

JANUARY 28-31, 2013 SANTA CLARA CONVENTION CENTER

Reliability Modeling of Electronics for Co-Designed System Applications

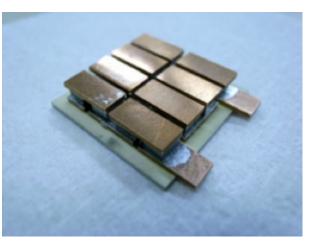
Agenda

- Introduction
- High Reliability Applications
- Common Issues
- Lifetime Expectations
- Failure Mechanisms
- Virtual Qualification Approach
- Automated Design Analysis Solution

High Reliability Systems are Prevalent in Several Market Segments

Switching Power Supply

Solar Power Modules


Automotive Power Modules

Street Lighting

IGBT

Thermoelectric Modules

What Do they All Have in Common?

- High Temperature Environments
- Possible Vibration and Shock Environments
- Temperature and Power Cycling Environments
- Very High Current Flows and Thermal Transfer Requirements
- A variety of materials forming the product
 Substrate tiles bonded to copper baseplate

Stringent Environmental Conditions

- Being used at varying temperatures or temperature extremes
- Having a temperature range of -55°C to 125°C
- Being used in an application having a medium to high shock, pressure, vibration, or moisture environment
- Being stored for later usage (over 10 years)
- Having an application life span of 10 to 25 years

Example Life Expectancies

- IGBT Rail application 30 years (Each module 100FIT)
- Power Module Automotive Application 20 years
 - $-10W/cm^{2}$
 - DBC Substrate bonded to heatsink
 - Vibration, shock, humidity, salt spray
 - Cost
- Solar Power Inverters-25 years
- Street Lighting 15-20 years

Failure Mechanisms

- Thermo-mechanical fatigue induced failures
 - CTE mismatch
 - Temperature swings
- Bond Wire Fatigue
 - Shear Stresses between bond pad and wire
 - Repeated flexure of the wire
 - Lift off (fast temperature cycling effect)
 - Heel Cracking
- Die Attach Fatigue
- Solder Fatigue
 - Voids
- Device Burn Out
- Automotive- degradation of power
 - Solder Fatigue
 - Bond wire failure (lift off due to fast temperature cycling)
- Structural Integrity ceramic substrate to heat sink in thermal cycling
- IGBTs solder joint fatigue, wirebond liftoff, substrate fracture, conductor delamination

How Can We Resolve these Issues During the Design Phase of a Product?

- Utilize an Automated Design Analysis Approach Because:
 - Mil-HBK-217 actuarial in nature
 - Physics based algorithms are too time consuming
 - Need to shorten NPI cycles and reduce costs
 - Increased computing power
 - Better way to communicate

PoF: the Complexity Roadblock

$$au_{HCI} \propto \exp[\frac{b_{HCI}}{V_D}] \cdot \exp[\frac{E_{aHCI}}{kT}]$$

$$L = L_{\rm r} \left(\frac{V_r}{V_0}\right) \times 2^{\left(\frac{T_r - T_A}{10}\right)}$$

 $au_{TDDB} \propto \exp[-b_{TDDB} \cdot V_G] \cdot \exp[\frac{E_{aTDDB}}{kT}]$

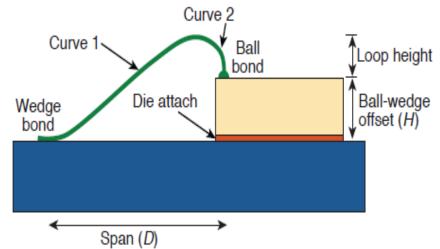
 $\left|\frac{t_1}{t_2} = \left(\frac{V_2}{V_1}\right)^n \exp \frac{E_a}{K_p} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right|$

