From Trees to Forests and Rule Sets
A Unified Overview of Ensemble Methods

Giovanni Seni

G.Seni@ieee.org
PDF Solutions, Inc., Santa Clara University

John Elder

elder@datamininglab.com
Elder Research, Inc.

13t™ Intl. Conf. on Knowledge Discovery and Data Mining
(KDD 2007)

Tutorial Goals

» Convey the essentials of an immensely useful modeling
methodology

* Explain two recent developments

— Importance Sampling
— Rule Ensembles

» Provide the foundation for further study/research
» Reference resources in R

* Show real examples
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Overview

In a Nutshell, Examples & Timeline

Predictive Learning

Decision Trees

— Regression tree induction
— Desirable data mining properties
— Limitations

Model Selection

Bias-Variance Tradeoff
Cost-complexity pruning
Cross-Validation

Regularization via shrinkage (LASSO)
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Overview (2)

Ensemble Methods

— Ensemble Learning & Importance Sampling (ISLE)
— Generic Ensemble Generation
— Bagging, Random Forest, AdaBoost, MART

Rule Ensembles

Interpretation

Example from Industry
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Ensemble Methods in a Nutshell

» “Algorithmic” statistical procedure

+ Based on combining the fitted values from a number of
fitting attempts

» Loosely related to:

— lterative procedures
— Bootstrap procedures

+ Original idea: a “weak” procedure can be strengthened if
it can operate “by committee”

— e.g., combining low-bias/ high variance procedures

© 2007 Seni & Elder KDDO07

Ensemble Methods In a Nutshell (2)

+ Shown to perform extremely well in a variety of scenarios
+ Shown to have desirable statistical properties

* Accompanied by interpretation methodology

© 2007 Seni & Elder KDDO7 6




Examples
Data Mining Products
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Examples
Algorithm Response Surfaces

Delaunay~TriangIes
(or Hinging Hyperplanes)

Kernel Neural Network
© 2007 Seni & Elder KDDO7 (or Polynomial Network) ¢




Examples
Relative Performance

o~ 100
8 —o—Neural Network
=1
B 90 — — |~®—Logistic Regression | _ _ _ _ _ _ __ _________ ___ __ __ [
»n ~—&—Linear Vector Quantization
o 80 Projection Pursuit Regression\ A ____/ \ ____ [/ _ o
g =X¥=Decision Tree
=]
fnl .70
72}
3

.60
2=y
£
[5) .50
o
=
5 40 -—-——----N\N-""""""AS" """ NS\
(5]
=9
o B30 -—-—————--N-"—"-"-"Sf- - - -———=
=
o
>
‘5 20
=
[3]
[T
8
LE .00

Diabetes Gaussian Hypothyroid German Credit Waveform Investment
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Examples
“Bundling” Improves Performance
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Examples
Credit Scoring Performace
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Timeline

+ CART (Breiman, Friedman, Stone, Olshen, 1983)

» Bagging (Breiman, 1996)
— Random Forest (Ho, 1995; Breiman 2001)
» AdaBoost (Freund, Schapire, 1997)

» Boosting — a statistical view (Friedman, Hastie, Tibshirani,
2000)

— Gradient Boosting (Friedman, 2001)
— Stochastic Gradient Boosting (Friedman, 1999)

* Importance Sampling Learning Ensembles (ISLE)
(Friedman, Popescu, 2003)
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Timeline (2)

» Lasso (Tibshirani, 1996)

Garotte (Breiman, 1995)
LARS (Efron, 2004)

Gradient directed regularization for linear regression (Friedman,
2004)

Boosted Lasso (Zhao, 2005)
Elastic Net (Zou, Hastie, 2005)

* Rule Ensembles (Friedman, Popescu, 2005)

— Stochastic Discrimination (Kleinberg, 2000)

© 2007 Seni & Elder KDDO7 13

Overview

» Predictive Learning
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Predictive Learning
Example

