

# Meeting the Target of 25 Year Reliability in Solar Electronics

**SAMPE Dallas** 

April 11, 2013

Cheryl Tulkoff, ctulkoff@dfrsolutions.com

DfR Solutions

#### **Perspective on Desired Product Lifetimes**

- Low-End Consumer Products (Toys, etc.)
  - Do they ever work?
- Cell Phones:
- Laptop Computers:
- Desktop Computers:
- Medical (External):
- Medical (Internal):
- High-End Servers:
- Industrial Controls:
- Appliances:
- Automotive:
- Avionics (Civil):
- Solar Electronics
- Telecommunications:

18 to 36 months 24 to 36 months 24 to 60 months 5 to 10 years 7 years 7 to 10 years 7 to 15 years 7 to 15 years 10 to 15 years (warranty) 10 to 20 years 25 years 10 to 30 years

#### Leading Causes of "Hard" Photovoltaic (PV) System Failures



J. Granata, Sandia; 2009 PV Reliability Conference

IGBT = insulated gate bipolar transistor

- Central Inverter: 37%
   from 2009 Sandia
   Study
  - IGBT most common component
- 3 basic fail categories
  - Manufacturing Quality
  - Inadequate Design
  - Defective Electronic
     Components

**DfR Solutions** 



#### Leading Causes of "Hard" PV System Failures



Central Inverter: 51% from Sun Edison 2008-2010 study Communications: 11% Weather Station: 7%

"Owner/Operator Perspective on Reliability Customer Needs and Field Data", Sandia National Laboratories, Utility-Scale Grid-Tied PV Inverter Reliability Workshop, January 2011.



#### Leading Root Causes of "Hard" PV Inverter Failures

#### Inverter Tickets per Root Cause: 2008-2010



## **Quick Inverter Overview**

- Inverters perform two key functions
  - Converts the direct current (DC) coming from the panels to the alternating current (AC) used by the electric grid
  - Perform algorithms to maximize the power produced by the system.

# **Micro-Inverters versus Central Inverters**

- Better Reliability & Availability
  - Lack of single failure point
  - Longer warranty: 15-25 years versus 5-10 years
- Lower DC Voltages, less vulnerable to arcing
- Optimized Maximum
   Power Point Tracking
   (MPPT) per module
- PV Module level real-time monitoring





Images courtesy of Paul Parker, SolarBridge

## **Micro-Inverters**

- The electronic components used in a micro-inverter are commercial off-the-shelf (COTS)
  - Parts designed for consumer electronics but need to survive 25 years in solar installations
  - Outdoor/Partially Protected & Temp Not Controlled







# **Inverter Component Failures**



**DfR Solutions** 

Image Courtesy of SolarBridge

# **Inverter Field Failure Mechanisms**

- Solder joint fatigue failure
- Plated through hole fatigue failure
- Conductive anodic filament formation (CAF)
- Shock or Vibration (shipping and in use)
- Component wear out
- Potting Induced Failure

# **Solder Fatigue**

 Solder joints "wear out" or fatigue and fail under the long term influence of temperature cycling and mechanical stresses.







# **Plated Through Hole Fatigue**

- When a printed circuit board experiences temperature cycling, expansion/contraction in the z-direction is much higher than that in the x-y plane
- High stress can build up in the copper via barrels resulting in cracking near the center of the barrel as shown in the cross section photos below.







# **Conductive Anodic Filament Formation** (CAF)

- CAF formation is a risk when Plated Through Holes (PTH) or 0 vias are so close together that damage from drilling can open up a pathway between vias.
- Copper from the via can migrate along the pathway and eventually cause shorting.



# **Failure after Exposure to Vibration**

- Mechanical shock and vibration also leads to solder joint failures
- Can occur during transportation, installation or use





# **Potting Electronic Assemblies**

- Potting is the process of filling an electronic assembly with a resin compound
- Provides resistance to shock and vibration, and excludes moisture and corrosives.