 $\tau_{NBTI} \propto \exp[-b_{NBTI} \cdot V_G] \cdot \exp[\frac{E_{aNBTI}}{kT}]$

$$T_f \propto \exp\left(\frac{\sim 0.51 eV}{kT}\right) \times \exp(\sim -0.063\% RH)$$

$$N_{f}^{-0.6} D_{f}^{0.75} + 0.9 \frac{S_{u}}{E} \left[\frac{exp(D_{f})}{0.36} \right]^{0.1785 \log \frac{10^{5}}{N_{f}}} - \Delta \varepsilon = 0$$

$$au_{EM} \propto (J)^{-n} \cdot \exp[\frac{E_{aEM}}{kT}]$$

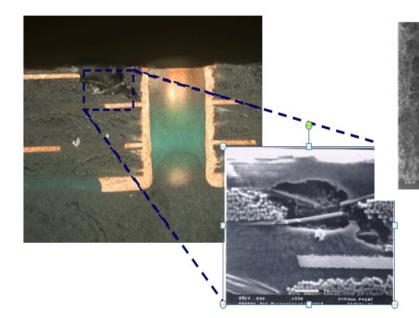

$$(\alpha_2 - \alpha_1) \cdot \Delta T \cdot L = F \cdot \left(\frac{L}{E_1 A_1} + \frac{L}{E_2 A_2} + \frac{h_s}{A_s G_s} + \frac{h_c}{A_c G_c} + \left(\frac{2 - \nu}{9 \cdot G_b a} \right) \right)$$

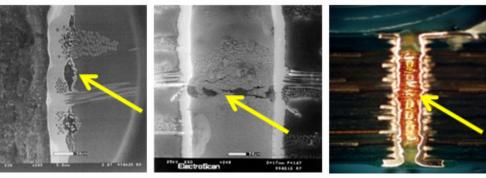
Common Failure Modes

• Wire Bonds

Wire bonding has been the most common interconnect for IC packages for over 50 years. The most common materials are gold, aluminum, and more recently copper. The most common bond pad material is aluminum.

Wire bonds tend to fail if exposed to elevated temperatures (intermetallic formation), exposure to elevated temperature and humidity (corrosion) and exposure to temperature cycling (low cycle fatigue).




Common Failure Modes: PCBs

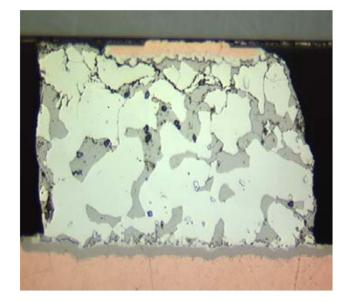
- Printed Wiring Boards have several failure modes that are detrimental to reliable operation.
 Failures in PCBs can be driven by:
- Size (larger boards tend to experience higher temperatures)
- Thickness (thicker boards experience more thermal stress)
- Material (lower Tg tends to be more susceptible)
- Design (higher density, higher aspect ratios)
- Number of reflow exposures

Common Failure Modes: PCBs

Conductive anodic filament (CAF), also referred to as metallic electromigration, is an electrochemical process which involves the transport (usually ionic) of a metal across a nonmetallic medium under the influence of an applied electric field. CAF can cause current leakage, intermittent electrical shorts and dielectric breakdown between conductors in printed wiring boards.

Plated Through Hole Failure Mechanisms: voids (left), etch pits (center) and barrel cracking from fatigue (right)

