

Table of Contents

List of Figures and Tables... ii

Glossary ... iii

Abstract .. iv

Chapter 1: Introduction ... 1
1.1 The Problem.. 1
1.2 Social and Ethical Implications .. 5

Chapter 2: Literature Review.. 8

Chapter 3: Methods.. 13
3.1 Software Development Methods ... 13
3.2 Importing Files.. 15
3.3 Generating and Manually Editing Tables... 16
3.4 Coloring a Table ... 17
3.5 Sorting a Table by Cell Value ... 18
3.6 Matching an Image ... 19
3.7 Exporting a Table ... 23
3.8 Evaluating the software .. 24

Chapter 4: Results ... 26
4.1 Summary of Results... 26
4.2 Conclusions... 31
4.3 Recommendations ... 32

Bibliography ... 35

Appendix: Source Code Listing...Inside Back Cover

 ii

List of Figures and Tables

Figure 1 Table components………………………………………………………. 1

Figure 2 Example data in list form……………………………………………….. 2

Figure 3 Example data in table form……………………………………………... 2

Figure 4 Arbitrary table ordering illustration………………………………………. 3

Figure 5 Tableware displaying financial sales data……………………………… 4

Figure 6 Financial data sorted by cell value……………………………………… 4

Figure 7 Table of financial data sorted to match an image………………………. 5

Figure 8 One of William Playfair's graphs……………………………………….. 8

Figure 9 Technological context of Tableware…………………………………… 9

Figure 10 Tableware's graphical user interface…………………………………… 14

Figure 11 The cell editor…………………………………………………………... 16

Figure 12 HSB and RGB comparison……………………………………………... 17

Figure 13 Illustration of the sorting process………………………………………. 19

Figure 14 A comparison of image sampling techniques…………………………... 20

Figure 15 A comparison of dithering techniques………………………………….. 21

Figure 16 Initial reordering phase of the image matching algorithm……………… 23

Figure 17 A table in Tableware and exported to Microsoft Excel 2002…………... 24

Figure 18 Screenshot of Tableware’s usability……………………………………. 26

Figure 19 Table manipulation option dialog boxes………………………………... 27

Figure 20 Sample data before and after sorting by cell value……………………... 27

Table 1 Summary of table sorting and coloring effectiveness tests…………….. 28

Table 2 Summary of image matching results…………………………………… 30

 iii

Glossary

Ambient Displays Aesthetically pleasing displays of information which sit on the
periphery of a user’s attention (Mankoff et al., 2003).

Change-blind Describes updates to information-displaying devices that take place
when the device is not visible to the user.

Compile To translate a computer program from a high-level language into
another language, usually machine language, using a compiler.

Data Structure Any method of organizing data on a computer for efficient
manipulation.

Dithering Using specific patterns of colors to give an image the appearance of
having more detail.

Feature An intended property or behavior of a computer program.

Killer Application A computer program that is so useful or desirable that it proves the
value of some underlying technology, such as a gaming console,
operating system, or piece of computer hardware.

Object-Oriented Characterizes a means of maintaining software quality by
abstracting program structures and processes as intuitive objects.

Sampling In the context of editing images, refers to a method of using the
image’s original pixel information to add visually consistent
information to the image.

Spreadsheet Table of data arranged in columns and rows often used in business
and financial applications. Spreadsheet software programs are
widely used computer applications that allow the user to organize
large amounts of data.

Usability The effectiveness, efficiency, and satisfaction with which users can
achieve tasks in a particular environment of a product. High
usability means a system is easy to learn and remember, efficient,
visually pleasing and fun to use.

Wizard A feature in a software application that walks the user through a
process step by step, automating advanced tasks as much as
possible.

 iv

Abstract

In the modern information age, new technologies facilitate the gathering of

numerical data. These data are useless unless they can be efficiently understood.

Tableware is visualization software that reveals trends in data by reordering and re-

coloring two-dimensional tables. The software clarifies the meaning of the data by

highlighting the patterns that a human can easily detect while also reorganizing the data

to be visually pleasing. Tableware uses a set of heuristics to measure how closely the

reorganized data match the user’s specifications and intention for the appearance of the

data, and to assess the program’s effectiveness in making the data easier to understand.

 1

Chapter 1: Introduction
1.1 The Problem

 Information is often communicated in numerical, or quantitative, form. For

example, business owners must analyze the past purchases of their customer base to sell a

product. Worried travelers predict future weather conditions by observing past trends on

television. A student’s progress is evaluated by a numerical score, and the student can

compare his or her work with classmates’ through statistical principals such as mean and

standard deviation.

 To ease communication, numerical information can be presented in ways that

exploit human strengths, such visual pattern recognition. Common visualization

techniques include graphs that draw numbers as points in a two-dimensional space, and

charts or tables. Just as the Abstract section is a summary of this project, charts and

graphs are used to simplify and summarize data.

Two-dimensional tables are a kind of graphic that represents numerical data.

They have been used since the nineteenth century to convey the meaning of a set of data.

Tables consist of rows and columns

such that each cell describes some

relationship between two entities in the

table (Figure 1). Tables are often used

to present shared characteristics of a

group of entities, such as the age and

weight of a group of people.

Figure 1 Table components (author).

 2

Figure 2 Example data in list form (author). Figure 3 Example data in table form (author).

