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Tutorial Goals

• Convey the essentials of an immensely useful modeling 
methodology

• Explain two recent developments

– Importance Sampling 
– Rule Ensembles

• Provide the foundation for further study/research

• Reference resources in R

• Show real examples
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Overview

• In a Nutshell, Examples & Timeline 

• Predictive Learning

• Decision Trees

– Regression tree induction
– Desirable data mining properties
– Limitations

• Model Selection

– Bias-Variance Tradeoff
– Cost-complexity pruning
– Cross-Validation
– Regularization via shrinkage (LASSO)
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Overview (2)

• Ensemble Methods

– Ensemble Learning & Importance Sampling (ISLE)
– Generic Ensemble Generation
– Bagging, Random Forest, AdaBoost, MART

• Rule Ensembles

• Interpretation

• Example from Industry 
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Ensemble Methods in a Nutshell

• “Algorithmic” statistical procedure

• Based on combining the fitted values from a number of 
fitting attempts

• Loosely related to:

– Iterative procedures
– Bootstrap procedures

• Original idea:  a “weak” procedure can be strengthened if 
it can operate “by committee” 

– e.g., combining low-bias/ high variance procedures 
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Ensemble Methods In a Nutshell (2)

• Shown to perform extremely well in a variety of scenarios

• Shown to have desirable statistical properties

• Accompanied by interpretation methodology
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Examples
Data Mining Products

Model 1

P re di c t ive  D yn amix
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Examples
Algorithm Response Surfaces

Nearest Neighbor
Decision Tree

Delaunay Triangles
(or Hinging Hyperplanes)

Neural Network
(or Polynomial Network)

Kernel
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Examples
Relative Performance

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

Diabetes Gaussian Hypothyroid German Credit Waveform Investment

Neural Network
Logistic Regression
Linear Vector Quantization
Projection Pursuit Regression
Decision Tree

Er
ro

r R
el

at
iv

e 
to

 P
ee

r T
ec

hn
iq

ue
s (

lo
w

er
 is

 b
et

te
r)

 

10© 2007 Seni & Elder KDD07

Examples
“Bundling” Improves Performance
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Examples
Credit Scoring Performace
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Timeline

• CART (Breiman, Friedman, Stone, Olshen, 1983)

• Bagging (Breiman, 1996)

– Random Forest (Ho, 1995; Breiman 2001)

• AdaBoost (Freund, Schapire, 1997)

• Boosting – a statistical view (Friedman, Hastie, Tibshirani, 
2000)

– Gradient Boosting (Friedman, 2001)
– Stochastic Gradient Boosting (Friedman, 1999)

• Importance Sampling Learning Ensembles (ISLE) 
(Friedman, Popescu, 2003)
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Timeline (2)

• Lasso (Tibshirani, 1996)

– Garotte (Breiman, 1995)
– LARS (Efron, 2004)

– Gradient directed regularization for linear regression (Friedman, 
2004)

– Boosted Lasso (Zhao, 2005)
– Elastic Net (Zou, Hastie, 2005)

• Rule Ensembles (Friedman, Popescu, 2005)

– Stochastic Discrimination (Kleinberg, 2000)
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Overview

• In a Nutshell & Timeline

Predictive Learning

• Decision Trees

– Regression tree induction
– Desirable data mining properties

• Model Selection

– Bias-Variance Tradeoff
– Cost-complexity pruning
– Cross-Validation
– Regularization via shrinkage (LASSO)



8

15© 2007 Seni & Elder KDD07

Predictive Learning
Example

• A simple data set

• Modeling Goals:

– Descriptive: summarize existing data in understandable and 
actionable way

– Predictive: what is the "response" (e.g., class) of new point    ?

………

?M54.5

badM12.0

goodM21.0

ResponsePETI

TI

PE

2 5

1M
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3M
4M

9M

M
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Predictive Learning
Example (2)

• Ordinary Linear Regression (OLR):

• Model:
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Predictive Learning
Example (3)

• Decision Trees

• Descriptive model:

5≥TI

{ }3,2,1 MMMPE ∉

2≥TI

TI

PE

2 5

1M
2M
3M
4M

9M

M

[ ] { }
                         ELSE                          

3,2,1  AND   5 ,2 ⇒∈∈ MMMPETI       bad
     good
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Predictive Learning
Procedure Summary

• Given "training" data

– are measured values of attributes (properties, characteristics) 
of an object

– is the "response" (or output) variable
– are the "predictor" (or input) variables
– is a random sample from some unknown (joint) distribution

• Build a functional model

– Offers adequate and interpretable description of how the inputs affect 
the outputs
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Predictive Learning
Procedure Summary (2)

