

Test Plan Development: How to do it – Sherlock

Dr. Gil Sharon, gsharon@dfrsolutions.com

9000 Virginia Manor Rd Ste 290, Beltsville MD 20705 | 301-474-0607 | www.dfrsolutions.com

Speaker Bio:

- Research focus:
 - Mechanical reliability of electronic systems and components
 - Multidisciplinary reliability of complex electro mechanical systems
 - Characterization and modeling of material behavior
 - Physics of failure of electromechanical and MEMS system
 - Mechanical performance of flip chip packages
- Doctoral research
 - Solder reliability
 - MEMS structures characterization
 - Embedded components failure analysis
 - Particle beam accelerator mechanical fatigue.
- Experience at Amkor technology
 - Advanced product development group as senior engineer
 - Analysis of chip-package interactions
- Ph.D, Mechanical Engineering (University of Maryland)
- Sales contact: Tom O'Connor toconnor@dfrsolutions.com

"I want you to remember that everything I am saying may be wrong and I want you to question everything that I'm saying."

-Nathan Myhrvold

Formerly Chief Technology Officer at Microsoft

Agenda

- What is a test plan
 - Test plan strategies
- Physics of failure
 - Field failures
- Test plan elements
- Reliability goals
- Wear out and overstress
- Use environment
- Choosing a test board

- Test methods
 - Temperature cycling
 - Plated through hole fatigue
 - Mechanical vibration
 - Mechanical Shock
 - CAF resistance
- Failure analysis
- Summary and questions
 - But feel free to ask questions in the middle

What Is A Test Plan?

- Test plans are a central part of implementing any new technology
- Test plan is the strategy used to identify the board's ability to succeed
 - For the intended use environment
 - For a specified reliability goal
 - Known failure modes
- Trade off between:
 - Cost of test and simulation
 - Risk
- There are many specifications

Test Plan Strategies

Test to "Spec" (Industry standards)

- Pass/Fail: Clipboard engineering
- Uses best practices and previous success
- Design by similarity
- Different requirements for every manufacturer or industry

• Physics of failure (POF) testing

- Test to failure
- Failure analysis for failure mode verification
- One test per failure mode
- Creates prediction models that feed back to industry standards
- Combined approach
 - Physics of failure prediction
 - Industry standards

Solder Bump Fatigue Source:nationalparts Strain Source: A. MacDiarmid, "Thermal Cycling Failures", RIAC Journal, Jan., 2011.

Physics of Failure

- The use of science (physics, chemistry, etc.) to capture an understanding of failure mechanisms and evaluate useful life under actual operating conditions
- Using PoF, design, perform, and interpret the results of accelerated life tests
 - Starting at design stage
 - Continuing throughout the lifecycle of the product
- Start with standard industry specifications
 - Modify or exceed them
 - Tailor test strategies specifically for individual board design and materials

DfR Solutions

• Consider the use environment and reliability needs

Clipboard Engineering Is Not Enough

- Limited failure mechanism specific testing
 - Only performed at transition to new technology nodes
 - Mechanism-specific coupons (not real boards)
 - Test data is hidden from end-users
- Questionable JEDEC tests are promoted to OEMs
 - Limited duration (1,000 hrs) hides wearout behavior
 - Use of simple activation energy
 - Incorrect assumption that all mechanisms are thermally activated

DfR Solutions

• Constant failure rate calculation is outdated

Field Failure of Devices

- Field failures rates of hardware
 - Gradual material degradation
 - Rapid or immediate failures
- Environment stressors
 - Thermal, Chemical, Moisture, Electrical, Shock...ETC
 - Combination of stresses
 - Probabilistic vs. deterministic
- Premature failures
 - Shipping, manufacturing, installation, test ...
- Gradual failures
 - Long product life, high cycle count, long term storage...
- Erratic failures
 - Mechanical shock, accidental misuse, electrical overstress ...

