Detection of genomic copy number abnormalities from circulating single fetal cells using next generation sequencing (NGS) offers a promising non-invasive alternative for prenatal diagnosis. Towards this goal, we have established a method for performing fetal cell-based, non-invasive prenatal testing (CB-NIPT) during the first trimester. CB-NIPT for prenatal diagnosis has **dramatic potential advantages** over the currently available cell-free DNA-based tests (CF-NIPT) because it enables analysis of **pure fetal DNA**. Here we show that we can successfully repeatedly recover **individual fetal cells** during the first trimester and perform NGS to detect clinically important copy number variants.

METHODS

Fetal cell enrichment was carried out using methods developed by the commercial author organization for blood preservation, density based enrichment, immunostaining, custom high-resolution scanning and analysis, and integrated **single-cell picking**. Whole genome amplification was performed on recovered single fetal cells and single nucleotide polymorphism-based genotyping studies were carried out for confirmation of fetal origin. NGS on an Illumina platform with approximately 5 million reads per cell (~0.1x haploid genome) was used to generate **genome-wide copy number data**.

RESULTS

FIGURE 1. Fetal cell identification

Eight fetal cells were identified from the same study subject and demonstrate the varied appearance of fetal cells. Positive immunofluorescence for cytokeratin (green) is a key attribute of fetal cells. The WBC marker, CD45, is also routinely used as a negative marker (not shown).

FIGURE 2. NGS data from single fetal cells is reproducible and concordant with diagnostic array CGH data

A. 4 cells from a trisomy 21 pregnancy

B. 1 cell from a fetus with a 2.7 Mb deletion

FIGURE 3. Two cells from a pregnancy with a positive cell-free NIPT for Trisomy 13 and a normal CVS

CB-NIPT has many potential advantages over CF-NIPT including the ability to analyze **pure fetal DNA** free of contamination by maternal DNA and avoid detecting maternal findings. CB-NIPT has the potential to detect **most clinically significant cytogenetic abnormalities** and even, in the future, deleterious point mutations. Optimization of fetal cell recovery and **validation studies** on larger numbers of samples from pregnant women are underway to evaluate the clinical validity of this test.

CONCLUSION

This work has been recently published:

Breman et. al, Prenatal Diagnosis 2016, 36, 1-11