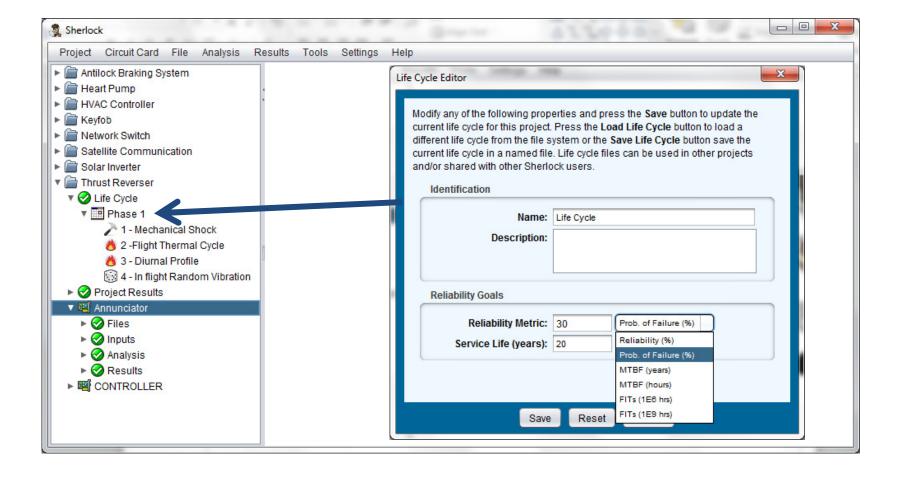
PTH voids can cause large stress concentrations, resulting in crack initiation.


Etch pits are due to either insufficient tin resist deposition or improper outer-layer etching process and rework.

Overstress cracking can occur in the PTH due to a Coefficient of Thermal Expansion (CTE) mismatch which places the PTH in compression.

Common Failure Modes: Solder Fatigue

 Thermo-Mechanical Fatigue of solder joints is one of the primary wear-out mechanisms in electronic products. This is especially true in products used outside of commercial/ consumer environments where a longer lifetime is required and more severe operating conditions exist. The analysis assesses the fatigue of the solder joints as a function of the stresses applied during its lifetime and provides insight into whether joints are susceptible to failure.

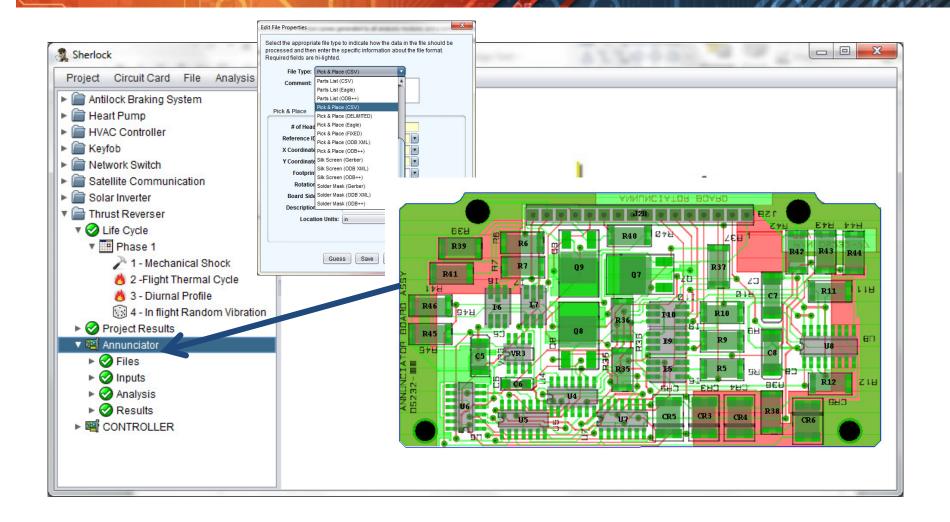

Automated Design Analysis

- Easy to Utilize
- Easy to Locate commands
- Industry Terminology
 - Parts List
 - Stack-up
 - Pick and Place
 - ODB++
 - GERBER

There are several high levels steps involved in performing an automated design analysis. They are:

- Define Reliability Goals
- Define Environments
- Add Circuit Cards
- Import Files
- Generate Inputs
- Perform Analysis
- Interpret Results
 DESIGNCON*2013