Test Plan Elements

Type of test objective

- Comparison test
 - Option A,B,C \dots
- Qualification
 - Pass/ Fail
- Validation
 - Sanity check
- Research
- Compliance and regulatory
- Failure analysis
 - Verify failure mode
 - Can be difficult
- A test without an objective is doomed before it even started

- Justification checklist
 - Define reliability goals
 - Experiment design
 - Materials availability
 - Defined use environment
 - Budget
 - Time and money
 - Sample availability
 - Practicality of test
 - Risk
- Every test has a risk associated with it
- Have a plan for failure

Reliability Goals

• Lifetime

- How long does the customer expect the device to perform?
- How long is the warranty? Extended warranty?
- Cost of replacement.
- Should be used in all phases of product qualification

• Performance

- Define the probability of failure during product life
- Actively monitor field returns: perform failure analysis

- Feedback to refurbishing/redesign
- MTBF and MTTF
 - Only if customer requirement
 - Do not use for design

Examples of Product Lifetimes

- Low-End Consumer Products (Toys, pedometers, 0 gadgets etc.)
 - Do they ever work?
- Consumer electronics 0
 - Cell Phones: 18 to 36 months \bigcirc 24 to 36 months
 - Laptop Computers: 0 24 to 60 months
 - Desktop Computers: 0
 - Home appliances: 0
- Commercial electronics 0
 - Medical (External): 0
 - Medical (Internal): 0
 - High-End Servers: 0
 - Industrial Controls: 0
- Highly regulated 0
 - Automotive: 0
 - Avionics (Civil): 0
 - Avionics (Military): 0
- **Telecommunications:** 0
- Solar 0

5 to 10 years 7 years 7 to 10 years 7 to 15 years

7 to 15 years

10 to 15 years (warranty) 10 to 20 years 10 to 30 years 10 to 30 years 25 years (warranty)

 Can we really define a "standard" use case for an entire industry?

- Or product? 0
- Or board?

Wear Out and Overstress

- Wear out mechanisms are the usual culprit for failures
 - Fatigue and creep are hard to test for correctly
 - Perform failure analysis to verify failure mode
 - We are getting much better at doing this but you can't rush physics
- What if an overstress failure is detected
 - Audit suppliers
 - Reevaluate field environments
 - Combined stresses can have an unexpected effect
 - Redesign the test
 - Must be effective for desired failure mode
 - Must be effective for expected use environment

Defining the Use Environment

- Shipping
 - How well is the product protected during shipping?
- Assembly, test, manufacturing, storage ...
 - All the things that happen before the product is even turned on
- Do you have a good understanding of how your customer uses the product?
 - What about the corner cases?
- Opinioneering: Engineering without data
 - Measured temperatures. Thermal simulation. Previous experience.

- Mechanical loads: Accelerometer data. Strain gauge.
 Extensometer
- Cycle rate data: Software and hardware interaction

Test Plan Development

- Develop a comprehensive test plan
 - Have specific goals in mind
- Assemble boards at optimum conditions
 - Manufacture test boards in similar environment as production boards
- Visually inspect and electrically test
 - Per lot ?
 - o 100% inspection ?
 - Per product line ?
- Non destructive inspection of critical components
 - C-SAM, X-ray
- Destructive reliability testing
 - Test to failure: No failure = no data
- Perform failure analysis
- Compile results and review
- Recommended actions

The test or analysis is worthless without a recommendation based on the result

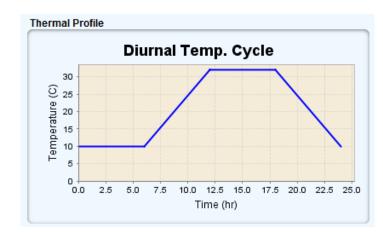
The Test Board: Case study

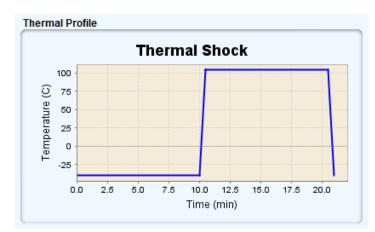
- Comparing two different components
 - TSOP-I and TSOP-II
 - Both are surface mounted
 - Similar size
- Do we really need a production board?
 - Expensive materials
 - Similar failure mode
- Cheaper board with dummy components
 - Failure analysis to verify failure mode