Figure 2 and Figure 3 contrast a list against a two-dimensional table. Although

there are no redundant data in the list, there is redundant information: the identifiers that

describe each number must be repeated for each person in the data set. The table

representation eliminates this redundancy and exposes quantitative relationships by

establishing “age” and “weight” as characteristics shared by Bill, Sarah, and Fred.

Even though tables are more efficient and lucid than raw text, large tables can be

difficult to read and modify. Computers have been programmed to create and modify

tables as they are well suited to handle large amounts of quantitative data. Two-

dimensional tables represented in software with accompanying computational and

financial functionality are referred to as spreadsheets because of their paper-based

counterparts. Microsoft’s Microsoft Excel is a commonly used spreadsheet program.

Usually, the ordering of the rows and columns of tables is arbitrary. Changing the

table’s ordering does not change the information it represents. This freedom is illustrated

in Figure 4; note that in both tables there are and c relationships even though the

positions of the and c columns and the row are different. Often, tables are sorted

alphabetically or, if they convey events in time, chronologically to help readers find

specific cells quickly.

 3

Besides ordering, coloring the

background of cells is another technique to

visually enhance a table. A cell’s color can

directly correspond to its value so that

readers can get a sense of a cell’s value by

glancing at its background color. An

example coloring strategy assigns shades of

red to high values to suggest those cells are

“hot” and shades of blue to lower values to

suggest “cold” (see Figure 5 for a table that

has been colored with this strategy).

Microsoft Excel allows users to

move entire rows or columns to a new

position and provides background color

options as part of its cell formatting, but these features are configured manually. No

automated process can intelligently reorder and recolor a table to enhance its meaning.

I have created a software application, Tableware, which is similar in function and

appearance to Microsoft Excel. It exploits the inherent ordering and coloring freedom of

two-dimensional tables. By intelligently editing tables, Tableware clarifies them and

reveals trends in the underlying data while also improving the aesthetic qualities of the

table. Specifically, users can either sort cells by their numerical value to cluster similar

cells, or they can specify an image template and Tableware will manipulate the table to

match the image as closely as possible.

Figure 4 Arbitrary table ordering illustration (author).

 4

Figure 5 Tableware displaying financial sales data
where each cell is the number of customers who
bought both the “row” product and “column”
product (author).

Figure 6 Financial data sorted by cell value to push
products that sell well with other products to the top
left corner of the table; the table has become a
resource for marketing decisions (author).

Clustering similar values and shading regions of clustered cells contrasting colors

visually sets the clustered cells apart from the rest of the table. This increases the

readability of the table by consolidating useful information in one easily accessible

location. Figure 5 shows an example table after it has been loaded and color coded into

the software; Figure 6 shows the example table after a clustering sort has been applied.

Tableware can also edit a table to match an image (Figure 7). A color palette is

chosen to match the color scheme of the template, and cells are rearranged so that the

cells suggest the image template. This feature is less functional than sorting by cell

values, but it falls into a category of visualizations called ambient displays. Ambient

displays are aesthetically pleasing and convey information indirectly by focusing the

viewer on the non-data elements of the display (Mankoff et al. 2003). Tableware can

accurately fit a table to an image so that the user’s attention is focused on the image and

not on individual cells and numbers.

 5

Figure 7 Table of financial data sorted to match an image of the mathematical symbol pi (author).

By developing Tableware, I have created new ways of representing data and

improved on existing spreadsheet software and two-dimensional table visualization

techniques. By automating table manipulation and making intelligent decisions about

row and column ordering, Tableware decreases the time and effort needed to understand

the table and increases the amount of data a human can analyze.

1.2 Social and Ethical Implications

 Richard Mason identifies four areas of informational ethics: privacy, accuracy,

property, and access (Mason, 1986). The first three are in fact subsets of access, since all

three affect access to information.

If a visualization technique is used to display private data, the technique threatens

to propagate the sensitive information fast and efficiently. Similarly, a visualization

technique could make hard-to-understand or intentionally cryptic proprietary information

easily understood, and thus open the door for plagiarism. Violations of privacy and

copyright can facilitate illicit information access.

Image Template

 6

Information is useless unless it is accurate, so any visualization technique must

not jeopardize the integrity of the data it represents for the sake of some visual effect.

Edward Tufte introduced the concept of a “lie factor,” in which he was able to describe

quantitatively how severely a graph or charts distorted its data (Tufte, 1983). The

decisions that Tableware makes about how to represent data could potentially distort its

true meaning. For example, a table has cells with value 0 shaded white, cells with value

100 black, and cells with 50 shaded 75% gray. This table has a lie factor of

5.1
50
75

==
dataineffectofsize

graphicineffectofsize since cells with value 50 are too dark and thus appear

to be larger. A false representation of information limits access to actual, truthful

information.

Access to any source of information is unevenly distributed. Socio-economic

factors and literacy affect a person’s access to the technology necessary to understand

quantitative data. For example, Timothy Jenkins addresses this issue as it relates to

African Americans in his article “Black Futurists.” Jenkins asserts that technology is not

inherently biased to a particular social group, and that African American leadership

should take advantage of societal restructuring, a product of the modern information age,

to combat bias against African Americans and their access to information (Jenkins,

1997). Those who present information should ensure any tools or methods they employ

work towards providing equal access to all members of their audience.