Reliability Goals


Ambient Environment

Handles Very Complex Environments

Input Design Files

Input: Parts List

Project Circuit Card File Analys	is Results Tools Settings	Help									
· 📄 Antilock Braking System	Main Board Stack	up 🗙 🔝 Main Board Parts	List ×					urrently defined for the selected part a	as derived from th	e listed sour	ce. Press
r 🚞 Heart Pump						the button to see all :	source	values for a given property.			
🔻 🤣 Life Cycle	 The following table containing table containing table 	ins all parts currently defined i		re color coded so that you know th				Confirmed 🔥 Un-Confirmed <mark>?</mark> Gu	ess 🗿 Unknown	i i i i i i i i i i i i i i i i i i i	
🔻 🧰 Phase 1			Sources:								
✓ Harmonic Vibe			Problem Exist	s 🛕 Un-Confirmed 🥝 Confirme	d b:	Part Properties - U	94				
nechanical Shock	Filters										
Random Vibe					-	ID Pkg Th	ermal	Loc Ball Pad Die Fla	g Lead Qu	lal	
👌 Thermal Cycle	Ref Des	Part Num	ber	Part Type	40.			A	lan an a		
V 😵 Project Results					_	Ball Pa	ittern: 🔏	FULL	com	p-top.odb	
Score Card	-					Ball C	Count: /	256	com	p-top.odb	
S Life Prediction	Parts Listing				_			•			
8 Report	RefDes	Part Number		Part Type		Ball	Units: /	🚹 mm	com	p-top.odb	
 Main Board Files 	A U110	075-1313-5				Ball	Pitch:	1.0	com	p-top.odb	
V C Inputs	A U700	A 075-0973-5				Ball Dian	notor P	2 0.7	0		
Parts List	A U701	A 075-0973-5					Statistics 7		Gue	55	
Stackup	A U702	A 075-0700-5		A IC		Ball H	eight: 🟅	2 0.6	Gue	ss	
Layers	A U703	A 075-0700-5		<u>A</u> ic		Ball Chan V	Midthe	A 0.0		p-top.odb	
Pick & Place	A U704	A 075-0700-5				Dali Cildii V	viuui. A	<u>n</u> 0.0	COLL	ip-top.oub	
Drill Holes	A U705	A 075-0700-5		Aic							
V 🐼 Analysis	A U707	A 075-0676-5		A IC							
CAF Failure	A U708	A 075-0676-5		A 10		X					
Failure Rate	🕂 U709	A 075-0676-5	Normal Package Chooser					S Package Chooser			-
A PTH Fatigue	<u> U710</u>	<u>A</u> 075-0676-5	Select the desired package:					Select the desired package:			
A Shock / Vibration	<u> U720</u>	🛕 075-0686-5	Package Type	Pin Count Size (mm		Package Name		Package Type Pin Count	Size (mm)	Package	
🛕 Solder Fatigue	🕂 U721	A 075-0686-5	ALL ALL	ALL ALL 4 1.0 x 1.0	-	QFN-4 (MO-220VEEB) QFN-6 (MO-252UAAD)		ALL ALL	ALL 1.8 x 1.4	C-BEND-3528-1 C-BEND-3528-1	
🔻 😢 Results	<u> U</u> 722	<u>A</u> 075-0736-5	BGA	6 1.4 x 1.0		QFN-6 (MO-252WAAD)		BGA 2	2.6 x 4.3	C-BEND-3528-2	
😵 Score Card	A U723	<u>A</u> 075-0099-5	CBEND	8 1.4 x 1.8		QFN-6 (MO-287UAAF)		CBEND	2.6 x 4.4		
😢 Life Prediction	A U724	A 075-1154-5		10 1.4 x 2.0 12 1.5 x 1.0		QFN-6 (MO-287UFAD) QFN-6 (MO-287X1AAF)		CC	2.9 x 1.6 3.2 x 2.8		
HVAC Controller	A U727	A 075-0560-5		14 1.5 x 1.5		QFN-6 (MO-287X1FAD)		LCCC	3.6 x 4.3		
🚔 Keyfob	<u> U728</u>	075-0700-5	LSOP	16 1.5 x 2.0		QFN-6 (MO-287X2AAF)		LSOP	5.7 x 3.2		
Network Switch	A U730	A 075-0667-5	MELF PDIP	18 1.6 x 1.2 20 1.6 x 1.6		QFN-6 (MO-287X2FAD) QFN-8 (MO-208AAEA)		MELF	5.9 x 6.8 7.0 x 4.3		
Satellite Communication	<u>A</u> U731	A 075-0667-5		20 1.6 x 1.6 22 1.6 x 2.1		QFN-8 (MO-208AAEA) QFN-8 (MO-220VEEC)		PDSO	7.0 x 6.0		
Solar Inverter	A U732	A 075-1154-5	QFJ	24 1.8 x 2.6		QFN-8 (MO-220VEEC-2)	000	QFJ			
👕 Thrust Reverser	A U733	A 075-0667-5		28 2.0 x 1.0		QFN-8 (MO-220VEEC-3)	063)				
	A U734	A 075-1386-5	QFP/LQFP/TQFP	32 2.0 x 2.0 36 2.5 x 1.0	Ŧ	QFN-8 (MO-220VGEB) OFN-8 (MO-248UEEC-1)	S5MM	QFP/LQFP/TQFP			
	A U738	A 075-0853-5 A 076-0050-5	Package Name:				MMSP	Package Name: C-BEND-3528-21			
	A Y3	A 076-0050-5	Package Type:			Ster.	D_2P_ D_2P_	Package Type: CBEND			
	<u>/ 13</u>		Package Material:			and the	0_2P_ 0_2P	Package Material: TANTALUM			1
	A ¥4						0_27_	Package Leads: 2 - C_Lead - Copper			100
	<u>A</u> Y4	A 076-0050-5	Package Leads:			100 ST					
	<u>▲</u> ¥4		Dimension (mm):			TTO STATE		Dimension (mm): 3.2 x 2.8 x 1.8		- (
	<u></u> ▲ ¥4	Add Par	Dimension (mm):			The state				- (