* A simple data set

PE
Tl PE Response
M9 @ 00
1.0 M2 good @ [5) “‘ 16}
2.0 M1 bad ‘ . ‘C) ‘. .
M4 Q (@)
M3 .Q ° (@] ‘. o o
M2
45 M5 ? M1 e o @
> Tl
2 5
* Modeling Goals:
— Descriptive: summarize existing data in understandable and
actionable way
— Predictive: what is the "response” (e.g., class) of new point O7?
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Predictive Learning
Example (2)
* Ordinary Linear Regression (OLR):
PE
M9 @ 0 0
) @ ©o
(@) @) (¢]
e @ @ O
) (©) )
M4 Q (@)
M3 .Q ° (@) ‘. o o
mlz e o @)
> Tl
2 5
= \ = ® Not flexible
e Model: F(xX)=a,+ » ax, E(x)>0 =
(X) =4, Z TR COELUR B eough
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Predictive Learning
Example (3)

* Decision Trees

PE
M9 @ 0 0
(¢) e O
() (©) @
@ O @ o i
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Mé|l @ ()
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M2
M1 o O ()
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2 5

 Descriptive model: Tl [2,5] AND PE e {M1,M2,M3}=pad
ELSE good

© 2007 Seni & Elder KDDO07

Predictive Learning
Procedure Summary

H " g " N
* Given "training" data D ={y,, X, X, =, X}, =1V, %}
- ¥, X; are measured values of attributes (properties, characteristics)
of an object

— Y, is the "response” (or output) variable
— X; are the "predictor” (or input) variables
— D is a random sample from some unknown (joint) distribution

 Build a functional model y=F(x,x,,---,X,)=F(X)

— Offers adequate and interpretable description of how the inputs affect
the outputs

© 2007 Seni & Elder KDDO7




Predictive Learning
Procedure Summary (2)

* Model: underlying functional form sought from data

F(x)=F(x;a)e #  family of functions indexed by a
« Score criterion: judges (lack of) quality of fitted model

R(@) =ﬁz L(y,F(x:a))  ecg.OLR: ;Z(y -ao_iajxjj

i=1 j=1

« Search Strategy: minimization procedure of criterion

A . B OLR: direct matrix algebra
a=argminR@) @ i
a Trees, NN, : heuristic iterative algorithm
Clustering
© 2007 Seni & Elder KDDO7 19

Overview

» Decision Trees

— Regression tree induction
— Desirable data mining properties
— Limitations

© 2007 Seni & Elder KDDO7 20
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Decision Trees
Induction Overview

M A
« Model: y=T(x)=>¢,l(xeR))

m=1

— R, : (hyper) rectangles in input space induced by tree cuts
— ¢, :estimated response within each rectangle is constant
— I(---) : indicator function; 1 if its argument is true

© 2007 Seni & Elder Adapted from ESL 9.2 KDDO7
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Decision Trees
Induction Overview (2)

+ Score criterion:
— Regression “loss”
« Squared error: L(y,¥)=(y—Y)’

« Absolute error: L(y,¥)=|y—V|

— Prediction “risk”

* Average loss over all predictions — R(T)=E,  L(y,T (X))

* Goal: find tree T with lowest prediction risk

© 2007 Seni & Elder KDDO7
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Decision Trees
Induction Overview (3)

» Search § =T(X,)
A N T 2
— Goal: {ém,Rm}lM —argminZ{yi —{Zcml(xi eRm)} (least squares)
fem R 1" 21 [

— Unrestricted optimization with respect to {R}"" is difficult!

— Region restrictions

X, X,
RS
R, + Disjoint
X \/  Cover space
* "Simple*
R1
X X,
© 2007 Seni & Elder KDDO7 23

Decision Trees
Growing Algorithm

» Greedy lterative procedure

— Starting with a single region -- i.e., all given data
— At the m-th iteration:

for each region R

for each attribute x; in R
for each possible split s; of ;
record change in score when we partition R into R' and R
Choose (X , S;) giving maximum improvement to fit
Replace R with R!; add R"

— i.e., Forward stagewise additive procedure
— When should we stop?