• Model: underlying functional form sought from data

• Score criterion: judges (lack of) quality of fitted model

• Search Strategy: minimization procedure of criterion

∈= );(ˆ)(ˆ axx FF ℱ family of functions indexed by a

∑
=

=
N

i
ii FyL

N
R

1
));(ˆ,(1)( axa

)
∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

N

i

n

j
jji xaay

N 1

2

1
0

1   :OLR e.g.,

)(minargˆ aa
a

R
)

=
OLR:             direct matrix algebra

Trees, NN, :   heuristic iterative algorithm
Clustering

20© 2007 Seni & Elder KDD07

Overview

• In a Nutshell & Timeline

• Predictive Learning

Decision Trees

– Regression tree induction
– Desirable data mining properties
– Limitations

• Model Selection

– Bias-Variance Tradeoff
– Cost-complexity pruning
– Cross-Validation
– Regularization via shrinkage (LASSO)
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Decision Trees
Induction Overview

• Model:

– : (hyper) rectangles in input space induced by tree cuts
– : estimated response within each rectangle is constant
– : indicator function; 1 if its argument is true 

∑
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Decision Trees
Induction Overview (2)

• Score criterion:

– Regression “loss”

• Squared error:

• Absolute error:

– Prediction “risk”

• Average loss over all predictions –

• Goal: find tree    with lowest prediction risk
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Decision Trees
Induction Overview (3)

• Search

– Goal:                                                           (least squares)

– Unrestricted optimization with respect to            is difficult!

– Region restrictions
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Decision Trees
Growing Algorithm

• Greedy Iterative procedure

– Starting with a single region -- i.e., all given data
– At the m-th iteration:

– i.e., Forward stagewise additive procedure
– When should we stop?

for each region R
for each attribute xj in R

for each possible split sj of xj

record change in score when we partition R into Rl and Rr

Choose (xj , sj ) giving maximum improvement to fit
Replace R with Rl; add Rr
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Decision Trees
Desirable Data Mining Properties

• Ability to deal with irrelevant inputs

– i.e., automatic variable subset selection
– Measure anything you can measure
– Score provided for selected variables ("importance")

• No data preprocessing needed

– Naturally handle all types of variables

• numeric, binary, categorical

– Invariant under monotone transformations:
• Variable scales are irrelevant

• Immune to bad     -distributions (e.g., outliers)

( )jjj xgx =

jx
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Decision Trees
Desirable Data Mining Properties (2)

• Computational scalability

– Relatively fast:

• Missing value tolerant

– Moderate loss of accuracy due to missing values
– Handling via "surrogate" splits

• "Off-the-shelf" procedure

– Few tunable parameters

• Interpretable model representation

– Binary tree graphic

( )NnNO log



14

27© 2007 Seni & Elder KDD07

Decision Trees
Limitations

• Discontinuous piecewise constant model

– In order to have many splits you need to have a lot of data
– In high-dimensions, you often run out of data after a few splits

• Data fragmentation

– Each split reduces training data for subsequent splits 

x

)(xF
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Decision Trees
Limitations (2)

• Not good for low interaction

– e.g.,                                     is worst function for trees

– In order for     to enter model, must split on it

• Path from root to node is a product of indicators

• Not good for          that has dependence on many 
variables
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Decision Trees
Limitations (3)

• High variance caused by greedy search strategy (local 
optima)

– i.e., Small changes in data (sampling fluctuations) can cause big 
changes in tree

– Errors in upper splits are propagated down to affect all splits below it
– Very deep trees might be questionable
– Pruning is important

• What to do next?

– Use other methods when possible
– Fix-up trees: use "ensembles“

• Maintain advantages while dramatically increasing accuracy
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Overview

• In a Nutshell & Timeline

• Predictive Learning

• Decision Trees

– Regression tree induction
– Desirable data mining properties
– Limitations

Model Selection

– Bias-Variance Tradeoff
– Cost-complexity pruning
– Cross-Validation
– Regularization via shrinkage (LASSO)
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Model Selection
What is the “right” size of a tree?