# Printed Circuit Board Warpage due to Potting Shrinkage



**DfR Solutions** 



# An Effective Means to Model the Life of Solar Inverter Electronics



# **Solar Micro-Inverter Requirements**

- The electronic components used in a micro-inverter are off-the-shelf
  - Designed for consumer electronics.
- How will these electronic assemblies survive the demands of the solar industry?

|                  | <b>Consumer Electronics</b>         | <b>Micro-Inverter Electronics</b>                  |
|------------------|-------------------------------------|----------------------------------------------------|
| Expected Life    | 5-7 years                           | 20-25 years                                        |
| User Environment | Indoor/Protected<br>Temp Controlled | Outdoor/Partially Protected<br>Temp Not Controlled |

**DfR Solutions** 

# **Solar Micro-Inverter Environment**

- Extreme hot and cold locations (AZ to AK)
- Exposure to moisture/humidity
- Large diurnal thermal cycle events (daily)
- Largest temp swings occur in desert locations where it can reach 64C in the direct sun down to 23C at night (Δ41C)





# NREL – Solar Panel Data

#### Diurnal Cycles for Each Month



| MIII/MAX 3.5/0.5 3.7/1.5 4.5/6.0 0.7/10.5 7.1/9.9 6.0/10.1 5.6/9.0 5.7/6.0 5.5/6.7 4.4/1.9 5.1/1.1 2.6/0.1 | .5 5.8/1.4 | 41.4 |
|------------------------------------------------------------------------------------------------------------|------------|------|
|------------------------------------------------------------------------------------------------------------|------------|------|

| Temperature (°C)      | 12.0 | 14.3 | 16.8 | 21.1 | 26.0 | 31.2 | 34.2 | 33.1 | 29.8 | 23.6 | 16.6 | 12.3 | 22.6 |
|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Daily Minimum Temp    | 5.1  | 7.1  | 9.3  | 12.9 | 17.7 | 22.7 | 27.2 | 26.2 | 22.7 | 16.0 | 9.4  | 5.4  | 15.2 |
| Daily Maximum Temp    | 18.8 | 21.5 | 24.2 | 29.2 | 34.2 | 39.7 | 41.1 | 39.8 | 36.8 | 31.2 | 23.8 | 19.0 | 29.9 |
| Record Minimum Temp   | -8.3 | -5.6 | -3.9 | 0.0  | 4.4  | 10.0 | 16.1 | 15.6 | 8.3  | 1.1  | -3.9 | -5.6 | -8.3 |
| Record Maximum Temp   | 31.1 | 33.3 | 37.8 | 40.6 | 45.0 | 50.0 | 47.8 | 46.7 | 47.8 | 41.7 | 33.9 | 31.1 | 50.0 |
| HDD, Base 18.3°C      | 201  | 126  | 101  | 42   | 4    | 0    | 0    | 0    | 0    | 9    | 74   | 192  | 750  |
| CDD, Base 18.3°C      | 4    | 12   | 53   | 123  | 242  | 387  | 491  | 457  | 343  | 173  | 23   | 4    | 2312 |
| Relative Humidity (%) | 51   | 44   | 39   | 28   | 22   | 19   | 32   | 36   | 36   | 37   | 44   | 52   | 37   |
| Wind Speed (m/s)      | 2.5  | 2.8  | 3.2  | 3.4  | 3.4  | 3.2  | 3.4  | 3.2  | 3.0  | 2.8  | 2.6  | 2.5  | 3.0  |

## What can be done?

- How can a micro-inverter supplier design the product to meet the requirements AND convince the customer of this?
- New method to model the reliability of an electronic assembly in a variety of conditions based on the design (before building anything).
- Design for Reliability (DfR) concepts and Physics of Failure (PoF) are used.
- A comprehensive software package was developed to simplify this modeling, making it available to design engineers.