© 2007 Seni & Elder KDDO7 24
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Decision Trees
Desirable Data Mining Properties

+ Ability to deal with irrelevant inputs

— i.e., automatic variable subset selection
— Measure anything you can measure
— Score provided for selected variables ("importance")

* No data preprocessing needed

— Naturally handle all types of variables
* numeric, binary, categorical

— Invariant under monotone transformations: x; = gj(xj)

« Variable scales are irrelevant

* Immune to bad X;-distributions (e.g., outliers)

© 2007 Seni & Elder KDDO7 25

Decision Trees
Desirable Data Mining Properties (2)

+ Computational scalability

— Relatively fast: O(nN log N )

* Missing value tolerant

— Moderate loss of accuracy due to missing values
— Handling via "surrogate" splits

"Off-the-shelf" procedure

— Few tunable parameters

Interpretable model representation

— Binary tree graphic

© 2007 Seni & Elder KDDO7 26
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Decision Trees
Limitations

* Discontinuous piecewise constant model
F(x)

4}

— In order to have many splits you need to have a lot of data
— In high-dimensions, you often run out of data after a few splits

» Data fragmentation

— Each split reduces training data for subsequent splits

© 2007 Seni & Elder KDDO7

Decision Trees
Limitations (2)

« Not good for low interaction F*(x)

- eg, F*(x)z a, +Zajxj is worst function for trees
j=1

£ (X,- ) (no interaction, additive)

— In order for X, to enter model, must split on it

» Path from root to node is a product of indicators

» Not good for F*(x)that has dependence on many
variables

© 2007 Seni & Elder KDDO7
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Decision Trees
Limitations (3)

» High variance caused by greedy search strategy (local
optima)

i.e., Small changes in data (sampling fluctuations) can cause big
changes in tree

Errors in upper splits are propagated down to affect all splits below it

Very deep trees might be questionable

Pruning is important

* What to do next?

— Use other methods when possible
— Fix-up trees: use "ensembles*

* Maintain advantages while dramatically increasing accuracy

© 2007 Seni & Elder KDDO07 29

Overview

» Model Selection

Bias-Variance Tradeoff
Cost-complexity pruning
Cross-Validation

Regularization via shrinkage (LASSO)

© 2007 Seni & Elder KDDO7 30
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Model Selection
What is the “right” size of a tree?

* Dilemma

— If tree (# of regions) is too small, then piecewise constant
approximation is too crude (bias) = increased errors

— If tree is too large, then it fits the training data too closely
(overfitting, increased variance) = increased errors

© 2007 Seni & Elder KDDO07 31

Model Selection
Bias—Variance Decomposition

« Suppose Y-=f(X)+swhere z~N(©,0%

» Consider “idealized” aggregate estimator: f(x)=E f,(X)

— Average over all possible data sets

« Prediction error of fit f(X) at a point X=x,using squared-
errorloss is decomposable:

Err(xo):E[Y - f(xo)\X=x0]2 N :E[f(xo)_ f(xo)]2 +E[f(x0)— f(x(,)]2 +07
—E[f(x)- Fx,)] +0 = [Fxo) = F o) +E[F () - F (x| +07
—E[f (x,)— Fxo)+ T(xg) = F(x,)] +07 | = Bias?(F(x,))+Var(F(x,))+0°

— Typically, when bias is low, variance is high and vice-versa

© 2007 Seni & Elder KDDO7 32
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Model Selection
Bias—Variance Schematic

Realization:
Y=f(X)+e o

Truth: f (x) /"

Model Bias |

Variance

Model Space F

Fit: f(x)

© 2007 Seni & Elder Adapted from ESL 7.2 KDDO07
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Model Selection
Bias—Variance Tradeoff