- Color coding of data origin
- Minimizes data entry through intelligent parsing and embedded package and materials database
 DESIGNCON[®] 2013

Inputs: Stack-Up

Stackup Properties

The following board properties are based on the currently defined board outline and the individual layer properties shown below:

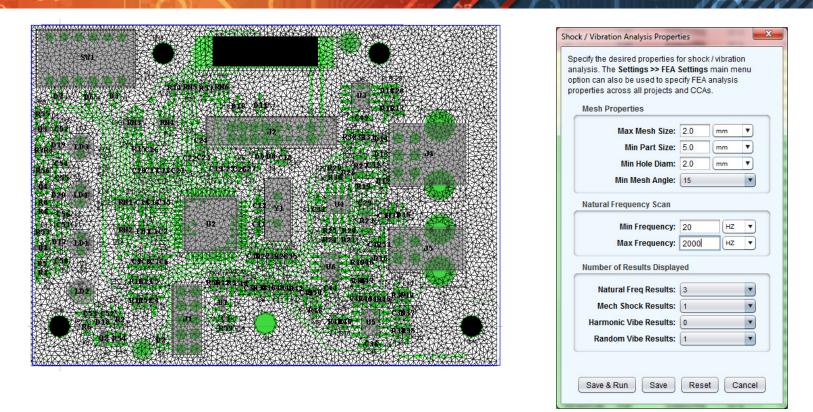
370 x 178 mm [14.6 x 7.0 in]	CTExy:	17.519 ppm/C
1.6 mm [62.0 mil]	CTEz:	58.646 ppm/C
2.8515 g/cc	Exy:	35,743 MPa
10	Ez:	4,379 MPa
	370 x 178 mm [14.6 x 7.0 in] 1.6 mm [62.0 mil] 2.8515 g/cc 10	1.6 mm [62.0 mil] CTEz: 2.8515 g/cc Exy:

Stackup Layers

Double click any row to edit the properties for that layer or select one or more rows and press the Edit Selected button below to edit properties for a batch of layers. Press the Generate Stackup Layers button to replace all layers using a given PCB thickness and default layer properties.