1111111111111111111111

Test Methods: Temperature Cycling

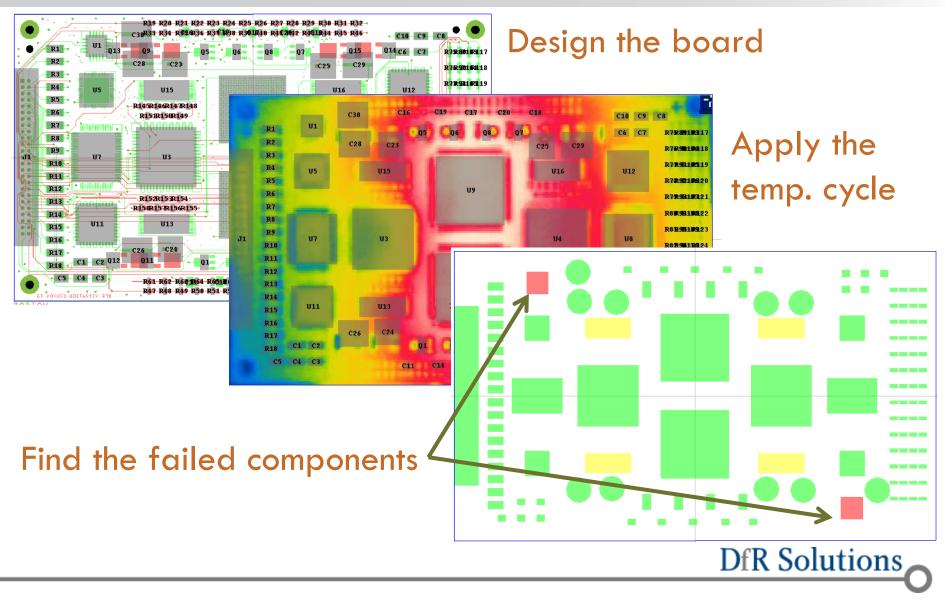
• Key parameters:


- Number of cycles
 - Qual vs. test to failure
- High and low temperatures
 - Glass transition temperature (Tg)
- Dwell time
 - Critical dwell time can be different for different solders
- Ramp rates
 - Thermal shock vs. Thermal cycling

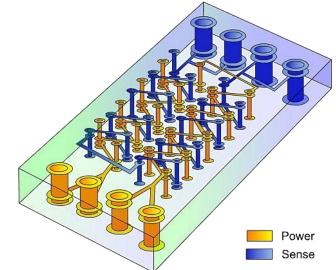

Monitoring during test

- Most desirable: in situ monitoring with event detector
- Usual: Spot check every number of cycles
- Least desirable: Functional check at beginning and end
- Thermocouple data
 - Temperature should be measured on components
 - Chamber settings do not include self heating or thermal lag effects

• Verify failure mode


• The whole test can be worthless

Temp. Cycling: Reliability Prediction Software



Test Method: Plated Through Hole Fatigue

- Expansion/contraction in the z-direction is higher than that in the x-y plane.
 - The glass fibers constrain the board in the x-y plane
- Smaller holes fail faster
 - Higher aspect ratio
- More plating is better
 - Up to a point
- Lower CTE of PCB is better
 - Hard to do in reality

Source: Paul Reid, "The Impact of Lead-Free Processing on Interconnect Reliability", Printed Circuit Design & Fab,