By developing new technology to display information, Tableware must not

violate any of the areas of informational ethics. Except for cases of misuse or user error,

my program saves time by providing a more efficient display of information while not

jeopardizing the integrity of the represented data. I designed the software to require little

 7

technical literacy necessary to use the functions of the program, and I designed a user-

friendly interface. Since Tableware is a portal to information, it must be not be clogged

by false data or security breaches, and access to it should be as open as possible.

 8

Chapter 2: Literature Review

Like other software applications, Tableware automates a task usually performed

by humans and extends existing software functionality. It therefore belongs to a

hierarchy of software applications with its roots in non-electronic technology. Figure 9

provides the technological context for Tableware.

William Playfair pioneered pie charts, bar charts, and line graphs (Figure 8) in the

eighteenth century, starting a revolution in data representation techniques; instead of

representing numbers, natural patterns are now also depicted (Spence & Wainer, 1997).

Figure 8 One of William Playfair's graphs (public domain).

Edward Tufte, an expert on data visualization, uses cognitive science to formulate

design principles for graphics (Zachary, 2004). To promote “clarity, precision, and

efficiency,” graphical displays should:

• Show the data

• Induce the viewer to think about substance rather than methodology

 9

• Avoid distorting the data

• Make large data sets coherent

• Encourage viewers to compare different pieces of data

• Reveal data at several levels of detail

• Serve a purpose (Tufte, 1983).

These principles for printed graphics also apply to electronic graphs and charts. Tufte

identifies four uses of color in graphs: to label, to measure (represent quantity), to

represent or imitate reality, and to decorate (Tufte, 1990). Tableware uses to color to

represent a cell’s value and to decorate the table.

Computers are often used to create

and modify graphical displays as they are well

suited to processing large amounts of

quantitative data and displaying colorful

graphics. Two-dimensional tables, with

accompanying computational and financial

functionality, form a subset of these displays

and are referred to as spreadsheets because of

their paper-based counterparts. VisiCalc,

introduced in 1979, was the first spreadsheet

program for microcomputers and was a killer

application: software so popular that

consumers purchased computers for the sole

purpose of using it (Licklider, 1989).

Tableware

Figure 9 Technological context of Tableware
(author).

 10

VisiCalc, created by Harvard Business School student Dan Bricklin and MIT graduate

Bob Frankston, allowed users to organize data into rows and columns, compute the

results of operations applied to each row and column, and format the spreadsheet to

clarify the data’s meaning (Power, 2004).

A product manager for VisiCalc, Mitch Kapor, programmed the next-generation

spreadsheet program Lotus 1-2-3. It offered graphing features and minimal database

functionality. The second version of Lotus 1-2-3 also offered macros, which allowed the

user to store and repeatedly execute a series of commands (Power, 2004). This was an

early step towards automating tedious spreadsheet tasks.

Microsoft Excel, released in 1985, featured a rich graphical user interface; the

intuitive point-and-click interface model contributed to Excel’s popularity as it further

bridged the gap between numerical data and human understanding (Power, 2004).

Microsoft Excel is now the industry standard in spreadsheet software and is therefore

commonly used to visualize two-dimensional tables (O’Brien, 2006).

Jordan Crittenden of Elder Research, Inc. developed two-dimensional table-

generating software dubbed QuiltMaker for a specific financial purpose. John Elder of

the University of Virginia’s Systems department saw the opportunity to clarify the

meaning of the generated tables, or “quilts,” through re-coloring and reordering table

cells; thus, QuiltMaker is the inspiration for Tableware. Unlike Microsoft Excel, where

the user manually configures cell coloring, QuiltMaker automatically shades the

background of each cell according to its value. However, the row and column ordering

of quilts is immutable, unlike Tableware.

 11

Tableware is not an exclusive descendant of spreadsheet software. Mark Weiser

introduced the idea of ubiquitous computing, where computers are integrated seamlessly

into the daily tasks of life such that they present information while “disappearing into the

background” (Weiser, 1999). An extension of this idea is the ambient display. Ambient

displays are devices which convey information without demanding the user’s attention

(Mankoff et al., 2003). Tara Matthews et al. (2003) have researched the viability of these

displays in the context of Weiser’s ubiquitous computing, and have produced the

Peripheral Display Toolkit to aid developers in producing ambient displays.

Examples of ambient displays developed using the Peripheral Display Toolkit

include the Bus Mobile and the Stock-News Ticker. The Bus Mobile indicates to a college

student how soon a bus will arrive at a nearby bus stop. The mobile hangs inside the

student’s dormitory and uses symbols attached to string representing each bus route. As

a bus approaches, the corresponding string and dangling symbol is retracted into the

device. The mobile becomes a kind of decoration and does not require a user’s attention

to convey information about the bus schedule (Mankoff et al., 2003). The Stock-News

Ticker displays top headlines and popular stock data, but only updates its display when

the ticker is not visible. This update strategy is described as change-blind since the user

is not aware of when the ticker updates its information and is not interrupted by ticker

updates (Matthews et al., 2003).