High Bias Low Bias
Low Variance High Variance
- Q---m-- s >
o
=
w
<
2
o
3 Test Sample
2
o

Training Sample

=

Low M High
Model Complexity (e.g., tree size)

— Right sized tree, M’, when test error is at a minimum

— Overfitting is exacerbated when model (fitting procedure) is highly

flexible

© 2007 Seni & Elder Adapted from ESL 7.1 KDDO07
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Model Selection
Tree Pruning

» Augmented tree score criterion: R, (T)=R(T)+a-[T|

— R(T) : “risk” of tree — how good it fits the data
analogous to the residual sum of squares

— [T| : size of tree — number of terminal nodes
analogous to the model degrees of freedom
— «a : complexity parameter — cost of adding another var to the model

= Complexity term penalizes for the increased variance associated
with more complex model

« Goal: find T, =min, R, (T)

© 2007 Seni & Elder KDDO7 35

Model Selection
Tree Pruning (2)

» Cost-Complexity Pruning (Cont.)
— «a is a “meta” parameter that controls the degree of stabilization

» Larger values provides increased regularization = more stable
estimates

« a=0:largesttree (T = least stable estimates

max )

e o =0 : stump (root only) = deterministic

» Varying & produces a nested (finite) sequence of subtrees

Tow T, T, | - | root

I I I I
a=0 a, a, a, a>>0

+ Choose the value of &, ¢¢"(and thus T:*), to minimize future risk ﬁﬁa)

© 2007 Seni & Elder KDDO7 36
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Model Selection
Cross—Validation

» Error on the training data is not a useful estimator

— If test set is not available, need alternative method

* Combine measures of fit to obtain “honest” estimate of

model’s “quality”

— Each measure is constructed from random, non-overlapping

subset of the data
- E.g., 3-fold CV

D, Tram ]—VT o)
D, Tram
>

0
D, Tram :I—VT 3)
Tram

© 2007 Seni & Elder KDDO7
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Model Selection
Cross—Validation (2)

D, Tram 1 D, | Train|
T(l 3

D, Tram D,
D D

— T¥ : tree built on D-D,

>
}T (2) D, Tram :|—>T 3)
Tram

V}: indexing function

- RY = ZL(y T*O(x)) : cross-validation estimate of prediction error

i.e., average of the fit measures over the V splits

© 2007 Seni & Elder KDDO7
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Model Selection
Cross—Validation (3)

+ Set of models {rv )} is indexed by tuning parameter «, and
we have

12 4 6 8 9 10 12 15 28 34
I S S S S N T N N

R (a)= iL(yi,T:“’(xi))

z‘._.
06

Xeval Relative Error

04
L

L A BN

02

T T T T T T T T T
Inf 0.1 0077 0037 0011 0.0041
o

+ |dea generalization: can “averaging” over a set of trees help
correct for overly optimistic trees?

— i.e., combine fitted values instead of measures of fit = Ensembles

© 2007 Seni & Elder KDDO07 39

Model Selection
Regularization via Shrinkage (Lasso — Tibshirani, 1996)

« Consider linear model F(x=a,+Yax,
« Standard LR coefficients estimation a,}=argmin 3" L(y, z;ajxij)
1aj}

» Shrinking: continuous variable selection method

{é}_asso} = argaTin Z:\i] L(yi, Z?:] a]-Xij) +EZT I‘aj‘

(_—’\_—/j “penalty” term provides a (deterministic) value that is independent of
%, the particular random sample
= stabilizing influence on the criterion being minimized
— promotes reduced variance of the estimated coefficient values
© 2007 Seni & Elder KDDO7 40
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Model Selection
Regularization via Shrinkage (2)

* Lasso solutions nonlinear in y, and a quadratic programming
algorithm is used to compute them

* L1 penalty leads to sparse solutions where there are many
predictors with a; =0 >

— Often improves prediction accuracy ——— . wi 1 ‘
— Easier to interpret
— “Bet on sparsity” principle

