP_LAST.

Events/Messages represent streams
of the values that have individual meaning
that is not subsumed by subsequent val-
ues. Events/Messages publishers typically
set the RELIABILITY QoS to reliable
and HISTORY QoS to KEEP_ALL

Many real-time applications have a
requirement to model some of their com-
munication patterns as a pure data-centric
exchange where applications publish (sup-
ply or stream) “data” which is then avail-
able to the remote applications that are
interested in it. These types of real-time
applications can be found in C4I systems,
industrial automation, distributed control
and simulation, telecom equipment con-
trol and network management. Of primary

concern to these real-time applications
is the efficient distribution of data with
minimal overhead and the ability to con-
trol QoS properties that affect the predict-
ability, overhead and resources used. Dis-
tributed shared memory is a classic model
that provides data-centric exchanges.
However, this model is difficult to imple-
ment efficiently over the Internet. The
OMG Data Distribution Service (DDS)
has standardized a data-centric model to
solve this situation. The specification also
defines the entities, operations and QoS
an application can use to create.

Real-Time Innovations, Inc.
Sunnyvale, CA.
(408) 734-4200.
[www.rti.com].

Object Management Group.
[www.omg.org].

Reprinted from January 2005

Policies

DEADLINE
Parameters:
A duration “deadline_period”

Indicates that a DataReader expects a new sample DataReader expects a new sample DataReader
updating the value of each instance at least once every
deadline_period.
Indicates that a DataWriter commits to write a new value DataWriter commits to write a new value DataWriter
for each instance managed by the DataWriter at least DataWriter at least DataWriter
once every deadline_period.deadline_period.deadline_period

TIME_BASED_FILTER
Parameters:
A duration “minimum_separation”

Filter that allows a DataReader to specify that it is DataReader to specify that it is DataReader
interested only in (potentially) a subset of the values of
the data. The filter states that the DataReader does not DataReader does not DataReader
want to receive more than one value each minimum_
separation, regardless of how fast the changes occur.

CONTENT_BASED_FILTER
A string “expression” and a sequence
of strings “parameters”

Specified a filter that allows a DataReader to filter the DataReader to filter the DataReader
data received from a given Topic based on the contents Topic based on the contents Topic
of the data itself.

Syntax of “expression” is like an SQL WHERE clause.
Only the parameter part may be changed.

HISTORY
A “kind”: KEEP_LAST, KEEP_ALL
And an integer “depth”

Specifies the behavior of the Service in the case where
the value of a data-object changes (one or more times)
before it can be successfully communicated to one or
more existing subscribers.

The HISTORY policy controls whether the Service should
attempt to keep in its history only the most recent set of
values (KEEP_LAST), or all values (KEEP_ALL)

RELIABILITY
A “kind”:
RELIABLE, BEST_EFFORT

Specifies whether the middleware should use a reliable
protocol to ensure each data-sample present in the
publisher history is received by all subscribers.

Table 1 Some of the QoS policies supported by DDS