Layer	Туре	Material			Thickness	Density	CTExy	CTEz	Exy	Ez
1	POWER	COPPER (33.7%)			1 0 oz	4 1927	21 180	21 180	45,838	45,838
2	Laminate	Generic FR-4	Edit Selected Layers		0.0100				24,804	3,450
3	POWER	COPPER (92.2%)							05,099	105,099
4	Laminate	Generic FR-4	Enter any fields to be updated	in all selected lavers. If a	a field is left bl	ank, then the c	current field va	lue will	24,804	3,450
5	POWER	COPPER (50%)	remain unchanged for each la						62,350	62,350
6	Laminate	Generic FR-4	Laminate Layer Properties	5					24,804	3,450
7	POWER	COPPER (92.2%)		-					05,099	105,099
8	Laminate	Generic FR-4	Laminate Material:	Generic	FR-4	▼) Ge	neric FR-4 🔻		24,804	3,450
9	POWER	COPPER (91.1%)	Laminate Thickness:	Generic					03,984	103,984
10	Laminate	Generic FR-4	Luminute mickness.	Grace					24,804	3,450
11	POWER	COPPER (19.9%)		Hitachi					31,859	31,859
12	Laminate	Generic FR-4		ITEQ					24,804	3,450
13	POWER	COPPER (92.2%)		Isola	Can	Cel			05,099	105,099
14	Laminate	Generic FR-4		Kingboard	Call	561			24,804	3,450
15	POWER	COPPER (23.2%)		LG Chemical	1.0 oz	3.4472	21.747	21.747	35,202	35,202
16	Laminate	Generic FR-4		Mitsubishi	🍸 🛛 5.3 mil	1.9000	17.000	70.000	24,804	3,450
17	POWER	COPPER (92.2%)			1.0 oz	8.3462	18.021	18.021	105,099	105,099
18	Laminate	Generic FR-4			5.3 mil	1.9000	17.000	70.000	24,804	3,450
19	POWER	COPPER (20.9%)			1.0 oz	3.2839	21.871	21.871	32,872	32,872

- Automatically generates stackup and copper percent (%)
- Embedded database with almost 400 laminate materials with 48 different properties

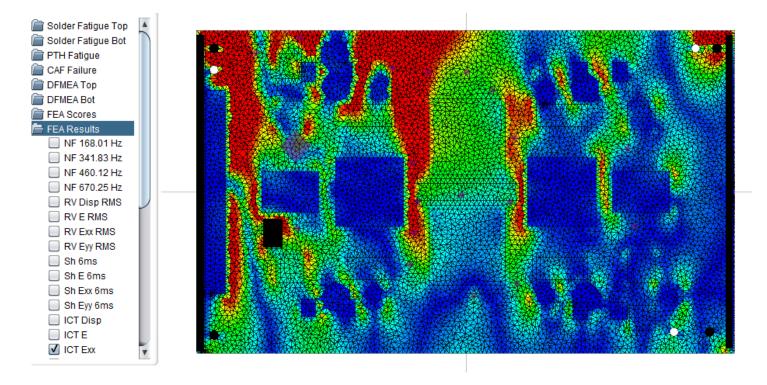


Analyses

- Eight different analyses can be performed. They are:
 - CAF Conductive Anodic Filament Formation
 - Plated Through Hole Fatigue
 - Solder Joint Fatigue
 - Finite Element Simulations
 - ICT Impact
 - DFMEA
 - Vibration Fatigue Natural Frequencies
 - Mechanical Shock

Results: Automated Mesh Generation

- Identifies optimum mesh density based on board size
- Expert user no longer required; model time reduced by 90%



3D Output

The analysis can also establish 3D models by creating a mesh structure and the model from the data input to the analysis.