« 1 is a “tuning” parameter = Typically estimated via cross-validation

— A =0 :no regularization... least stable estimates
— A >0 continuous coefficient “paths”

© 2007 Seni & Elder KDDO7 41

Model Selection
Regularization via Shrinkage (3)

e Lasso 2D estimation illustration
- L(") : least-squares --i.e.,

2
{8,,4,,4,} = ar%n}linzi’il(yi —a, — X _azxiz) + ZQal\ +‘az‘)
aJ

— Error function contours and constraint region

a, If first point where contours hit
constraint region occurs at a corner,
) then one parameter a; is zero
é Lasso

© 2007 Seni & Elder KDDO7 42
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Model Selection
Regularization via Shrinkage (4)

» Forward stagewise linear regression (Hastie et al, 2001)

— lterative strategy producing solutions that closely approximates the

effect of the lasso

Initialize ﬁj =0; £>0; M large

 After M < = iterations, many For m=1to M {
a; will be 0 // Select predictor that best fits current residuals
N n 2
* In general, éJ(MX<‘aAJLS‘ (. ):ar%xr?)inZ{yi *;élxn *“Xu}
// Increment/decrement a by infinitesimal amount

e M=~1/4 a, «a. +e-sign(a’)

}

write F(x) =" ax

— See also LARS (Efron, et al 2004), Gradient directed regularization
for linear regression (Friedman, 2005)

© 2007 Seni & Elder KDDO7 43

Model Selection
Regularization via Shrinkage (5)

» Lasso coefficient “paths” example:

et lcarvol
<t Rkt

- pagts
T sibph

— S~ l/l Inln nla ﬂr-; . nlr. Jrﬂ |‘n
— see R package "lars"

Shiinkage Fatior s

© 2007 Seni & Elder KDDO7 44
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Model Selection
Regularization Summary

* What is regularization?

— “any part of model building which takes into account — implicitly or
explicitly — the finiteness and imperfection of the data and the limited
information in it, which we can term “variance” in an abstract sense”
[Rosset, 2003]

* Forms of regularization
— Explicit constraints on model complexity

» Constrained models can equivalently be cast as penalized ones

— Implicit through incremental building of the model

— Choice of robust loss functions

© 2007 Seni & Elder KDDO07 45

Model Selection
Regularization Summary (2)

“Realization:
Y=f(X)+ea

Model Space #

Truth: f (x) Fit: f(x)

Regularized Fit: f°(X)

Model Bias |
[ = smaller prediction error

~

Restricted Model Space

Variance

© 2007 Seni & Elder Adapted from ESL 7.2 KDDO07 46
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Overview

» Ensemble Methods

— Ensemble Learning & Importance Sampling (ISLE)
— Generic Ensemble Generation
— Bagging, Random Forest, AdaBoot, MART

© 2007 Seni & Elder KDDO7 47

Ensemble Methods

Learning

* Model: F(X):CojLZ\'\nA,lcme(x)

— {T,0}" : “basis” functions (or “base learners”)

— i.e., linear model in a (very) high dimensional space of derived
variables

« Learner characterization: T7,00=T(x:p,)

— P, : a specific set of joint parameter values — e.g., split definitions
at internal nodes and predictions at terminal nodes

— {Tx:P)kr : function class — i.e., set of all base learners of specified
family

© 2007 Seni & Elder KDDO7 48
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Ensemble Methods
Learning (2)

* Two-step process — approximate solution to

N
Pt = min, 3 Llyc,+ 3 T, 0y

{Cm>Pmlo i=1

— Step 1: Choose points {p,,}!"

. ie., select {T,00" < {T(x;p)}

peP

— Step 2: Determine weights |,

* e.g., via regularized LR

© 2007 Seni & Elder KDDO7
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Ensemble Methods

Example

» 2 features, 2 classes

o

x2

04

0.0

x1
= Another example in Appendix 1

© 2007 Seni & Elder KDDO7
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Ensemble Methods
Importance Sampling (Friedman, 2003)

* How to judiciously choose the “basis” functions (i.e., .} )?