Both the Bus Mobile and the Stock-News Ticker are animated ambient displays,

since they update the information they display in real time. Alternatively, ambient

displays can convey information statically. An example of an ambient display that is both

static and animated is the MoneyColor device (Shen & Eades, 2005). MoneyColor

 12

generates landscape images and adjusts the landscape features (such as sky color and the

number of mountains and trees) according to a stock’s performance. The images are

static, but they are updated as new stock information is received.

Tableware is a static ambient display. The user can sort a table to match an image

template. When a reader looks at the table, he or she sees the image. Although the

table’s information is present, it is on the periphery of the user’s attention. Functionally,

Tableware is a descendent of spreadsheet software, but an aesthetically, it is a kind of

ambient display.

 13

Chapter 3: Methods

3.1 Software Development Methods

The goal of this project was to develop algorithms for manipulating two-

dimensional tables. Algorithms must be implemented to be applied to a problem. I

developed a software application to implement my table manipulation algorithms.

 Tableware is written in the Java programming language. Java is an object-

oriented programming language, and has many features to aid software development. A

developer can use an Integrated Development Environment (IDE) to edit, compile, and

execute source code. I used Eclipse, a free IDE developed by the same company that

created and maintains Java.

 Software applications require an interface to receive input from and display

output to the user. I chose to create a graphical user interface (GUI). This kind of

interface is common in modern software applications and consists of components such as

buttons, menus, and toolbars. Several GUI toolkits are available for Java, including

Swing and the Standard Widget Toolkit (SWT). I chose to use SWT because of its

flexibility and efficiency with rudimentary GUI functionality, such as loading images.

Because Tableware is an exploratory prototype, commercial robustness is not a

requirement. Therefore, the advantages of using SWT outweigh its limitations, such as

only being fully supported on the Windows operating system.

 To enhance the visual appearance of Tableware’s interface, I used icons provided

by Microsoft and from a free repository (James, 2006). I also had access to Elder

Research, Inc.’s interface utilities, which include source code for common tasks and

interface components. Except for the table representation, I used standard interface

 14

components (such as buttons and toolbars) to create the interface. Tables are drawn

manually onto a blank area of the screen using SWT’s image drawing functionality.

Figure 10 is a snapshot of the Tableware’s SWT interface.

Figure 10 Tableware's graphical user interface (author).

 Each table’s data are stored in the computer’s memory and consist of:

• A matrix of floating point (decimal) numbers to store the numeric value of each cell

• A matrix of integers to store the color of each cell

• Two arrays (lists) of column and row identifying labels

• Two floating point numbers to store the lowest and highest value of the table

• A color palette that specifies how to associate colors with values

 15

• Other display parameters, such as cell size (in pixels) and the table’s name

This scheme is the optimal way to represent a table in memory while still

allowing the user to edit individual cells. Alternatively, a table would not include a color

matrix, but instead always calculate the color from the value when it is needed.

However, the user could not customize an individual cell’s color.

A discussion of each of the software’s features follows. Each feature provides some

functionality I used while exploring and refining my table editing algorithms. While

developing the software, I prioritized those features that pertained to the objectives of this

project and those that contributed to the robustness and convenience of the program.

3.2 Importing Files

A user must be able to generate a table to exploit the table-editing functionality of

Tableware. Users can load data into the program from which tables are generated.

Tableware can import delimiter-separated text files, previously saved tables, or particular

data files.

 A delimiter-separated text file is a file where each row of the table is written on

each line of the file, and columns are separated by the delimiter, a single character.

Delimiters are often commas (in which case the file is referred to as “comma-separated

values”), tabs, spaces, or semicolons. This file format is primitive and inefficient, but is

easy to support using Java’s built-in text file reading utilities. By supporting text files,

Tableware can interact with Microsoft Excel, which can export data in this format.

 The most efficient way of saving and loading tables is by leaving them in their

binary form (instead of converting them to text) and saving them directly to the hard disk

as they are stored in the computer’s memory using Java’s serialization mechanism. This

 16

method applies only to loading saved tables, since generating files of this format is very

difficult.

 A descendant of Elder Research, Inc.’s QuiltMaker, Tableware can import

correctly formatted data files. These data describe instances (usually business

transactions) involving multiple entities (usually products). Tableware calculates

statistical relationships between different entities and generates tables to visualize those

relationships. An example statistical relationship is “confidence,” which is, in the context

of retail, the probability that a customer will purchase one product given that they

purchased another (Figure 10). Tableware reads these data files with Java’s text file

reading utilities, uses data structures to maintain frequency information about entities in

relation to each other, and generates tables using probability equations.

3.3 Generating and Manually Editing Tables

Users can also generate tables if they do not have any source data. Generated

tables can be any size (as limited by the computer’s available memory) and completely

blank or filled with random values. Random

values can be uniformly or normally distributed

(using Java’s built-in random number generator),

and are constrained to a user-specified range.

With Tableware’s cell editing capability,

users can manually set the value and color of each

cell regardless of what value or color has been

assigned to that cell automatically. The cell editor

Figure 11 The cell editor (author).

 17

also displays more information about each cell, according to text files the user has loaded.

These files consist of various columns, or attributes, that describe the table’s rows and

columns. When loading an information file, the user specifies the column that

corresponds to row and column headers, and Tableware populates a map from row and

column header labels to the additional information loaded from each row of the file.

When a cell is clicked, the cell editor accesses this mapping and refreshes its display. This

feature helps the user better understand the table, where row and column labels are often

numeric identifiers or cryptic abbreviations (Figure 11).