In-Circuit Test Evaluation

• Uses embedded FEA engine to compute board deflection and strain cause by ICT fixture

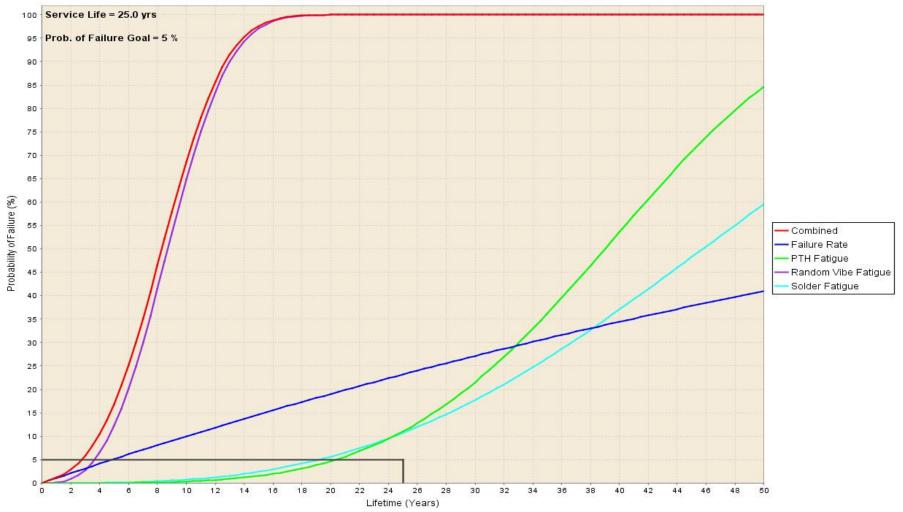
DFMEA

Navigation

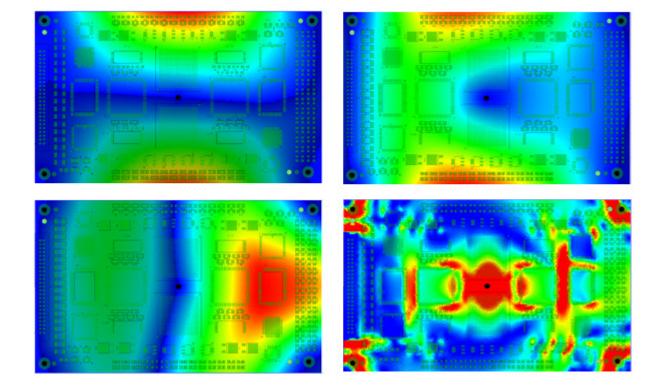
	E Open - Pin 17 (N127243)	
	들 Open - Pin 18 (N127703)	r
	= Open - Pin 19 (N127703)	
	= Open - Pin 20 (GND)	
	= Short - Pins 1 (PLCC20-1) & 2	
	= Short - Pins 1 (PLCC20-1) & 20	
	= Short - Pins 5 (N124525) & 6 (1	
	= Short - Pins 7 (N124972) & 8 (1	
	= Short - Pins 9 (N125421) & 10	
	= Short - Pins 11 (N125875) & 12	
	= Short - Pins 15 (N126785) & 16	
	= Short - Pins 17 (N127243) & 18	
	= Short - Pins 19 (N127703) & 20	
v 🖒	U2	
	E Logic Failure	
	= Open - Pin 1 (PLCC20-2)	
	= Open - Pin 2 (N131610)	
	= Open - Pin 3 (N131610)	
	= Open - Pin 4 (N131614)	1
	= Open - Pin 5 (N131614)	
	= Open - Pin 6 (N131618)	
	= Open - Pin 7 (N131618)	
	= Open - Pin 8 (N131622)	

Subcircuit Name:	UNASSIGNED
Description:	
Part Properties	
Part Designator:	U2
Description:	IC ADV PWM MOTOR CTRL LCCC-20
Failure Mode Properties	
Failure Mode:	Logic Failure
Potential Cause:	Device failure
Potential Cause: Potential Effect:	Device failure
Potential Effect:	8
Potential Effect: SEV:	8

- Uses ODB++ data including net list to create board level DFMEA
- Includes customizable spreadsheets for export