+ Goal: find “good” b.};" sothat Fx;{p,}".a, ") =F(x)

+ Connection with numerical integration:  [Eg= [[a@T (cpxp

- [1@ap~XY Wi, =3 woa(p, )T (xPy)

M
) =2 T (Xpy)
m=1

V8. Accuracy improves

when we choose
more points from this
region...

Py P Py By By By B Ry Py By Py\ PaFyPy )Py Pig Py

© 2007 Seni & Elder KDDO7 51

Ensemble Methods

Importance Sampling (2)

« Parameter importance measure:r(p)

Indicative of relevance of p

Naive approach: r(p,) iid --i.e., uniform

Better idea: inversely related to p.’s “risk”

* i.e., T(x;p,) has high error = lack of relevance of p,,

Single point vs. group importance
* i.e., with/out knowledge of the other points that will be used

» Sequential approximation: p‘s relevance judged in the context of the
(fixed) previously selected points

Characterization of r(p): “center” and “width”

© 2007 Seni & Elder KDDO7 52
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Ensemble Methods

Importance Sampling (3)

Narrow r(p) Broad r(p)

« Ensemble {T(x;p,)}!" of “strong” base » Diverse ensemble — i.e., predictions are

learners —i.e., all with Risk(p,,) = Risk(p") not highly correlated with each other

* T(x;p,)s Yield similar highly correlated « However, many “weak” base learners — i.e.,
predictions = unexceptional performance Risk(p,,) >> Risk(p") = poor performance

= The empirically observed strength-correlation tradeoff can be
understood in terms of the width of r(p)

© 2007 Seni & Elder KDDO7 53

Ensemble Methods

Importance Sampling (4)

« Heuristic sampling strategy r(p): sampling around p* by
iteratively applying small perturbations to existing problem

structure
— Generating ensemble members T,(x)=T(x;p,,)
For m=1to M {
P, = PERTURB, {arg niity, E;xy;ﬁl.-'?(y,T(X;p))}
}

— PERTURB{] is a (random) modification of any of
+ Data distribution — e.g., by re-weighting the observations
* Loss function — e.g., by modifying its argument
+ Search algorithm (used to find min,)

— Width of r(p) is controlled by degree of perturbation

© 2007 Seni & Elder KDDO7
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Ensemble Methods

Generic Ensemble Generation (Friedman, 2003)

+ Step 1: Choose |, }":

Fo (X) =0
For m=1to M {
Forward Pn =argmin Y L(y,, F, ) +T(X;5p))
Stagewise P ies. ()
Fitting T.(X)=T(Xp,)
Frocedure Fu(0 = Fy 0040 T, ()
}
Modification of write {T, (0},

data distribution

Modification of loss function

(“sequential” approximation)

— Algorithm control: L,7n,0
* S, (n): random sub-sample of size <N = impacts ensemble "diversity"

o Fa(®) =U'ZL:ITK(X) : “memory” function (0<v<l)

© 2007 Seni & Elder KDDO7
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Ensemble Methods

Generic Ensemble Generation (2)

» Step 2: Choose quadrature coefficients [c, |\

— Given T}, ={TxpPw)} | coefficients are obtained by a regularized
linear regression

N M M
{C,} =argmin )" L(yi, C, +Zcme(xi)] + A |c,|
{ m=1 m=1

Cmb =l
— Regularization here helps reduce bias (in addition to variance) of the
model
— New iterative fast algorithms for various loss functions

» “Gradient Direct Regularization...”, Friedman & Popescu, 2004

© 2007 Seni & Elder KDDO7 56
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Ensemble Methods
Bagging (Breiman, 1996)

« Bagging = Bootstrap Aggregation

s Ly, D=(y-9)" Fo(x)=0
For m=1to M {

. =0 = NO memor
v y p, =argmin Z L(y,, F.. (X|)+T(X|;p))