# **Design for Reliability (DfR)**

**DfR Solutions** 

- <u>DfR</u>: A process for ensuring the reliability of a product or system during the design stage before physical prototype
- <u>Reliability</u>: The measure of a product's ability to
  - ...perform the specified function
  - ... at the customer (with their use environment)
  - ...over the desired lifetime

# **Physics of Failure (PoF)**

- PoF Definition: The use of science (physics, chemistry, etc.) to capture an understanding of failure mechanisms and evaluate useful life under actual operating conditions
- Using PoF, design, perform, and interpret the results of accelerated life tests
  - Starting at design stage
  - Continuing throughout the lifecycle of the product
- Start with standard industry specifications
  - Modify or exceed them
  - Tailor test strategies specifically for the individual product design and materials, the use environment, and reliability needs



**DfR Solutions** 

#### **Physics of Failure Definitions**

- Failure of a physical device or structure (i.e. hardware) can be attributed to the gradual or rapid degradation of the material(s) in the device in response to the stress or combination of stresses the device is exposed to, such as:
  - Thermal, Electrical, Chemical, Moisture, Vibration, Shock, Mechanical Loads . . .
- Failures May Occur:
  - Prematurely
  - Gradually
  - Erratically





#### Are there Methods to Model these Failure Mechanisms?

- Yes!
- Algorithms exist to estimate the failure rate from solder joint fatigue for different types of components.
- IPC TR-579 models Pin Through Hole & via reliability
- Risk for Conductive Anodic Filaments can be determined
- Finite Element Analysis can be used for Shock & Vibration risk.
- MTBF (Mean Time Between Failure) calculations can be performed to estimate component failure rates

**DfR Solutions** 

# Why is modeling reliability early important?

Reduce Costs by Improving Reliability Upfront



Architectural Design for Reliability, R. Cranwell and R. Hunter, Sandia Labs, 1997

DIK Solutions

# Solder Joint (SJ) Wearout

- Elimination of leaded devices
  - Provides lower RC and higher package densities
  - Reduces compliance



# **Software Modeling**

- Tool predicts failures from
  - Solder joint wear-out from thermal cycling (SAC305 or eutectic SnPb solders)
  - Plated through hole fatigue
  - Conductive anodic filament formation
  - MIL Handbook 217 MTBF calculations are also generated
- Software uses Finite Element Analysis to determine
  - Board deflection and solder joint failure from mechanical vibration
  - The natural frequencies for the board based on the mount points.

DfR Solutions

• Board deflection due to shock events

# The 4 Parts of a Sherlock Analysis

**Design Capture** - provide industry standard inputs to the modeling software and calculation tools

Ð

2)

- **Life-Cycle Characterization** define the reliability/durability objectives and expected environmental & usage conditions (Field or Test) under which the device is required to operate
- 3) Load Transformation automated calculations that translates and distributes the environmental and operational loads across a circuit board to the individual parts
- 4) PoF Durability Simulation/Reliability Analysis & Risk Assessment – Performs a design and application specific durability simulation to calculates life expectations, reliability distributions & prioritizes risks by applying PoF algorithms to the PCBA model









# **Design Capture**



 Imports standard PCB CAD/CAM design files (Gerber / ODB++) to automatically create a CAE virtual circuit board model