• Dilemma

– If tree (# of regions) is too small, then piecewise constant 
approximation is too crude (bias)  ⇒ increased errors

– If tree is too large, then it fits the training data too closely
(overfitting, increased variance) ⇒ increased errors 
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Model Selection
Bias−Variance Decomposition

• Suppose               , where  

• Consider “idealized” aggregate estimator:

– Average over all possible data sets

• Prediction error of fit          at a point          using squared-
error loss is decomposable:

– Typically, when bias is low, variance is high and vice-versa

ε+= )(XfY ),0(~ 2σε N

)()( XX Dff
)

Ε=

)(Xf
)

0xX =

[ ]
[ ]
[ ] 22 

0000

22 
00

2 
000

)()()()(

)()(

|)()(

σ

σ

+−+−Ε=

+−Ε=

=−Ε=

xxxx

xx

xXxx

ffff

ff

fYErr

)

)

)
[ ] [ ]

[ ] [ ]
2

00
2

22 
00

2 
00

22 
00

2 
00

))(())((

)()()()(

)()()()(

σ

σ

σ

++=

+−Ε+−=

+−Ε+−Ε=

xx

xxxx

xxxx

fVarfBias

ffff

ffff

))

)

)



17

33© 2007 Seni & Elder KDD07

Model Selection
Bias−Variance Schematic

•

•

•

•Truth: )(xf

ε+= )(XfY
Realization:

Fit:

Variance

Model Space ℱ

)(xf
)

Model Bias

Adapted from ESL 7.2

)(XfAverage: 
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Model Selection
Bias−Variance Tradeoff

– Right sized tree,    , when test error is at a minimum

– Overfitting is exacerbated when model (fitting procedure) is highly 
flexible

Model Complexity (e.g., tree size)
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18

35© 2007 Seni & Elder KDD07

Model Selection
Tree Pruning

• Augmented tree score criterion:

– :  “risk” of tree – how good it fits the data
analogous to the residual sum of squares

– :  size of tree – number of terminal nodes
analogous to the model degrees of freedom

– : complexity parameter – cost of adding another var to the model

⇒ Complexity term penalizes for the increased variance associated 
with more complex model

• Goal: find 
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Model Selection
Tree Pruning (2)

• Cost-Complexity Pruning (Cont.)

– is a “meta” parameter that controls the degree of stabilization

• Larger values provides increased regularization ⇒ more stable 
estimates

• : largest tree (        ) ⇒ least stable estimates

• : stump (root only) ⇒ deterministic

• Varying      produces a nested (finite) sequence of subtrees

• Choose the value of    ,      (and thus      ), to minimize future risk 
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Model Selection
Cross−Validation

• Error on the training data is not a useful estimator

– If test set is not available, need alternative method

• Combine measures of fit to obtain “honest” estimate of 
model’s “quality”

– Each measure is constructed from random, non-overlapping 
subset of the data

– E.g., 3-fold CV 
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Model Selection
Cross−Validation (2)

– : tree built on

– :  indexing function

– :  cross-validation estimate of prediction error

i.e., average of the fit measures over the V splits
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Model Selection
Cross−Validation (3)

• Set of models           is indexed by tuning parameter  α, and 
we have

• Idea generalization: can “averaging” over a set of trees help 
correct for overly optimistic trees?

– i.e., combine fitted values instead of measures of fit ⇒ Ensembles
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Model Selection
Regularization via Shrinkage (Lasso − Tibshirani, 1996)

• Consider linear model 

• Standard LR coefficients estimation

• Shrinking: continuous variable selection method

– “penalty” term provides a (deterministic) value that is independent of 
the particular random sample

⇒ stabilizing influence on the criterion being minimized

– promotes reduced variance of the estimated coefficient values
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Model Selection
Regularization via Shrinkage (2)

• Lasso solutions nonlinear in y, and a quadratic programming 
algorithm is used to compute them

• L1 penalty leads to sparse solutions where there are many 
predictors with

– Often improves prediction accuracy
– Easier to interpret
– “Bet on sparsity” principle

• is a “tuning” parameter

– : no regularization… least stable estimates
– : continuous coefficient “paths”

0=ja

0=λ

λ

0>λ

⇒ Typically estimated via cross-validation
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Model Selection
Regularization via Shrinkage (3)

• Lasso 2D estimation illustration

– : least-squares  -- i.e., 

– Error function contours and constraint region
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Model Selection
Regularization via Shrinkage (4)

• Forward stagewise linear regression (Hastie et al, 2001)

– Iterative strategy producing solutions that closely approximates the 
effect of the lasso

– See also LARS (Efron, et al 2004),  Gradient directed regularization 
for linear regression (Friedman, 2005)
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Model Selection
Regularization via Shrinkage (5)

• Lasso coefficient “paths” example:

–
– see R package "lars" 

λ/1≈s
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Model Selection
Regularization Summary

• What is regularization? 