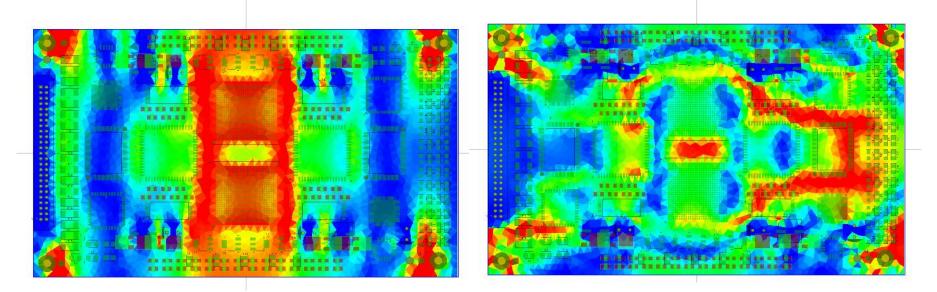


Results: Five Different Outputs


Unreliability Curves

Tom's Demo ODB++ Tutorial - Life Prediction

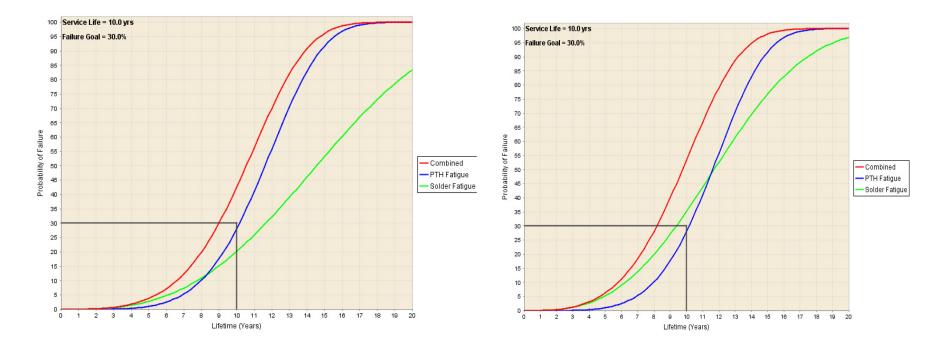
Natural Frequencies


Natural Frequencies Identified (1st-upper left), (2nd-upper right), (3rd -lower left) and 4th – lower right)

Vibration Strain Levels

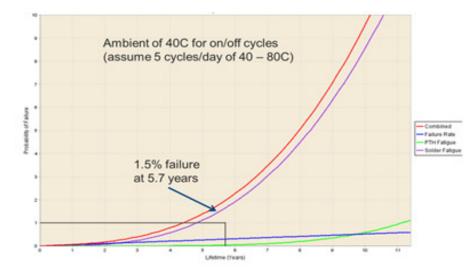
Solder Fatigue Bottom / PTH Fatigue / Random Vibration RMS XX Strain / Failure Rate...

Solder Fatigue Bottom / PTH Fatigue / Random Vibration RMS YY Strain / Failure Rate ...



In addition, the analysis can provide data regarding the strains applied to the circuit board as a function of the vibration stress levels. The left illustrates this data in the XX direction and YY in the right image.

What If?


Comparison of Sn/Pb (left) and SAC305 (right) with respect to solder fatigue

Product Test Plans

- Product test plans, also known as design verification, product qualification, and accelerated life testing (though, these are not the same thing), are critical to the successful launch of a new product or new technology into the marketplace.
- These test plans require sufficient stresses to bring out real design deficiencies or defects, but not excessive levels that induce non-representative product failure.
- Tests must be rapid enough to meet tight schedules, but not so accelerated as to produce excessive stresses.
- Every test must provide value and must demonstrate correlation to the eventual use environment (which includes screening, storage, transportation/shipping, installation, and operation).

Thank You!

Greg Caswell Sr. Member of the Technical Staff DfR Solutions 301-474-0607 (office) 443-834-9284 (cell) gcaswell@dfrsolutions.com

