

Making Waves: Water Recycling in the Permian Basin

September 16, 2014

Wilson Perumal & Company, Inc.

I. Why are recycling options important?

II. Technology and Tradeoffs

III. Solutions and Next Steps

Water management in the Permian Basin is complex

Water supplies are tightening.

240 counties in Texas are now designated as primary natural disaster areas due to drought.¹

Water recycling technologies are numerous with rapid innovation.

We've catalogued over 50 different processes used to purify wastewater.

There is no one-size-fits-all solution.

Freshwater availability, waste disposal costs, and fracturing fluid specifications are just a sample of factors that influence decisions.

Two major dynamics will determine economic feasibility of water recycling in the Permian Basin

I. Why are recycling options important?

II. Technology and Tradeoffs

III. Solutions and Next Steps

5

Wastewater recycling processes fall into three major phases

Remove Suspended Particles Flocculation, Micro/Sand filtration, Settling ponds,	Deactivate Micro-organisms Chlorine disinfection, Chemical bactericides,	Remove Salts Reverse osmosis, Evaporation,	
Sock/cartridge filtration Remove Oil & Grease	UV radiation Remove Minerals & Metals	Forward osmosis, Membrane distillation	
Walnut shell filtration, Acidification, Flotation	Chemical precipitation, Nanofiltration, Ion exchange		

Multi-Phase Treatments

Electrocoagulation, Chemical oxidation, Ultrafiltration, Ozonation

<u>Note</u>: This is not a comprehensive list of wastewater components or treatment processes. Instead, the illustration provides a sense of how processes are selected and combined to achieve a desired level of purification.

There are many official and unofficial terms used to indicate the salt content of water

<u>What is TDS?</u>: Total dissolved solids (TDS) are commonly referred to as "salts". These small molecules dissolve completely in water, making them difficult to remove during treatment.

Drinking water	<u>(mg/L of TDS)</u> < 500
Freshwater	< 1,000
Brackish water	1,000 – 15,000
Seawater	≈ 35,000
Brine	> 30,000

Produced waters span a broad range of 1,000 to 400,000 mg/L of TDS.

TDS levels of produced waters in the Permian Basin vary greatly across plays and over a well's lifecycle

TDS levels (mg/l) in the Permian Basin

The landscape of TDS removal technology is evolving rapidly

	Established	TDS Removal Te	echnologies	Emergent
	Reverse Osmosis	Evaporation (MVR)	Forward Osmosis	Membrane Distillation
What is it?	Physically pushes fluid against a membrane over which pure water passes	Boils pure water off as vapor and re-condenses	Uses osmotic pressure differentials at a membrane to separate pure water from waste	Vaporizes fluid at a membrane over which pure water vapor passes
Advantages	Established technologyRelatively inexpensive	 Handles all TDS levels Marketable by- products 	 May handle up to 125K mg/L TDS 	 May handle up to 200K mg/L TDS
Disadvantages	 Cannot handle > 70K mg/L TDS Significant membrane maintenance 	Relatively expensive	 Emerging tech Add'l Pre-treatment Some membrane maintenance 	 Emerging technology Some membrane maintenance
Relative Energy Cost*	Least expensive	Most expensive	Theoretically low	Theoretically low
New Developments	Adaptation: Vibration of the membrane to reduce fouling	Adaptation: Coupling with nano filtration	Commercialization with many field trials	In early stage development

*Relative costs vary based on many variables including the content of input wastewater, the desired output, and the facility setup.

Operational costs and TDS removal capabilities of Phase 3 technologies vary based on many factors

<u>Note</u>: These are generalized estimates. Costs and capabilities vary due to many factors including the content of input wastewater, the desired output, the facility setup, and local costs for supplies and transportation.

Demand for different types of drilling water is influenced by evolving and site-specific factors

Type of water demanded for recycled water and by-products is complicated by the fluctuation of these critical variables.

The type of recycling setup can also tip the economic feasibility of recycling ventures

- Tailor recycling processes to sitespecific water composition (i.e. chemical and biological components)
- Use **modular components** to adjust to changes in water volumes
- Eliminate piping (\$TBD per bbl) and trucking costs (\$2-6 per bbl)

- Increase throughput to support more robust operations (i.e. evaporators and crystallizers)
- **Pool batches** to cost-optimize with more consistent water volumes
- Avoid risk management of on-site recycling operations

High transport costs and eased permit regulations can result in the proliferation of mobile and customized on-site recycling solutions.

I. Why are recycling options important?

II. Technology and Tradeoffs

III. Solutions and Next Steps

Reassessing your organization's water management strategy is imperative for continued success

A comprehensive strategy should address four areas of knowledge to maintain water supplies while maximizing profitability.

Next steps include a multi-phase process to inform your water management strategy

Assess internal knowledge of the current state and relevant trends for requisite factors.

Engage external partners to fill knowledge gaps and develop a comprehensive due diligence process.

Identify the range of viable water management solutions.

Determine which option(s) best incorporates into the overall business strategy.

Look to your June 2014 issue of *Oil & Gas Investor* for more information in our article "Making Waves: Water Recycling Investment".

Contact Us:

Brian Flis O&G Industry Manager bflis@wilsonperumal.com 719-332-6227 John Hughes Speaker jhughes@wilsonperumal.com 770-316-7262

Chris Brickey Co-author cbrickey@wilsonperumal.com 415-404-9731

North America

Wilson Perumal

& Company

Two Galleria Tower 13455 Noel Road, Suite 1000 Dallas, TX 75240

+1 (972) 716-3930

Europe

Longcroft House 2/8 Victoria Avenue London, EC2M 4NS

+44 (0) 203 206 1496

www.wilsonperumal.com