#### **Printed Circuit Board Details Required for Modeling**



#### Design Capture – Printed Circuit Board Laminate & Layers



# **Establish Part Parameters**

| Parts Listing         |                |                     | Package Chooser           |                                                                                       |
|-----------------------|----------------|---------------------|---------------------------|---------------------------------------------------------------------------------------|
|                       |                |                     | Select the desired packag | ge:<br>Pin Count Size (mm) Package Name                                               |
| Ref Des 🔺 Part Number | Part Type      | Packaging           | LCCC                      | ALL QFN-44 (MO-248XLLC)                                                               |
| R100 CRCW0402100RF    | KED 📿 RESISTOR | SMT 0402            | LSOP 1<br>PDIP 2          | 0.3 x 0.6 GFN-44 (MO-248AMMC-1)<br>0.4 x 0.2 GFN-44 (MO-250VLLC)                      |
| R101 CRCW0402100RF    |                | SMT 0402            | PDSO 3<br>QEJ 4           | 0.6 x 0.3 GFN-44 (MO-257UJJB)<br>0.6 x 1.0 GFN-44 (MO-257VJJB)                        |
| R126 CRCW04021K00F    |                | SMT 0402            | QFN 5<br>OFP 6            | 0.8 x 0.6 QFN-44 (MO-257WJJB)<br>0.8 x 1.0 QFN-46 (MO-251AGFB-1)                      |
| R127 RK73H1JTTD2002   |                | SMT 0603            | SOIC 8<br>10              | 0.8 x 1.2 QFN-48 (MO-208KKEA)<br>1.0 x 0.5 QFN-48 (MO-208KKEA-H)                      |
| R128 RK73H1ETTP3092   | 2F RESISTOR    | SMT 0402            | SON 12<br>SON 14          | 1.0 x 0.6         QFN-48 (MO-220VMMC)           1.0 x 1.0         QFN-48 (MO-243VKKD) |
| R129 WSLP1206R0100    | FEA SISTOR     | SMT 1206            | SSOP 16<br>18             | 1.2 x 0.8 QFN-48 (MO-243WKKD)<br>1.4 x 1.0 QFN-48 (MO-248UMMC)                        |
| R130 RK73H1ETTP1333   | F RESISTOR     | SMT 0402            | USON 20<br>22             | ▼ 1.4 x 1.8<br>↓ 1.4 x 2.0 ▼ QFN-48 (MO-248XMMC)<br>↓ QFN-48 (MO-250VKKD) ▼           |
| 🖉 U1 🧭 LTC4358IDE     | C IC           | SMT QFN-14 (MO-     | Package Name:             |                                                                                       |
| 🖉 U2 📿 LTC4358IDE     | С              | SMT QFN-14 (MO-     | Package Material:         |                                                                                       |
| 🐼 U9 🧭 MAX3311ECUB    | С              | SMT MSOP-10         | Package Leads:            |                                                                                       |
| 📀 U10 📀 MCF51AC256BV  | LKE 📀 IC       | SMT QFP-80 (MS-     | Dimension (mm).           |                                                                                       |
| 📀 U14 📀 LT1490ACDD    | 📀 іс           | SMT QFN-8 (MO-2     |                           | Use Package Properties Cancel                                                         |
| 📀 U15 📀 LT1490ACDD    | 📀 іс           | SMT QFN-8 (MO-22    | 20VGEB) 🔼                 | ТОР                                                                                   |
| 🕑 U16 🥝 LT1490ACDD    | ⊘ іс           | 🐼 SMT QFN-8 (MO-22  | 20VGEB) 🔼                 | ТОР                                                                                   |
| 🕑 U20 🥝 MIC4416YM4    | ⊘ іс           | 📀 SMT SOT-3 (TO-27  | '8BC) 🥝                   | ТОР                                                                                   |
| 🕗 U21 🕢 AD5310BRTZ    | A IC           | A SMT SOT-23-6      | A                         | вот                                                                                   |
| 🕑 U22 🔗 LT1490ACDD    | ⊘ іс           | SMT QFN-8 (MO-22    | 20VGEB) 🔼                 | ТОР                                                                                   |
| 🕑 U23 🔗 SN74AHCT125RG | SYR 🕜 IC       | 📀 SMT QFN-14 (MO-2  | 220VGGB 🥝                 | вот                                                                                   |
| 🕑 U24 📀 CAT4016HV6-T2 | 🕗 ic           | 🔗 SMT QFN-24 (MO-2  | 208DDEA 🥝                 | вот                                                                                   |
| 🕑 U25 🤣 M41T93SQA6F   | 🕗 ic           | 🔗 SMT QFN-16 (MO-2  | 220VGG 🥝                  | вот                                                                                   |
| A 1 T3493EDCB         | A.ic           | COM 5MT 50N-6 (MO-2 | 1944441                   | BOT                                                                                   |

- Components identified along with packaging properties.
- Minimizes data entry through intelligent parsing and embedded package and material databases DfR Solutions.