Plated Hole Fatigue: Reliability Prediction Software

- Use the same temperature map from the solder fatigue input
- Calculate barrel stress

Layer Type

1

2

3

4

5

6

7

8

9

10

11

SIGNAL

Laminate

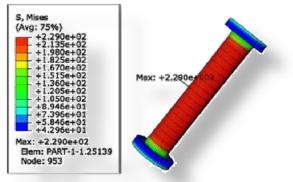
Laminate

SIGNAL

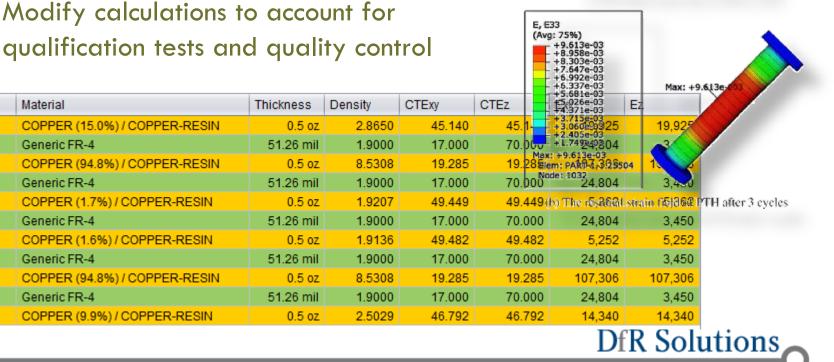
Laminate

Laminate

SIGNAL

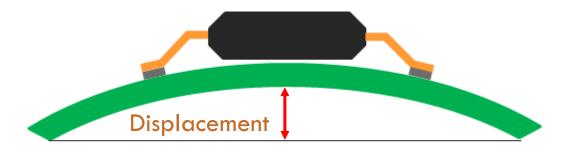

Laminate

SIGNAL


SIGNAL

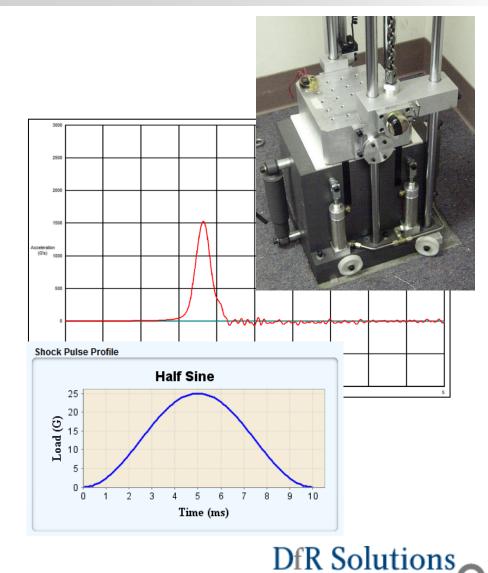
SIGNAL

- Use board stackup in the calculation 0
- Modify calculations to account for 0



(a) The Mises stress field of PTH at 150°C

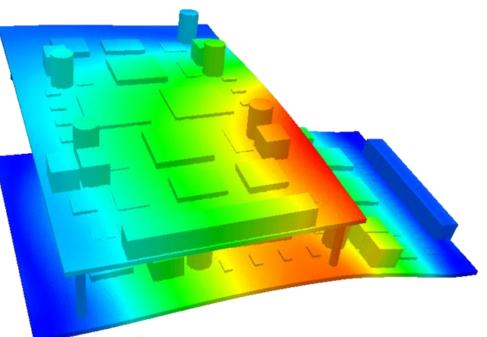
Test Method: Vibration


- Board close to resonance
 - Components can shake off due to fatigue in leads or solder

- Time to failure is determined by intensity and frequency of stress
- Component resonance
 Lead and solder fatigue due to component motion