– “any part of model building which takes into account – implicitly or 
explicitly – the finiteness and imperfection of the data and the limited 
information in it, which we can term “variance” in an abstract sense” 
[Rosset, 2003]

• Forms of regularization

– Explicit constraints on model complexity

• Constrained models can equivalently be cast as penalized ones

– Implicit through incremental building of the model

– Choice of robust loss functions
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Model Selection
Regularization Summary (2)

•

•

•

•Truth: )(xf

ε+= )(XfY
Realization:

Fit:

Variance

Model Space ℱ

)(xf
)

)(XLassof
)

Model Bias

Adapted from ESL 7.2

•
•

Regularized Fit:

Restricted Model Space

⇒ smaller prediction error
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Overview 

Ensemble Methods

– Ensemble Learning & Importance Sampling (ISLE)
– Generic Ensemble Generation
– Bagging, Random Forest, AdaBoot, MART

• Rule Ensembles

• Interpretation
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Ensemble Methods
Learning 

• Model:

– : “basis” functions (or “base learners”)

– i.e., linear model in a (very) high dimensional space of derived
variables

• Learner characterization:

– : a specific set of joint parameter values – e.g., split definitions 
at internal nodes and predictions at terminal nodes

– : function class – i.e., set of all base learners of specified 
family
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Ensemble Methods
Learning (2)

• Two-step process – approximate solution to

– Step 1:  Choose points

• i.e., select

– Step 2: Determine weights

• e.g., via regularized LR 
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Ensemble Methods
Example 

• 2 features, 2 classes

⇒ Another example in Appendix 1
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Ensemble Methods
Importance Sampling (Friedman, 2003)

• How to judiciously choose the “basis” functions (i.e.,        )?

• Goal: find “good” so that 

• Connection with numerical integration:

–
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Ensemble Methods
Importance Sampling (2)

• Parameter importance measure: 

– Indicative of relevance of 

– Naive approach:                -- i.e., uniform

– Better idea: inversely related to     ’s “risk”

• i.e.,            has high error  ⇒ lack of relevance of 

– Single point vs. group importance

• i.e., with/out knowledge of the other points that will be used

• Sequential approximation:   ‘s relevance judged in the context of the 
(fixed) previously selected points

– Characterization of        :  “center” and “width”
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Ensemble Methods
Importance Sampling (3)

⇒ The empirically observed strength-correlation tradeoff can be 
understood in terms of the width of

)(prBroad
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)(prNarrow
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• However, many “weak” base learners − i.e.,
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Ensemble Methods
Importance Sampling (4)

• Heuristic sampling strategy  : sampling around      by 
iteratively applying small perturbations to existing problem 
structure

– Generating ensemble members

– is a (random) modification of any of
• Data distribution  − e.g., by re-weighting the observations

• Loss function  − e.g., by modifying its argument

• Search algorithm (used to find minp)

– Width of         is controlled by degree of perturbation
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Ensemble Methods
Generic Ensemble Generation (Friedman, 2003)

• Step 1: Choose        :

– Algorithm control:

• : random sub-sample of size           ⇒ impacts ensemble "diversity"

• : “memory” function  (             )
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m 1p

Forward 
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Ensemble Methods
Generic Ensemble Generation (2)

• Step 2: Choose quadrature coefficients       :

– Given                                , coefficients are obtained by a regularized 
linear regression

– Regularization here helps reduce bias (in addition to variance) of the 
model

– New iterative fast algorithms for various loss functions

• “Gradient Direct Regularization…”, Friedman & Popescu, 2004
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Ensemble Methods
Bagging (Breiman, 1996)

• Bagging = Bootstrap Aggregation

•

•

•

•

•

– i.e., perturbation of the data distribution only
– Parallelizable
– See R command ipred:ipredbagg

2)()ˆ,( yyyyL )−=

2/N=η

)(xmT

 0=υ

{ }M
1/1     ,0 Mcc mo ==

( )

{ }M
m

mmm

mm

Si
iimim

T

TFF
TT

TFyL
Mm

F

m

1

1

)(
1

0

)( write

}
)(  )()(    

);()(    

);()( ,minarg    
{      to1For  

0)(

x

xxx
pxx

pxxp

x

p

⋅+=
=

+=

=
=

−

∈
−∑

υ

ηη

υ

( )                                 L
⇒ no memory

⇒ are large un-pruned
trees 

i.e., not fit to the data (avg)

58© 2007 Seni & Elder KDD07

Ensemble Methods
Bagging − Example 

• Simulated data

– Predictor vars:

– Response var: 

– Training:

• 200 bootstrap samples

– Testing: 
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Ensemble Methods
Bagging − Example  (2)

• Bootstrap trees

Tree 2
…

0

0

0

1

1

1

Tree 1

0

0

1 1

1
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Ensemble Methods
Bagging − Example  (3)

• Test Error

– Trees have high variance on these data due to the correlation in the 
predictors

– Bagging succeeds in smoothing out this variance and hence 
reducing test error
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Ensemble Methods
Bagging − Why it helps?