# **Define Reliability Goals**

- Identify and document two key metrics
  - Desired lifetime
    - Defined as time the customer is satisfied with
    - Should be actively used in development of part and product qualification
  - Product performance
    - Returns during the warranty period
    - Survivability over lifetime at a set confidence level
    - MTBF or MTTF (try to avoid unless required by customer)

**DfR Solutions** 

# **Identify Use Environment**

- Old School Approach: Use of industry/military specifications
  - Military, IPC, Telcordia, ASTM.....
- Advantages
  - No additional cost!
  - Sometimes very comprehensive
  - Agreement throughout the industry
  - Missing information? Consider standards from other industries
- Disadvantages
  - Most more than 20 years old
  - Always less or greater than actual (by how much, unknown)



|                                                           | W          | ORST-CAS   | E USE EN                | VIRONME               | NT                       | Ĺ                                 |                                          | ACCELERATED TESTING |            |                              |                       |  |
|-----------------------------------------------------------|------------|------------|-------------------------|-----------------------|--------------------------|-----------------------------------|------------------------------------------|---------------------|------------|------------------------------|-----------------------|--|
| USE CATEGORY                                              | Tmin<br>°C | Tmax<br>°C | ΔT <sup>(1)</sup><br>°C | t <sub>D</sub><br>hrs | Cycles/<br>year          | Typical<br>Years<br>of<br>Service | Approx.<br>Accept.<br>Failure<br>Risk, % | Tmin<br>°C          | Tmax<br>°C | ΔT <sup>(2)</sup><br>°C      | t <sub>D</sub><br>min |  |
| 1) CONSUMER                                               | 0          | +60        | 35                      | 12                    | 365                      | 1-3                               | 1                                        | +25                 | +100       | 75                           | 15                    |  |
| 2) COMPUTERS                                              | +15        | +60        | 20                      | 2                     | 1460                     | 5                                 | 0.1                                      | +25                 | +100       | 75                           | 15                    |  |
| 3) TELECOM                                                | - 40       | +85        | 35                      | 12                    | 365                      | 7-20                              | 0.01                                     | 0                   | +100       | 100                          | 15                    |  |
| 4) COMMERCIAL<br>AIRCRAFT                                 | -55        | +95        | 20                      | 12                    | 365                      | 20                                | 0.001                                    | 0                   | +100       | 100                          | 15                    |  |
| 5) INDUSTRIAL &<br>AUTOMOTIVE<br>PASSENGER<br>COMPARTMENT | -55        | +95        | 20<br>&40<br>&60<br>&80 | 12<br>12<br>12<br>12  | 185<br>100<br>60<br>20   | 10                                | 0.1                                      | 0                   | +100       | 100<br>& COLD <sup>(3)</sup> | 15                    |  |
| 6) MILITARY<br>GROUND &<br>SHIP                           | -55        | +95        | 40<br>&60               | 12<br>12              | 100<br>265               | 10                                | 0.1                                      | 0                   | +100       | 100<br>& COLD <sup>(3)</sup> | 15                    |  |
| 7) SPACE leo<br>geo                                       | -55        | +95        | 3<br>to 100             | 1<br>12               | 8760<br>365              | 5-30                              | 0.001                                    | 0                   | +100       | 100<br>& COLD <sup>(3)</sup> | 15                    |  |
| 8) MILITARY<br>AVIONICS a<br>b<br>c                       | -55        | +95        | 40<br>60<br>80<br>&20   | 2<br>2<br>2<br>1      | 365<br>365<br>365<br>365 | 10                                | 0.01                                     | 0                   | +100       | 100<br>& COLD <sup>(3)</sup> | 15                    |  |
| 9) AUTOMOTIVE<br>UNDER HOOD                               | -55        | +125       | 60<br>&100<br>&140      | 1<br>1<br>2           | 1000<br>300<br>40        | 5                                 | 0.1                                      | 0                   | +100       | 100                          | 15                    |  |
|                                                           |            |            |                         |                       |                          |                                   |                                          |                     | IPC        | SM                           | 785                   |  |
|                                                           |            |            |                         | ]                     | Df.                      | R S                               | So                                       | lu                  | tic        | n                            | S                     |  |

# **Use Environment (cont.)**

- Approach 2: Based on actual measurements of similar products in similar environments
  - Determine average and realistic worst-case
  - Identify all failure-inducing loads
  - Include <u>all</u> environments
    - Manufacturing
    - Transportation
    - Storage
    - Field