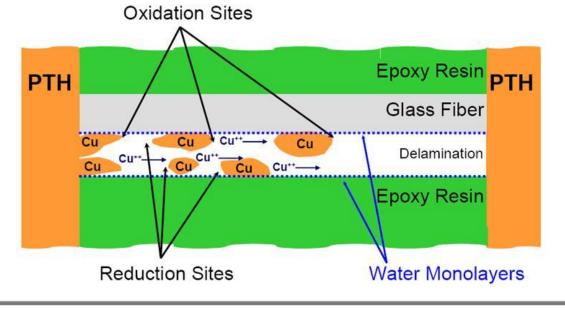
Test Method: Mechanical Shock

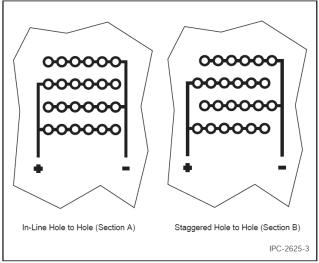
- Happens as random events
- Failure mechanism
 - Sensitive to intermetallic layer thickness
 - Brittle failure
- Board failures
 - Pad cracking
- Lead failures
- Probabilistic
 - Equally likely to fail at event #20 as event #200
 - Stress to probability of failure

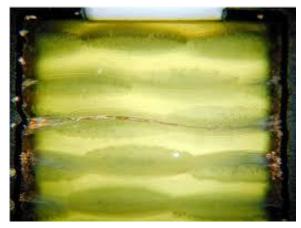


Shock and Vibration: Reliability Prediction Software

- Calculate board strain during mechanical shock or vibration
- Use the strain to predict probability of failure


$$Z_0 = \frac{9.8 \times G_{in} \times Q}{f_n^2}$$


Source: Steinberg D.S. "Vibration analysis for electronic equipment". John Wiley & Sons, 2000.


Test Method: CAF Resistance Test

- CAF: Conductive Anodic Filament
- Inadequate dielectric for the applied voltage
- Exceeding the maximum operating temperature of the laminate
- Manufacturing process

CAF: Reliability Prediction Software

- Input the drill hole locations and diameters
 - From drill files
- Set the "Damage zone"
 - Maximum distance between a pair of holes to be considered for analysis
- Qualification process
 - Better qualification process will decrease the number of failures
- Filter by hole size

🔍 Conductive Anodic Filament (CAF) Failure Properties 🛛 🗾	
Enter the input values to be used in the analysis. The Coordinate Units property specifies how all coordinates will be formatted in the results table.	
Min Hole Size:	8 mil 🔻
Max Hole Size:	200 mil 🔻
Damage Zone:	20 mil 🔻
Qualification:	None
Coordinate Units:	None
	Supplier - By PCB Supply Chain
Save & Run	Supplier - By OEM / 3rd Party
	Product - By PCB Supply Chain
	Product - By OEM / 3rd Party
	Lot - By PCB Supply Chain
	Lot - By OEM / 3rd Party

Failure Analysis

- Effective failure analysis is critical to reliability!
- Without identifying the root causes of failure, true corrective action cannot be implemented
 - Risk of repeat occurrence increases
- Use a systematic approach to failure analysis
 - Proceed from non-destructive to destructive methods until all root causes are identified.

- Techniques based upon the failure information specific to the problem.
 - Failure history, failure mode, failure site, failure mechanism

Summary

- If you remember nothing else:
 - A test plan without an objective is doomed before it even started
 - Testing to pass has no failure data
 - Root cause failure analysis is worth it
- Some tests can be simulated in software
 - Solder fatigue
 - Plated Through Hole fatigue
 - Mechanical shock and vibration
 - Conductive anodic filament resistance
- Every test or analysis must have a recommended action as a result
 - And every recommended action should have test data or analysis as justification

Test Plan Development

Dr. Gil Sharon, gsharon@dfrsolutions.com

9000 Virginia Manor Rd Ste 290, Beltsville MD 20705 | 301-474-0607 | www.dfrsolutions.com