• Under                     , averaging reduces variance and leaves 
bias unchanged

• Consider “idealized” bagging (aggregate) estimator:

– fit to bootstrap data set

– is sampled from actual population distribution (not training data)

– We can write:

⇒ true population aggregation never increases mean squared error!

⇒ Bagging will often decrease MSE…
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Ensemble Methods
Random Forest (Breiman, 2001)

• Bagging + algorithm randomizing

– Subset splitting
As each tree is constructed…

• Draw a random sample of predictors before each node is split 

• Find best split as usual but selecting only from subset of predictors

⇒ Increased diversity among              − i.e., wider

• Width (inversely) controlled by   

– Speed improvement over Bagging
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sn
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Ensemble Methods
Random Forest (2)

• Potential improvements:

– Different data sampling strategy (not fixed)
– Fit quadrature coefficients to data

• See R command randomForest
Bag RF Bag_6_5%_P RF_6_5%_P

C
om

pa
ra

ti
ve

 R
M

S 
Er

ro
r • xxx_6_5%_P :  6 terminal nodes trees

5% samples without replacement
Post-processing – i.e., using 
estimated “optimal” quadrature
coefficients

• Simulation study with 100 different target
functions (Popescu, 2005) 

• xxx_6_5%_P :  Significantly faster to build!
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• AdaBoost = Adaptive Boosting

•

•

•

•

•

•

– “Real” AdaBoost : extension to regression case (Friedman, 2000)
– See R command boost:adaboost
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Ensemble Methods
AdaBoost (Freund & Schapire, 1997)
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Ensemble Methods
AdaBoost (2)

• Equivalence to Forward Stagewise Fitting Procedure

– We need to show                         is equivalent to line a. above

– is equivalent to line c.

– How weights         are derived/updated
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Ensemble Methods
AdaBoost (3)

• Why exponential loss?

– Implementation convenience

– Meaningful population minimizer:

• i.e., half the log-odds of

• Equivalently, 

• Same minimizer obtained with (negative) binomial log-likelihood

• However, exponential loss is less robust in noisy               
settings

• No natural generalization to K classes  
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• Boosting with any differentiable loss criterion 

• General             and

•

•

•

•

•

•

– See R command gbm
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Ensemble Methods
Gradient Boosting (Friedman, 2001)
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Ensemble Methods
Gradient Boosting / MART

• MART = Multiple Additive Regression Trees

–

• J is a meta-parameter that controls interaction order allowed by 
approximation

– Adding          to model is like adding J separate (basis) functions

⇒ computational efficient update 

⇒  )(xmT J−terminal node regression tree (               )mJJm ∀=   

⇒=   2J “main-effects” only

⇒=   3J two-variable interactions allowed (i.e., second-order effects)

⇒     L value of J should reflect dominant interaction level of target function
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Ensemble Methods
Gradient Boosting / MART (2)

• GB/MART doesn’t choose quadrature coefficients in a 
separate step

– i.e., ISLE recipe:

• However, boosting is still understood as an “incremental 
forward stagewise regression” procedure with Lasso 
penalty (shrinkage controlled by   )

– Note similarity with Forward Stagewise Linear Regression procedure 
with             as predictors
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Ensemble Methods
Parallel vs. Sequential Ensembles 

• Sequential ISLE tend to perform better than parallel ones

– Consistent with results observed in classical Monte Carlo integration

Bag RF

Bag_6_5%_P RF_6_5%_P

C
om

pa
ra

ti
ve

 R
M

S 
Er

ro
r • xxx_6_5%_P :  6 terminal nodes trees

5% samples without replacement
Post-processing – i.e., using 
estimated “optimal” quadrature
coefficients

• Simulation study with 100 different target
functions (Popescu, 2005) 

• Seq_η_ν%_P :  “Sequential” ensemble
6 terminal nodes trees
η: “memory” factor
ν% samples without replacement
Post-processing 

MART Seq_0.01_20%_P

Seq_0.1_50%_P

“Sequential”

“Parallel”
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Overview 

• Ensemble Methods

– Ensemble Learning & Importance Sampling (ISLE)
– Generic Ensemble Generation
– Bagging, Random Forest, AdaBoot, MART

Rule Ensembles

• Interpretation

72© 2007 Seni & Elder KDD07

Ensemble Methods
Rule Ensembles (Friedman & Popescu, 2005)

• Ensemble Recap:

– Model:

– : “basis” functions (or “base learners”)

• Derived predictors capture non-linearities and interactions

– 2-stage fitting process:

i. generate basis functions

Ii. Post fit to the data via regularized regression

– Simple representation offered by a single tree no longer available 
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Ensemble Methods
Rule Ensembles (2)

• Trees as collection of conjunctive rules:

– These simple rules,                   , can be used as base learners

– Main motivation is interpretability
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Ensemble Methods
Rule Ensembles (3)

• Rule-based model:

– Still a piecewise constant model

• Linear targets can still be problematic…

– We can complement the non-linear rules with purely linear terms:

• Original continuous variables     can be replaced by their “winzorized” 
versions
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Ensemble Methods
Rule Ensembles (4)

• Rule generation

– Use some approximate optimization approach to solve 

where      are the split definitions for rule

– Take advantage of a decision tree ensemble

• E.g., one rule for each terminal node in each tree

• In the case of shallow trees (boosting), regions corresponding to non-
terminal nodes can also be included

– Each      terminal node tree generates                rules
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Ensemble Methods
Rule Ensembles (5)

• Rule fitting

– Linear regularized procedure

• total number of rules

• total number of linear terms

– Tree size controls rule “complexity”
• A      terminal node tree can generate rules involving up to    factors

• Modeling     order interactions requires rules with     or more factors
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Overview 

• Ensemble Methods

– Ensemble Learning & Importance Sampling (ISLE)
– Generic Ensemble Generation
– Bagging, Random Forest, AdaBoot, MART

• Rule Ensembles

Interpretation
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Ensemble Methods
Interpretation 

• Importance scores

– Which particular variables are the most influential? 

• i.e., relative influence or contribution in predicting the response

– Higher importance variables are more likely to be of interest
– Detection of “masking”

• Interaction statistic 

– Which variables are involved in interactions with other variables? 
– Strength and degrees of those interactions

• Partial dependence plots

– Nature of the dependence of the response on influential inputs
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Ensemble Methods
Interpretation − Example

• Simulated data

– Predictor vars:

– Response var: 

– Training: 

10=n
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Ensemble Methods
Interpretation − Example (2)

• Single tree vs. rule-ensemble

X1=  -10.51-0.6740

X1 = 1 & X4 ∈ {1} 0.510.9142

X1 = -1 & X5 ∈ {1} &
X7  ∈ {0, 1} 0.111.0046

X1 =  -1 & X6 ∈ {-1, 0}0.351.2557

X1 = -1 & X6 ∈ {-1}0.35-1.0071

X1 = 1 & X2 ∈{-1, 0} & 
X3 ∈{-1, 0}0.24-1.5983

X1 = 1 & X2 ∈{0, 1} & X3 
∈ {0, 1} 0.171.3762

X1 = -1 & X5 ∈{ -1}0.14-2.2595

X1 = 1 & X2 ∈{0, 1}0.301.80100

RuleSuppCoefImp
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Ensemble Methods
Interpretation − Example (3)

• Variable importance

– See R package “rulefit”
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Ensemble Methods
Interpretation − Example (4)

• Interaction statistic – “null” adjusted
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Ensemble Methods
Interpretation − Example (5)

• Two-variable interaction statistic:           and    ( )* ,5X ( )* ,1X
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Ensemble Methods
Interpretation − Example (7)

• Two-Variable Partial Dependencies

– Effect of      and       on response after accounting for the (average) 
effects of the other variables… 
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Appendices 

1. Visualizing Bagging and AdaBoost Decision Boundaries

2. On AdaBoost: Equivalence to Forward Stagewise Fitting 
Procedure

3. On AdaBoost: Prove population minimizer of exponential loss is 
the half the log-odds of

4. On Gradient Boosting: Solving for robust loss criterion

5. On MART: tree specific optimization

• LAD-regression algorithm

6. Interpretation Statistics for Ensemble Methods

7. On Complexity and Generalized Degrees of Freedom

)|1Pr( x=Y
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Appendix 1
Visualizing Bagging and AdaBoost (2-dimensional, 2-class example)
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Appendix 1
Decision boundary of a single tree
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Appendix 1
100 bagged trees leads to smoother boundary
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Appendix 1
AdaBoost, after one iteration (CART splits, larger points have great weight)
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Appendix 1
After 3 iterations of AdaBoost
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Appendix 1
After 20 iterations of AdaBoost
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Appendix 1
Decision boundary after 100 iterations of AdaBoost
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Appendix 2
On AdaBoost – Equivalence to FSF Procedure
• We have

– doesn’t depend on         , thus can be regarded as an observation weight

– Solution to (1) can be obtained in two steps:

• Step1: given    , solve for  

• Step2: given     , solve for
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Appendix 2
On AdaBoost – Equivalence to FSF Procedure (2)

• Step1: given   , solve for

– i.e.,      is the classifier that minimizes the weighted error rate (line a.)