## **Environment Profiles in Sherlock**



#### **Thermal Cycle Fatigue Analysis – Example Plot**



## **Highest Risk Components**

#### Large Resistors provide the weakest solder joints in this example. 0

| RefDes | Package   | Part Type | Part Number  | Solder | Temp Rise       | Cycles to Fail 🔺 | TTF (yrs) | Score        |
|--------|-----------|-----------|--------------|--------|-----------------|------------------|-----------|--------------|
| R3     | 2512      | RESISTOR  | 47           | SAC305 | 0.0             | 75,290           | 34.46     | 1.9          |
| R4     | 2512      | RESISTOR  | 100          | SAC305 | 0.0             | 75,290           | 34.46     | 1.9          |
| R9     | 1210      | RESISTOR  | Not_Stuffed  | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R17    | 1210      | RESISTOR  | 0.43_1/2W_1_ | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R18    | 1210      | RESISTOR  | _Table_1     | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R43    | 1210      | RESISTOR  | 430          | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R44    | 1210      | RESISTOR  | 430          | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R45    | 1210      | RESISTOR  | 430          | SAC305 | 0.0             | 78,735           | 36.03     | 2.4          |
| R39    | 0805R:    | RESISTOR  | 47k          | SAC305 | 0.0             | 123,549          | 56.54     | 8.3          |
| R14    | 0603R:    | RESISTOR  | 4.02k_0.1_   | SAC305 | 0.0             | >124,545         | >57       | 10.0         |
| R23    | 0603R:    | RESISTOR  | 75k          | SAC    |                 |                  |           | ×            |
| R24    | 0603R:    | RESISTOR  | 47k          | SAC    |                 | р                |           | 5 8 5 2 M at |
| R26    | 0603R:    | RESISTOR  | 1k           | SAC    |                 |                  |           |              |
| R27    | 0603R:    | RESISTOR  | _Table_1     | SAC    |                 |                  |           | 2<br>2       |
| R28    | 0603R:    | RESISTOR  | 1.3k         | SAC    | bisk crownpasts | IND HP           |           | 56           |
| R29    | 0603R:    | RESISTOR  | 5.1k         | SAC    | VITIOBOR 5      |                  |           |              |
| R40    | 0603R:    | RESISTOR  | 27k_1_       | SAC    |                 |                  | - MR - R  |              |
| R41    | 0603R:    | RESISTOR  | 40.2k_1_     | SAC    |                 | ٽم — د           |           |              |
| R42    | 0603 - R: | RESISTOR  | 40.2k 1      | SAC    |                 | 54. <sup>4</sup> | 847 - 657 | rta 🚺 📮      |

80

5110 Roanoke Place, Suite 101, College Park, MD 20740

# **Plated Through-Hole Reliability Modeling**





When a PCB experiences thermal cycling, the expansion/ contraction in the zdirection is much higher than that in the x-y plane.

The glass fibers constrain the board in the x-y plane but not through the thickness.

As a result, a great deal of stress can be built up in the copper via barrels resulting in eventual cracking near the center of the barrel as shown in the cross section photos.



# **PTH Fatigue Results - Example**



# **Combined (SJ & PTH) Lifetime Prediction**



## **Risk for Conductive Anodic Filament Formation** (CAF)

- CAF formation becomes a risk when plated through hole vias are so close together that damage from drilling can open up a pathway between vias.
- Copper from the via can migrate along the pathway and eventually cause shorting.



# **CAF Analysis**

- The primary variables that effect the probability of CAF formation are:
  - Distance between vias
  - Damage during drilling process
  - Temperature and humidity conditions
  - Voltage differential between vias
- The analysis takes into account the first two variables only (measures distance between all PTH pairs).

**DfR Solutions** 

• Vias identified as being too close are flagged.

# **CAF Analysis**

#### • Software will flag vias at high risk for CAF formation



# **Finite Element Analysis**

#### • PCBA Example with Mesh Outlined



# **Natural Frequencies are Calculated**



Figure 19: 1st natural frequency 299.6 Hz, red denotes areas of highest deflection



Figure 20: 2<sup>nd</sup> and 3<sup>rd</sup> natural frequencies 478.6 and 511.6 Hz

Select the number of natural frequencies to look for within the desired frequency range.