3.4 Coloring a Table

 Tableware shades the background of each cell according to the cell’s numerical

value. Tables employ a continuous color palette where two boundary colors define the

ends of the color spectrum (red for high values and blue for low values, by default). The

spectrum is sampled according to the

numeric value’s relationship to the table’s

maximum and minimum values. Colors

can be defined by red, green, and blue

(RGB) components or by hue, saturation,

and brightness (HSB) components (Figure

12). I chose to use a HSB spectrum for the

coloring palette so that cells would have more distinct colors, and so that high values (and

low values) would be more strongly emphasized. The boundary colors are customizable,

and the spectrum is always a linear interpolation between them.

Figure 12 HSB and RGB comparison; both spectra
share the same boundary colors (author).

 18

 Tables can also be colored by rank. Instead of mapping the actual numerical

value to a color, that value’s rank is mapped to a color. If a cell’s value one of the

highest values in the table, it receives a color close to the high boundary color even

though it may in fact be a very low number (the table in Figure 10 is colored by rank and

includes cells with low percentages shaded a dark red). This scheme distributes the

coloring more uniformly when the numbers are not uniformly distributed. When coloring

by rank, Tableware iterates through the entire table and ranks each number, storing that

rank temporarily in the color matrix. On a second pass, the rank is translated into a color.

 While sorting the table to match an image, Tableware uses a different coloring

scheme. Instead of using a continuous color palette, a discrete palette is created from the

colors in the template image. Numerical values of the table are mapped to each color

according to the frequency of that value in the table and the frequency of that color in the

image.

3.5 Sorting a Table by Cell Value

 The functional goal of this project was to make tables easier to understand. In

addition to coloring cells, Tableware can also sort the table by numerical value. The sum

of each row and column is computed and the table is sorted according to those sums.

This naturally pushes higher values to the top left corner (if the sort order was

descending) and lower values to the lower right corner (Figure 13). If several rows and

columns have approximately the same sum, sorting by sum will appear to have no effect.

To improve the algorithm’s performance in this case, the ordering of the table is refined

further to group similar values together. Rows and columns are shuffled, and for each

 19

guess, a numerical score is computed to describe the extent to which similar values are

grouped together. The ordering with the best score is set as the table’s new ordering.

Figure 13 Illustration of the sorting process. First, the sums of each row and column are calculated (shown
in bold), and then the rows and columns are sorted according to those sums in descending order. Note the
proximity of cells shaded blue and red in the sorted table (author).

The computation of this score uses a prevalent digital image compression

technique, the JPEG image type. JPEG images save space by storing color information

for similar regions of pixels instead of storing the same amount of information for every

pixel. A smaller file size for JPEG files corresponds to large regions of similar color in

the image. Therefore, if the colors of a table are saved as a JPEG image, the score for

that table is proportional to the file size of the corresponding JPEG image. Zach Buckner

conceived this method of scoring tables using JPEG technology.

3.6 Matching an Image

 The aesthetic goal of this project is to convey information subtly and in a visually

pleasing way. Sorting the table so that it approximates a user-specified template image

accomplishes this goal. Matching an image involves two actions: reordering the rows

and columns and re-coloring the table so that the table’s color palette closely matches that

of the template image.

34.07 12.86 31.41 27.97 18.91 33.63

40.79

28.64

21.11

25.75

19.06

23.50

 20

 Matching a table to an image requires either the table or the image to be resized to

match the dimensions of the other, since each cell in the table corresponds to a single

pixel in the image. The dimensions of the table cannot be changed without losing or

adding data, so the first step in the image matching process is resizing (or scaling) the

template image to the same dimensions as the table. An image is composed of single

points of color, or pixels, such that when an image is stretched larger than its original

size, it is not obvious how to fill the gaps between the original pixels. I implemented

Gaussian, bilinear, and nearest pixel sampling to resize the image for visually consistency

with the source image (Figure 14).

Figure 14 A comparison of image sampling techniques (author).

Since tables represent decimal numbers, each cell’s value could be one of a very

large number of values (theoretically, an infinite number of values, but only a finite

number of values can be represented on a computer). Also, each pixel of an image can be

one of several million colors. Any mapping from values to colors would therefore

consume many system resources and would be impractical to implement. I implemented

Floyd-Steinberg and ordered Bayer dithering (Figure 15) to reduce the number of colors

Nearest-pixel Sampling Bilinear Sampling Gaussian Sampling

Original Image

 21

in the image, which also minimizes the time and resources needed to map values to

colors.

Figure 15 A comparison of dithering techniques. In this case, the number of colors composing the image
has been reduced to eight, as shown in the inset (author).

Before Tableware attempts to reorder a table to match an image, it scales the

image to the dimensions of the table, dithers the image, and then sorts the colors of the

image and values of the table by frequency. Mapping values to colors based on

frequency creates approximately the right number of shaded cells for each color of the

target image.

The initial reordering of the table relies on the sorting-by-value algorithm

described above. First, the table is sorted by cell value (Step 1 in Figure 16). A new

table is created where the cell values are the colors of pixels in the image template (Step

2). The new table is also sorted by value, and the new ordering of the rows and columns

is stored (Step 3). Sorting the new table by value is a means of sorting the actual image

by the color of the pixels, where brighter pixels are considered higher than darker pixels.

