

The Impact of Complexity Costs on Operations Planning

Chris Seifert & Scott Stallbaum Wilson Perumal & Company

#APICS2014

Chris Seifert, Manager Wilson Perumal & Company

- Expertise in manufacturing, operational excellence, and management system design and implementation
- Former Operations Leader, Owens Corning (increased plant productivity by 25% in just 9 months)
- Former Plant Manager and Manager of Business Strategy & Analysis, Georgia Pacific (Koch Industries)
- Top-ranked submarine officer, US Navy (ranked #1 of 9 submarine junior officers)
- MBA, Summa Cum Laude, University of Georgia; BS Business Administration, St. Louis University

Scott Stallbaum, Case Team Leader Wilson Perumal & Company

- Expertise in manufacturing, operational excellence, and management system design and implementation
- Former manufacturing & budgeting/planning leader and in the medical device industry
- Former new model launch program manager, manufacturing engineer and front line supervisor in the automotive industry
- MBA, Harvard Business School; BS Mechanical Engineering, Bucknell University

Agenda

- Why traditional S&OP approaches are failing
- 3 steps to make S&OP more effective
- Gaining a better understanding of costs
- Case study

When the S&OP Process fails, we often blame a lack of collaboration...

....but is that really the reason, or is there something more sinister at work.

The world has changed!

Complexity grows exponentially

The Number of Links Increases Geometrically with the Number of Items

<u>Characteristics of Complex</u> <u>Systems</u>

- 1. Non-linear reactions
- 2. Emerging properties
- 3. Feedback loops
- 4. Unknown interactions

These characteristics make Complex Systems almost impossible to predict and control

Complexity is stretching the capabilities of most companies

TECHNOLOGY IS MORE COMPLEX

PRODUCTS AND SERVICES MORE COMPLEX

PROCESSES MORE COMPLEX ORGANIZATIONS MORE COMPLEX

REGULATIONS MORE COMPLEX

MARKETS MORE COMPLEX

APICS2@14

Many companies are passing a complexity threshold

Costs and operational risk grow exponentially with complexity

Complexity

Complexity has impacts across your business

Cost & Operations

- Hidden costs
- Exponential growth
- Cross subsidization
- Most products are unprofitable

Business & Operational Risk

- Grows exponentially with complexity
- Cannot anticipate all points of failure

Growth & Innovation

- Slows new product development
- Overwhelms customers
- Distracts sales force

It also impacts your S&OP Process

APICS2@14

Understanding the true *Cost* of *Complexity* allows you to.....

- 1. Remove non-value added complexity from your business
- 2. Focus on optimizing total delivered cost
- 3. Create dynamic optimization models

#APICS2014

Costs arise from the interactions between the 3 types of complexity

The Complexity Cube:

• Complexity exists along the dimensions of the cube

- Can be good or bad
- Too much is bad
- Companies almost always have too much
- Complexity costs exists on the faces of and within the cube
 - Results from interactions between the dimensions of complexity
 - Grows geometrically with complexity (largest driver of cost competitiveness)

10

45

Complexity results from a large #

of interconnected "items":

5

10

The magnitude of the complexity is for many companies

- Often the most profitable 20% to 30% of products generate more than 300% of the profits in a company, meaning...
- ...the remaining 70% to 80% lose 200% of the profits.

Case Study: Central Brewing Co.

- Central Brew Co. (CBC) one of the Big 3 (40% market share)
- Market shifts led to changes in CBC strategy: Craft Brands
- Frank (CEO) hearing dispute between 2 key executives
 - "Our margins on Craft brands are high" (Victor, CMO)
 - "We can't handle the complexity; our costing is wrong" (Roberto, COO)
- Strategic questions: Is the new focus on Craft working?
- Analytical question: What is the real cost of the complexity and is it fully represented in product profitability?

Reallocating costs

Annual Costs (\$M)

Which allocation to use? By "Volume" By "Item"

Traditional fixed/variable cost paradigm is no longer sufficient

Pre-Industrial Age

- Energy limited by muscle power (man or beast)
- Little scale efficiencies
- Efficiency driven by strength and/or speed of individual working unit (narrow range)

Industrial Age

"Economies of Scale"

Volume

- Revolution in energy and machinery (steam, electricity, oil) create significant scale economy
- Efficiency driven by volume— "larger is better" (nearly unlimited range)

Post-Industrial Age

"Complexity Costs"

Complexity

- Significant growth in variety drives geometric growth in "complexity costs"
- Efficiency and affordability driven by balance between volume and complexity (complexity is the opposite of scale)

- Complexity is the opposite of scale
- Complexity costs are now the largest driver of a company's cost competitiveness

#APICS2014 Most complexity costs follow the **Square-root of Volume relationship**

- **Cost** rises with volume but not as much as in "by ۲ volume" approach
- **Unit cost** drops off with volume but not as much ٠ as in "by item" approach

Most NVA costs fall in between "by volume" and "by unit" extremes

We see the SQRT relationship over and over

Cost allocation methods

- Most NVA/complexity costs follow the "SQRT of volume" relationship
- Without this tool, most companies allocate these costs using the "by volume" method, leading to **over-costing of high-volume items and under-costing of low-volume items**

Square Root Costing

Square Root Costing involves reallocation of buckets of costs

Complexity-adjusted Profitability

Comparison between Standard- and Complexity-Adjusted Profit

% Operating Margin

Segment Walk to Operating Profit

Next Steps

- Developing complexity-adjusted costs requires a deeper understanding of your operation
 - Sources of complexity
 - Drivers of complexity
 - Impacts of complexity on costs, planning, efficiency, etc
- That understanding allowed CBC to more accurately forecast costs and develop achievable plans

Case Summary

- Traditional costing suffers from significant cross-subsidization between products, activities, customers, etc.
- Square-Root Costing is a powerful costing methodology to quickly gain a truer picture of cost and profit; it allows you to:
 - Remove cross-subsidizations to get to a truer picture of costs
 - Identify opportunities for more profitable allocation of resources
 - Project cost and profitability over a range of volumes
 - Separate volume from more intrinsic profitability issues
 - Provide a more holistic view of segment economics and performance
 - Compare economics across different facilities or businesses
- Results are faster, more dynamic, and useful than Activity-Based Costing

#APICS2014 Understanding costs and redefining the S&OP approach

Analyze operations &

appropriately allocate costs

- By volume
- By item
- By square root of volume

Develop dynamic costing model based on cost allocations

- Include all relevant plants or facilities
- Organized by product type, family, group, etc
- Flexible to accommodate "what-ifs" and look forward

Use a comprehensive S&OP approach to optimize plant loading & production scheduling

- Complexity-adjusted costs
- Distribution costs
- Inventory costs
- Achievable service levels
- Capacity

Conclusion

- Don't blame the people.....blame the complexity in the process
- Better understand the *Cost of Complexity* in your business so you can
 - Remove non-value added complexity
 - Optimize total delivered cost
 - Create dynamic models

Contact us if you would like more information about how to understand the *Cost of Complexity* in your business

Email: <u>cseifert@wilsonperumal.com</u> <u>sstallbaum@wilsonperumal.com</u>

On the Web: www.wilsonperumal.com

Blog: <u>www.wilsonperumal.com/blog</u>

Twitter: @Wilson Perumal

LinkedIn: http://linkd.in/10BnH1i

Phone: (972) 716-3930