. = N/2 p €S, (1)
T () =T(X;Py)
« T.(x) = are large un-pruned F.X)=F,_()+0v-T. (X)
trees

!
e ¢, =0, {,=t/M}" !

it f M
i.e., not fit to the data (avg) write T, ()5,

— i.e., perturbation of the data distribution only
— Parallelizable
— See R command ipred:ipredbagg

© 2007 Seni & Elder KDDO7 57

Ensemble Methods
Bagging — Example

» Simulated data

Predictor vars:
0 1 095 095

n=5 p)=N(:]|095 . 095]
0[[0.95 095 1

Response var:

two - class; generated according to : P(y=1]x<0.5)=0.2 = Bayes crror
P(y=1|x >0.5)=0.8 rate : 0.2

Training: N =30

» 200 bootstrap samples

Testing: N =2000

© 2007 Seni & Elder Source: ESL 8.7.1 KDDO7 58




Ensemble Methods
Bagging — Example (2)

* Bootstrap trees

© 2007 Seni & Elder KDDO7 59

Ensemble Methods
Bagging — Example (3)

* Test Error

040

0

Test Ermor

0
m
&

— Trees have high variance on these data due to the correlation in the
predictors

— Bagging succeeds in smoothing out this variance and hence
reducing test error

© 2007 Seni & Elder KDDO7 60
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Ensemble Methods
Bagging — Why it helps?

* Under L(y,9)=(y-v); averaging reduces variance and leaves
bias unchanged

+ Consider “idealized” bagging (aggregate) estimator: f(x)=E f,(x)
— f, fit to bootstrap data set z = {y,,x}"
— Z is sampled from actual population distribution (not training data)

— We canwrite:  E[Y -, =E[y - f0+ fo0- F, ]’
—EY - f 0] +E[f, 00— F 0|
>Ely - T’

= true population aggregation never increases mean squared error!

= Bagging will often decrease MSE...
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Ensemble Methods
Random Forest (Breiman, 2001)

» Bagging + algorithm randomizing

— Subset splitting
As each tree is constructed...

« Draw a random sample of predictors before each node is split
ng = |_10g2(n)+1J

» Find best split as usual but selecting only from subset of predictors

= Increased diversity among {T, (%)} —i.e., wider F(p)

» Width (inversely) controlled by n,

— Speed improvement over Bagging
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Ensemble Methods
Random Forest (2)

+ Potential improvements:

— Different data sampling strategy (not fixed)
— Fit quadrature coefficients to data

« Simulation study with 100 different target
xd — functions (Popescu, 2005)

* xxx_6_5%_P : 6 terminal nodes trees
5% samples without replacement|
Post-processing — i.e., using
estimated “optimal” quadrature
coefficients

Comparative RMS Error

* xxx_6_5%_P : Significantly faster to build!

Bag RF  Bag_6_5%_RRF_6_5%_P:

+ See R command randomForest
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Ensemble Methods
AdaBoost (Freund & Schapire, 1997)

* AdaBoost = Adaptive Boosting

© Ly.9=exp(-y- 9 yel{-L11} F()=0
For m=1to M {
(Cy,P,,) =argmin ZL(y‘. F. l(x‘)JrC-'I'(X‘;p))

. c.p ieS, (1)

« =N = Data perturbed via o
observation weights Tw()=T0OGPy)

F (X):FYH l(X)+L).CHV.TH(X)

m

« v=1 = Sequential sampling

* T,(X) = Any “weak” learner .
S

¢ ¢,=0, {c.}' = Sequential write {C,,, T, ()}

partial regression coefficients

o y=sign(F, (0)=sign(3" ¢, T, )

— “Real” AdaBoost : extension to regression case (Friedman, 2000)
— See R command boost:adaboost
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Ensemble Methods