Components in high strain regions are at risk.

- Move the components
- Move/add mounting points.



www.dfrsolutions.com

#### **Vibration Environment**

Complex vit modeled.

- Qual •
- Ship Field

\$

Freq (HZ)

Apply

| nplex N<br>leled.<br>Qua<br>Shi             | /ik<br>ali<br>pp   | fication pr<br>fication te<br>ping/Tran | ofiles<br>est pa<br>sport | s ca<br>ara<br>:ati | an<br>Ime<br>on | be<br>ete | Mo<br>the | odify any o<br>e current F<br>Identific<br>Des | f the follov<br>Random V<br>ation<br>Name:<br>scription: | ving pr<br>ibe.<br>1 - Ra | operties<br>ndom Vib | and pre | ss the S | ave buito | n to update |
|---------------------------------------------|--------------------|-----------------------------------------|---------------------------|---------------------|-----------------|-----------|-----------|------------------------------------------------|----------------------------------------------------------|---------------------------|----------------------|---------|----------|-----------|-------------|
| Fie<br>Random Vibe Pr                       | rofile             | condition                               | าร                        |                     |                 |           |           | Random<br>I<br># o                             | n Vibration<br>Duration:<br>f Cycles:                    | 30<br>3                   | ngs                  | min     | •        |           |             |
| Profile Name:<br>Freq Units:<br>Ampl Units: | Rand<br>HZ<br>G2/H | fom Vibe Profile                        | 0.100                     |                     |                 | F         | Rando     | om Vi                                          | be Pr                                                    | ofile                     | •                    |         |          | -         |             |
| eq (HZ)                                     |                    | Ampl (G2/Hz)                            | (국 0.075 ·                |                     |                 |           |           |                                                |                                                          |                           |                      |         |          |           |             |
| 5.0                                         |                    | 0.1000                                  | <u>6</u>                  |                     |                 |           |           |                                                |                                                          |                           |                      |         |          |           |             |
| 10.0                                        |                    | 0.1000                                  | 90.050 ·<br>nji           |                     |                 |           |           |                                                |                                                          |                           |                      |         |          |           |             |
|                                             |                    |                                         | Id W 0.025                |                     |                 |           |           |                                                |                                                          |                           |                      |         |          |           |             |
| Apply Save                                  |                    | Reset Cancel                            | 0.000 4                   |                     | 1               | 2         | з         | 4<br>Freq                                      | 5<br>uency (H                                            | 3<br>Z)                   | 7                    | 8       | ġ        | 10        | bns         |

Random Vibe Editor

23



Strain Range [3.5e-22, 1.8e-5]

#### **Software Shock**

- Implements Shock based upon a critical board level strain
- Will not predict how many drops to failure
- Either the design is robust with regards to the expected shock environment or it is not
- Additional work being initiated to investigate
   corner staking patterns and material influences



#### **Shock Results - Example**

| Shock Event Editor                                | ×                                                                 |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
|---------------------------------------------------|-------------------------------------------------------------------|-------------|----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| Modify any of the follow<br>the current Shock Eve | ving properties and press the <b>Save</b> button to update<br>nt. |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
|                                                   |                                                                   |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
| Name:                                             | Mechanical Shock                                                  |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
| Description:                                      | Half Sine                                                         |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | •       |
| Shock Event Sett                                  | ings                                                              |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
| Peak Load:                                        | 30 G 🔻                                                            |             |                            |                      | and the second se |    |         |
| Duration:                                         | 11 ms V                                                           | _           | -                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | A S S S |
| # of Cycles:                                      |                                                                   |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
|                                                   |                                                                   |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 1111    |
| Shock Pulse Profi                                 | le                                                                |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
| 30                                                | Half Sine                                                         |             | 100 000 000<br>100 000 000 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |
| 25<br>(2) 20<br>15<br>10<br>10                    |                                                                   | ::          |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ē. |         |
| 5 0 1 2                                           | 2 3 4 5 6 7 8 9 10 11<br>Time (ms)                                |             | Disp Rat                   | nge [-2.1e-2, 6.0e-4 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |
|                                                   |                                                                   |             |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 9.2     |
| Load Profil                                       | e Edit Profile Save Profile                                       | 201 474 000 | 7 Lummu dfree olivtier     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | ~       |
|                                                   | ue i meet entre i et i eenege i and the eet te                    | 301-474-060 | /   www.arrsolution        | S.COIII              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |

#### Shock Results – Component Breakdown

# Components listed in order of maximum strain experienced.

| 🔤 🔚 Card 1 | Shock / Vibration \star |           |                 |          |            |         |
|------------|-------------------------|-----------|-----------------|----------|------------|---------|
| RefDes     | Package                 | Part Type | Material        | Max Disp | Max Strain | Score 🔺 |
| U1         | QFJ-20                  | IC        | OVERMOLD-LEADED | 9.0E-3   | 5.2E-4     | 2.7     |
| U2         | QFJ-20                  | IC        | OVERMOLD-LEADED | 8.6E-3   | 4.9E-4     | 3.4     |
| Q14        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.3E-2   | 4.0E-4     | 5.6     |
| U7         | QFP-100 (MS-026         | IC        | OVERMOLD-LEADED | 1.0E-2   | 3.9E-4     | 5.6     |
| U11        | LCCC-44                 | IC        | ALUMINA         | 1.1E-2   | 3.9E-4     | 5.7     |
| Q16        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.2E-2   | 3.8E-4     | 5.9     |
| U12        | LCCC-44                 | IC        | ALUMINA         | 1.2E-2   | 3.8E-4     | 6.0     |
| U8         | QFP-100 (MS-026         | IC        | OVERMOLD-LEADED | 1.2E-2   | 3.8E-4     | 6.0     |
| Q10        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.6E-2   | 3.2E-4     | 7.2     |
| U13        | TSOP-32 (MO-142         | IC        | OVERMOLD-LEADED | 1.8E-2   | 3.2E-4     | 7.2     |
| Q13        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.3E-2   | 3.2E-4     | 7.3     |
| Q12        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.2E-2   | 3.2E-4     | 7.3     |
| U15        | TSOP-32 (MO-142         | IC        | OVERMOLD-LEADED | 1.8E-2   | 3.1E-4     | 7.4     |
| U14        | TSOP-32 (MO-142         | IC        | OVERMOLD-LEADED | 1.8E-2   | 3.1E-4     | 7.4     |
| Q15        | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.7E-2   | 3.1E-4     | 7.5     |
| U6         | QFN-80 (MO-239          | IC        | OVERMOLD-QFN    | 9.6E-3   | 3.1E-4     | 7.5     |
| U5         | QFN-80 (MO-239          | IC        | OVERMOLD-QFN    | 9.1E-3   | 3.0E-4     | 7.6     |
| Q9         | DPAK                    | TRANSIST  | OVERMOLD-LEADED | 1.6E-2   | 3.0E-4     | 7.7     |

#### DfR Solutions

#### Constant Failure Rate Module – Components (Mil-HNDBK-217F)



DfR Solutions

This takes into account the failure rate of the components themselves.

## **Combined Failure Rate is Provided**

The following chart shows the individual Life Prediction curves generated by all analysis modules and a combined Life Prediction curve based on all the analysis results.



STTO NUMBER FIRE, SUILE TO F, COTEGE FAIR, PD 20740 501-474-0007 WWW.0130000013.COM

# Summary

- It is important to eliminate design flaws early in development.
- Micro-Inverters must survive a challenging environment for long periods of time.
- A software tool is now available to model the primary failure mechanisms so that inverter electronics can be made more reliable.
- Sherlock modeling will enable a number of "what if" scenarios.
  - Changing package types
  - Changing location of components
  - Changing the mount point locations
  - Changing laminate type, etc.
- The software can also be used to determine the TC test conditions that best simulate the field use conditions.
- Micro-Inverter designs can be built with more confidence that they will survive the challenging environments where they are placed.
   DfR Solutions



#### Thank you for your attention.

## Any questions?

### ctulkoff@dfrsolutions.com