The original table is then sorted according to the order of the image template’s table, but

Original Image Bayer Ordered Dithering Floyd-Steinberg

 22

Figure 16 Initial reordering phase of the image matching algorithm (author).

1 Table is sorted by cell value

Image Template

Table of actual financial data

2 Table is made from template,
colors reduced to 64 3 Template table is sorted by cell value

4 Table is sorted using the reverse sort order of the template table

Sort Order

Reverse
Sort Order

 23

in reverse (Step 4). Sorting both the table and the image by value creates a common

state, and so by undoing the sort, the table and the image should be approximately equal.

John Elder suggested this method of initially ordering the table to match an image.

After the initial ordering and mapping, the table has approximately the correct

number of shaded cells for each color in the approximately correct positions. Tableware

then iterates through each pixel in the target image, and maps the value of the table cell at

each position to the corresponding color in the image. A value can only be mapped to

one color; if more than one color should be mapped to a value, it is mapped to the

average of all the candidate colors. By modifying the color of single cells, this final step

captures image detail that row and column sorting overlooks. However, the accuracy of

the match without the initial ordering and mapping would be poor as a value would map

to a broad range of colors.

3.7 Exporting a Table

 Tables can be saved to the hard disk in their binary form or as a text file (see

Importing Files). Tables can also be

exported as an image, or as a Microsoft

Excel spreadsheet.

 I used SWT’s image writing

functionality to export tables as

images. The entire table as it is shown

on the screen can be exported, or the

color of each cell can correspond to a

Figure 17 A table in Tableware and exported to Microsoft
Excel 2003. Note the coloring is slightly different (author).

 24

single pixel in the output image (the image shown in Step 4 of Figure 16 was generated

by exporting cell colors as single pixels).

 Tables can also be exported as Microsoft Excel spreadsheets (Figure 17). I used

JXL, a Java library for writing files in the Excel file format (.xls). Excel supports shading

the background of cells, but only one of 64 supported colors. When Tableware exports a

table, it converts each cell’s color to an Excel-supported color by finding the supported

color numerically closest to the real color of the cell by computing the difference of the

red, green, and blue components of the two colors. Tableware was designed as an

enhancement to powerful spreadsheet software such as Excel; by providing features that

interact with Excel, I improved my software’s usefulness.

3.8 Evaluating the software

 To quantitatively asses the usefulness of table sorting and coloring, I recruited

five colleagues to evaluate my software. I showed participants two uncolored, unsorted

tables in Microsoft Excel and asked them to find the largest value. I then randomly

modified the maximum value, and colored and sorted the tables in Tableware and asked

them to repeat the search. This test simulated an analysis of a business’s cross product

marketing potential. The data showed the number of one product that was sold in the

same transaction as another product. Due to the nature of the data, diagonal cells

(representing a product’s correlation with itself) were uninteresting, and not candidates

for the maximum value. This complicated the search and rendered most of Excel’s

functionality (like the function MAX) useless. My metric for effectiveness was the time it

took each participant to find the maximum value in each table. After the trials, I

 25

interviewed each participant and asked for his feedback regarding the usability of my

software.

 The quality of an image match is heavily dependent on the nature of the data and

the target image. My approach to evaluation of the matching algorithm was to try

matching a variety of images to a variety of data tables. I used actual data and random

values to generate tables of varying density (dense tables have an even distribution of

values), and I tried matching images with differing number of color distributions (for

example, the image of the pi symbol is mostly white with shades of black to draw the

symbol, while the image of Mona Lisa has a relatively even spread of browns, oranges,

and yellows).

 26

Chapter 4: Results

4.1 Summary of Results

 The primary result of this project was the application Tableware. This software

implements the table reordering algorithms I developed by providing a means for the user

to create and view tables from data files. In addition to the table manipulation

algorithms, I prioritized usability while developing the software (Figure 18). The

interface, a main window where tables are displayed and dialog boxes that prompt the

user for input (Figure 19), is very similar to Microsoft Excel so that users would be

comfortable using Tableware.

Figure 18 Screenshot of Tableware’s usability; commonly used features are accessible through menus,
toolbars, a sidebar, and keyboard shortcuts where appropriate (author).

 27

Recoloring Options Sorting Options Image Template Options
Figure 19 Table manipulation option dialog boxes (author).

 My sorting algorithm successfully isolates groups of similar values (Figure 20).

Figure 20 Sample data before (left) and after (right) sorting by cell value (author).

I evaluated the success of my sorting algorithm by asking colleagues to use my software

to analyze sample data (Table 1).