• Step 2: given    , solve for  
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Appendix 2
On AdaBoost – Equivalence to FSF Procedure (3)

• Step2: (cont)
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Appendix 2
On AdaBoost – Equivalence to FSF Procedure (4)

• Finally, weight update         expression:

– is the quantity in line 2c

– Equivalence to d. √

⇒ AdaBoost minimizes the exponential loss with a forward-stagewise additive 
modeling approach! 
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Appendix 3
On AdaBoost – Population Minimizer
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Appendix 4
On Gradient Boosting 

• Solving for robust loss criterion (e.g., absolute loss, binomial
deviance) requires use of a “surrogate”, more convenient, 

• Like before, we solve                                           in two 
steps:

– Step1: find            …  here we use

– Step2: given     , solve for
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Appendix 4
On Gradient Boosting (2)

• is derived from analogy to numerical optimization in 
function space

– Learning:                            − i.e., minimum “risk”

– Each possible     is a “point” in       − i.e., 
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Appendix 4
On Gradient Boosting (3)

• Steepest descent in function space (“non-parametric” view)

– Gradient components

– Step size (line search):  
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Appendix 4
On Gradient Boosting (4)

• Problem:      defined on training data only

– Select parameterized function (defined for all   ):

– Choose     so that           is most “parallel” to

– Surrogate criterion    : 
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Appendix 5
On MART

• Adding         to model is like adding J separate (basis) 
functions

• Since regions      are disjoint, we can do separate updates 
in each terminal node

– Step2:   was:

now:

i.e., optimal constant update in each terminal region

)(xmT

( ) ∑
=

∈=
J

j
jj

J
jj RIbRbT

1
1 )(},{; xx

jmmjm bc ⋅=γwith  

∑
=

−− ∈⋅+=⋅+=⇒
J

j
jmjmmmmmmm RIbcFTcFF

1
11 )()(     )(  )()(    xxxxx

∑
=

− ∈+=
J

j
jmjmm RIF

1
1 )()(   xx γ

jmR

( )∑
=

− ⋅+=
N

i
miimi

c
m TcFyLc

1
1 );()( ,minarg pxx

( )∑
∈

− +=
jmi R

imijm FyL
x

x γγ
γ

)(  ,minarg 1

106© 2007 Seni & Elder KDD07

Appendix 5
On MART (2)

• Summary:
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Appendix 5
On MART (3)

• LAD-regression:

– More robust than

– Resistant to outliers in    …     
trees already providing 
resistance to outliers in

– Algorithm:
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Appendix 6
Interpretation − Variable Importance

• Single tree measure (CART) :

– i.e., sum the "goodness of split" scores whenever     is used in a 
surrogate split

– Sum is over all internal nodes in the tree

– If     was used as the primary split in some node, then corresponding    
score           is used in the summation

– Normalized measure:

• i.e., only the relative magnitudes of the         are interesting

• Tree ensemble generalization

– Average over all of the trees:

( ) ( ) ( )∑
∈

=⋅Ι=ℑ
Tt

tvl ltvIstvx )(~),(ˆ
)(

lx

lx
( )lsl,Ι̂

( ) ( ) ( )lmljj xxx ℑℑ⋅=
≤≤1

max/100Imp

( )jxℑ

( ) ( )∑
=

ℑ=ℑ
M

m
mjj Tx

M
x

1

;1

Tt∈



55

109© 2007 Seni & Elder KDD07

Appendix 6
Interpretation − Variable Importance (2)

• Rule ensemble measure:

– Term (global) importance: absolute value of coefficient of standardized 
predictor

• Rule term:                                        where rule’s support is  

• Linear term: 

– Term (local) importance: at each point    … absolute change in          
when term is removed

• Rule term:

• Linear term: 
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Appendix 6
Interpretation − Partial Dependence Plots (Friedman, 2001)

• Visualize the effect on       of  a small subset of the important 
input variables  

– after accounting for the (average) effects of the other (“complement”) 
variables       – i.e.,

–

– Partial dependence on     :

– Approximated by:

are the values of      occurring in the training data 
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Appendix 6
Interpretation − Partial Dependence Plots (2)

• Example

– The shape of the function on either variable is affected by the values 
of the other, suggesting the presence of an interaction 
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Appendix 6
Interpretation − Interaction Statistic (Friedman, 2005)

• If     and    do not interact, then

– can be expressed as sum of two functions:

i.e.,             does not depend on     ;             is independent of

– Thus, partial dependence on                  can be decomposed:

i.e., sum of respective partial dependencies

• Test for the presence of           interaction
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Appendix 6
Interpretation − Interaction Statistic (2)

• If     does not interact with any other variable

– can be expressed as sum of two functions:

where          is a function only of 

– Thus, 

• Test whether     interacts with any other variable
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Appendix 7
Complexity of Ensembles

• Ensembles generalizing well was a theoretical surprise

– Importance Sampling helps us understand some behavior 

• Chief danger of data mining:  Overfit

• Occam’s razor:  regulate complexity to avoid overfit

• But, does the razor work?
- counter-evidence has been gathering

• What if complexity is measured incorrectly?