 28

Participant,
Major

Table (size) Search Time
Unsorted

Ans.
Right

Search Time
Sorted

Ans.
Right

Unsorted to
sorted ratio

1 (185 × 185) 4 m, 30 s Yes 0 m, 28 s Yes 9.64 1
CPE/CS 2 (380 × 380) 10 m, 0 s No 1 m, 35 s Yes N/A

1 (185 × 185) 4 m, 0 s Yes 0 m, 42 s Yes 5.71 2
CS 2 (380 × 380) Gave up after 1 m 1 m, 6 s Yes N/A

1 (185 × 185) 4 m, 33 s Yes 1 m, 40 s Yes 2.73 3
ME 2 (380 × 380) Gave up after 2 m 1 m, 45 s Yes N/A

1 (185 × 185) 11 m, 50 s Yes 0 m, 32 s Yes 22.19 4
COMM 2 (380 × 380) Gave up after 10 m 2 m, 0 s Yes N/A

1 (185 × 185) 4 m, 4 s No 0 m, 8 s Yes N/A 5
BME 2 (380 × 380) 5 m, 35 s Yes 1 m, 30 s Yes 3.72

Table 1 Summary of table sorting and coloring effectiveness tests. The last colum shows how many times
faster the sorted search was to the unsorted search, but only when the participant found the correct answer
in both cases (author).

The first participant, when asked to find the maximum value in the unsorted table,

immediately began using Excel’s functionality to automate his task. Excel has the ability

to sort rows based on the selected column’s values and has a function to find the largest

value among the selected cells. However, sorting only exposes the maximum value for

one column and the MAX() function includes diagonal cells, so the participant attempted

to use Microsoft’s scripting, or “macro,” mechanism. This failed as well, as the

mechanism for recording his actions did not accurately repeat his single-column sort on

all columns. Eventually, he visually scanned the data and answered with the incorrect

answer (when analyzing the 380 by 380 table) because he had overlooked the maximum

value of the table. He found Tableware to be efficient at finding the maximum value and

the cell coloring and interface features to be particularly helpful. Due to their similar

background, the second participant’s experience and feedback was similar to that of the

first participant.

Unlike the first two participants with similar experience using Excel, the third

participant admitted he was “out of [his] element” when asked to analyze a two-

 29

dimensional table. He did not attempt to make use of Excel’s features but instead

searched manually, which he found frustrating. He also found Tableware more difficult

to use than previous participants (although he was ultimately successful using it) and

suggested I display a legend to correlate colors with cell values and provide users with a

wizard to aid them in discovering and using the program’s features.

The fourth participant, due to his background in commerce, was very familiar

with the data analysis functionality of Excel. He eventually resorted to manually zeroing

the diagonal cells and then using MAX() to (successfully) determine the maximum value

of the sample table. This method, while tolerable for the 185 by 185 table, proved too

tedious for the 380 by 380 table. He enjoyed using Tableware instead, except that it

lacked Excel’s support for the mouse scroll wheel for scrolling and magnifying the table.

The final participant was the only one to successfully find the maximum value of

the 300 by 300 table. He discovered a feature of Excel called “conditional formatting.”

This feature applies a specified formatting (for example, font or cell background) to all

cells that meet certain criteria. He glanced at the table briefly, identified a candidate for

the maximum value, and shaded cells that were greater than this value red, thus greatly

reducing the search space. The majority of his search time was spent scrolling the table

to make sure he had not overlooked a red cell.

To evaluate the image matching algorithm, I tried matching different kinds of

tables to various template images (Table 2). Tables differed by the distribution of values,

and images had varying color distributions.

 30

Original Table & Image Sorted Table & Image Reverse Sorted Table* Final Table

Comments

The source table (actual movie rental data) was
considerably dense, with most values being unique.
Therefore, the image match was accurate (since
most cells could map to the correct color with little
conflict) and the initial reordering contributed little
to the accuracy of the final match.

Comments

Same source table as above, with a different image
template. Results are similar to the previous trial,
since the table is dense enough to capture the detail
of the painting.

Comments

The source table (actual financial sales data) was
much sparser than the previous two trials, and thus
the results for a dense image are worse. The initial
reordering step clustered unique values near detail
in the image, which improved the accuracy and
detail of the match.

Table 2 Summary of image matching results (author). (Continued on next page)
 *See step 4 of Figure 16 (referred to as the “initial reordering step”)

 31

Original Table & Image Sorted Table & Image Reverse Sorted Table Final Table

Comments

Same source table as above, with a different image
template. This pi image is much sparser than the
mandrill image, so the sparse source table is able to
match it accurately. The initial reordering step and
the fact that the source image is essentially
monochrome contribute to the good results.

Comments

As a contrast to the sparse example above, this
example used a completely dense, randomly
generated table. Because almost every value was
unique, the table could be matched to the target
image almost perfectly. The initial reordering step
had a negligible effect in this case.

Table 2 (Continued from previous page) Summary of image matching results (author).

4.2 Conclusions

 The main goal of this project was to intelligently reorder two-dimensional tables;

specifically, to make tables more readable through sorting and improve tables’ aesthetic

qualities. According to the feedback I received from my colleagues, I was successful in

helping them understand large tables. My time trials showed a significant decrease in the

time it took a user to analyze a table, and all participants commented on the helpfulness

of shading the background of cells according to the cell’s value.

 32

The accuracy of the table matching algorithm is hard to quantify, but my results

indicate I discovered a very effective algorithm. Results were poor when the distribution

of the table was drastically different than that of the image. For example, if 90 percent of

the cells of a table were the same value, 90 percent of the reordered and re-colored table

must be the same color regardless of the detail in the image, since that value cannot be

mapped to more than one color (or else the color no longer indicates the cell’s value).

Therefore, my matching algorithm is as accurate as possible given the constraints of the

source table.

 An important consideration in the achievement of my goals is the usability of the

software’s interface, since it directly affects the readability of tables it displays. None of

the users of my software were frustrated by the look and feel of the software or the time it

took to complete sorting and coloring operations, and the feedback I received was

positive in general. However, participants (especially those without a computer science

background) identified features that they expected Tableware to have, such as using the

mouse wheel and the keyboard to scroll a table and providing wizards for novice users.

4.3 Recommendations

 Since I implemented software, future work includes adding functionality to

Tableware or creating new software with a similar purpose. This project explored two

ways of manipulating two-dimensional tables: sorting a table by the cell values and

matching an image. There are many other ways of reordering and re-coloring two-

dimensional tables that future researchers could investigate.

 Painting the table manually is an example of another way to manipulate tables and

a possible Tableware feature. Cell values are mapped to colors to create a palette of

 33

available colors. Using a paintbrush tool, the user can then select a color and shade cell

backgrounds. Painting is constrained by the underlying numeric data; since colors are

directly related to table data, an arbitrary number of cells cannot be shaded a particular

color since the quantity of each color is dictated by the number of values that fall within

that color’s corresponding range of values. Also, cells cannot be arbitrarily positioned

within the table, but entire rows and columns must be moved. Essentially, this feature is

a hybrid of image matching and functionality offered by computer graphics programs like

Microsoft Paint. The user creates the image template using a palette created from the

table’s data.

 Currently, Tableware supports only quantitative data. The program could be

extended to accept any kind of data (text, symbols, etc.) if these could be ordered, either

naturally or manually by the user. For example, a table could describe some relationship

between two types of animals. If the table described cross-breeding, the relationship

between “Donkey” and “Horse” would not be some number, rather “Mule.” Tableware’s

reordering techniques are applicable if the user established a hierarchy among cross-bred

animals; if, for example, a “Liger” (the relationship, or cross-breed, of “Lion” and

“Tiger”) could be considered higher or bigger than “Mule,” then the table could be sorted

by cell value even though it does not contain numerical data.

 When refining the ordering of a table to more closely match an image, Tableware

uses an exhaustive search method that tries all possible orderings. A genetic algorithm

could simplify the matching process. This class of algorithms uses criteria to assess past

results to guide future guesses, much like a football coach reviews poorly executed plays

from past games to improve his team’s performance. To match an image or sort a table

 34

by value, the algorithm could record attributes of and statistics about the rows and

columns involved in a swap that led to a better match, and use this information to swap

other rows and columns with similar attributes.

 Like any software application, Tableware lacks exhaustive functionality for its

intended use. I anticipate that new table visualization techniques will emerge as

computer technology improves that will complement or exceed Tableware’s features.

 35

Bibliography

Dejoie, Roy, George C. Fowler, and David B. Paradice. 1991. Ethical Issues in

Information Systems.

James, Mark. 2006. Silk Icons. Retrieved February 21, 2007, from

http://www.famfamfam.com/lab/icons/silk/famfamfam_silk_icons_v013.zip.

Jenkins, Timothy & Om-Ra-Zeti, Khafra. 1997. Black Futurists in the Information Age.

Unlimited Visions, Inc. & KMT Publications.

Licklider, T. R. 1989. Ten years of rows and columns [spread sheet programs]. BYTE 14,

no. 13: 324-31.

Mankoff, Jennifer, Anind K. Dey, Gary Hsieh, Julie Kientz, Scott Lederer, and Morgan

Ames. 2003. Heuristic evaluation of ambient displays. In CHI '03: Proceedings of

the SIGCHI conference on human factors in computing systems 169-176. New

York, NY, USA: ACM Press.

Mason, Richard O. 1986. Four Ethical Issues of the Information Age. In MIS Quarterly.

Vol. 10, No. 1.

Matthews, Tara, Tye Rattenbury, Scott Carter, Jen Mankoff, Anind Dey. 2003. A

Peripheral Display Toolkit. In University of California, Berkeley Technotes.

UCB//CSD-03-1258.

O’Brien, Kevin J. 2006. Microsoft wins industry standard status for Office. In

International Herald Tribune. Retrieved February 21, 2007, from

http://www.iht.com/articles/2006/12/07/yourmoney/msft.php.

Power, D. J. 2004. A Brief History of Spreadsheets. In DSSResources.com. Retrieved

February 21, 2007, from www.dssresources.com/history/sshistory.html.

 36

Shen, Xiaobin & Eades, Peter. 2005. Using MoneyColor to represent financial data. In

APVis '05: Proceedings of the 2005 Asia-pacific symposium on information

visualization. 125-129. Darlinghurst, Australia, Australia: Australian Computer

Society, Inc.

Spence, I. & Wainer, H. 1997. Who was Playfair? In Chance, 10, 35-37.

Tufte, Edward R. 1990. Envisioning Information. Cheshire, Conn: Graphics Press, 2003

printing.

Tufte, Edward R. 1983. The Visual Display of Quantitative Information. Cheshire, Conn:

Graphics Press.

Weiser, Mark. 1999. The computer for the 21st century. SIGMOBILE

Mob.Comput.Commun.Rev. 3, no. 3: 3-11.

Zachary, Mark & Thralls, Charlotte. 2004. An Interview with Edward R. Tufte. In

Technical Communication Quarterly. Vol. 13, No. 4, 447-462.