• Generalized degrees of freedom (Ye, 1998)

• Experiments:  single vs. bagged decision trees

• Summary:  factors that matter

Outline:
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Appendix 7
Overfit models generalize poorly
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Appendix 7
Occam’s Razor

• Nunquam ponenda est pluralitas sin necesitate
“Entities should not be multiplied beyond necessity” 
“If (nearly) as descriptive, the simpler model is more correct.”

• But, gathering doubts: 

– Ensemble methods which employ multiple models (e.g., 
bagging, boosting, bundling, Bayesian model averaging

– Nonlinear terms have higher (or lower) than linear effect
– Much overfit is from excessive search (e.g., Jensen 2000), rather 

than over-parameterization
– Neural network structures are fixed, but their degree of fit grows 

with time

• Domingos (1998) won KDD Best Paper arguing for its death

– What if complexity is measured incorrectly?
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Appendix 7
Target Shuffling can measure “over search”
(e.g., Battery MTC, Monte Carlo Target in CART β)

• Break link between target, Y, and features, X
by shuffling Y to form Ys.

• Model new Ys ~ f(X)

• Measure quality of resulting (random) model

• Repeat to build distribution

->  Best (or mean) shuffled (i.e., useless) model 
sets the baseline above which true model performance 
may be measured
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Appendix 7
Complexity can be measured by the Flexibility of the Modeling Process

• Generalized Degrees of Freedom, GDF (Ye, JASA 3/1998)

– Perturb output, re-fit procedure, 
measure changes in estimates

• Covariance Inflation Criterion, CIC (Tibshirani & Knight, 1999) 

– Shuffle output, re-fit procedure, 
measure covariance between new and old estimates.

• Key step (loop around modeling procedure) reminiscent of 
Regression Analysis Tool, RAT (Faraway, 1991) -- where 
resampling tests of a 2-second procedure took 2 days to run.
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Appendix 7
Generalized Degrees of Freedom (GDF)
• #terms in Linear Regression (LR) = DoF, k

• Nonlinear terms (e.g., MARS) can have effect of ~3k (Friedman, Owen ‘91)

• Other parameters can have effects < 1 
(e.g., under-trained neural networks) 

Procedure (Ye, 1998):

• For LR, k = trace(Hat Matrix) = Σ δyhat / δy

• Define GDF to be sum of sensitivity of each fitted value, yhat, to perturbations in the 
corresponding output, y.  That is, instead of extrapolating from LR by counting terms, use 
alternate trace measure which is equivalent under LR.

• (Similarly, the effective degrees of freedom of a spline model is estimated by the trace of 
the projection matrix, S:  yhat = Sy )

• Put a y-perturbation loop around the entire modeling process (which can involve multiple 
stages)
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Appendix 7
GDF computation
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Appendix 7
Example:  data surface is piecewise constant
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Appendix 7
Additive N(0,.5) noise
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Appendix 7
100 random training samples
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Appendix 7
Estimation Surfaces for bundles of 5 trees

4-leaf trees 8-leaf trees
(some of the finer structure is real)

Bagging produces gentler stair-steps than raw tree 
(illustrating how it generalizes better for smooth functions)
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Appendix 7
Equivalent tree for 8-leaf bundle (25% pruned)

So a bundled tree is still a tree.  
But is it as complex as it looks?
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Appendix 7
Experiment: Introduce selection noise (an additional 8 candidate input variables)

Estimation surface for
5-bag of 4-leaf trees

… for 8-leaf trees

Main structure here is clear enough for simple models to avoid noise inputs
but their eventual use leads to a distribution of estimates on 2-d projection.
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Appendix 7
Estimated GDF vs. #parameters
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Appendix 7
Ensembles & Complexity Summary

• Bundling competing models improves generalization.

• Different model families are a good source of component diversity.

• If we measure complexity as flexibility (GDF) 
the classic relation between complexity and overfit is revived.

– The more a modeling process can match an arbitrary change made to its output, the 
more complex it is.

– Simplicity is not parsimony.

• Complexity increases with distracting variables.

• It is expected to increase with parameter power and search thoroughness, and 
decrease with priors, shrinking, and clarity of structure in data.  Constraints 
(observations) may go either way…

• Model ensembles often have less complexity than their components.

• Diverse modeling procedures can be fairly compared using GDF