AdaBoost (2)
» Equivalence to Forward Stagewise Fitting Procedure
observation weights: w” =1/N F,(x)=0
For m=1to M { For m=1to M {
a.Fita classifier T, (X) to training data with w(™ (Cp.Py) =argmin Y L(y,, F,(x)+c-T(X;:p))
b. Compute o

T,X)=TX:p,)

m

N m
ZZi:IWi 10 #Tn () F,(0)=F,,(0)+v-c, T (X

err, N

w™ .
i=1 s
c.Compue a, =log((1—err,)/err,) write {¢,,, T, ()}
d.Set W™ =w™ - expla, - 1(y, # T, (x)]

}

Output Sigr‘l(z:::‘:1 a, T, (X))

— We need to show p,, =argmin(-) is equivalent to line a. above
P

— ¢, =argmin () is equivalent to line c.
c

Appendix2

— How weights w™ are derived/updated
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Ensemble Methods
AdaBoost (3)

* Why exponential loss?

— Implementation convenience

. . e . . VX 1 Pr(Y =1]x
— Meaningful population minimizer: F (X)=argmmEv‘x(eY”))=710g7r(Y )
F(x)

2 CPr(Y =-1|X)
+ i.e., half the log-odds of Pr(Y =1/x) = Appendba_ >

« Equivalently, Pr(Y:1|x):;
1+e

—2-F*(x)

» Same minimizer obtained with (negative) binomial log-likelihood

E, (-1(Y.F(¥) = E,,(log(1+e2F®) ‘]
. I

* However, exponential loss is less robust in noisy
settings

* No natural generalization to K classes
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Ensemble Methods
Gradient Boosting (Friedman, 2001)

» Boosting with any differentiable loss criterion

General L(y,y) andy F,(X) = ¢,
For m=1to M {

(CoPy) =argmin Y L(y;, F,(x)+C-T(x;:p))
. 7]=N/2 ¢.p €S, ()

TYH(X):T(X;pY”)

« T.(X) = Any “weak” learner Fa () =F () +v-c, - T, (%)

1
s

* v=0.1 = Sequential sampling

e c,=argmin, ¥ L(¥,,C)

write {(v-C,,),T,(X)}"

m/>

s {.)' = “shrunk” sequential
partial regression coefficients

e y=Fy(X)

Appendix 4

— See R command gbm
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Ensemble Methods
Gradient Boosting / MART

+ MART = Multiple Additive Regression Trees

— T,(x) = J-terminal node regression tree (J,=J vm )

* J is a meta-parameter that controls interaction order allowed by
approximation

J =2 = “main-effects” only
J =3 = two-variable interactions allowed (i.e., second-order effects)

= value of J should reflect dominant interaction level of target function

— Adding T,(x) to model is like adding J separate (basis) functions
T(x;{bj,Rj}f):ibjl(xeR,.) = F,(0=F, (0+¢, T,(X) = Fm,,(x)+cm‘ibjm|(XEij)

J
= mel(x)_*'zyjml(xe Rim)  with 7in =Co D
=

= computational efficient update = Appendix5 >

© 2007 Seni & Elder KDDO7
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Ensemble Methods
Gradient Boosting / MART (2)

* GB/MART doesn’t choose quadrature coefficients in a
separate step

N M M
— i.e., ISLE recipe: {Em}=argminZL(yi, co+Zcme(Xi)] +23 el
{em} i=1 m=1 m=1

* However, boosting is still understood as an “incremental
forward stagewise regression” procedure with Lasso
penalty (shrinkage controlled by v)

— Note similarity with Forward Stagewise Linear Regression procedure
with {T,(0}" as predictors
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Ensemble Methods

Parallel vs. Sequential Ensembles

« Simulation study with 100 different target
= functions (Popescu, 2005)

*xxx_6_5%_P : 6 terminal nodes trees

s —
5 5% samples without replacement
2 _ I Post-processing —i.e., using
« B = estimated “optimal” quadrature
2 coefficients
(L
1
§ u = . B s “Sequential” * Seq_n_v%_P : “Sequential” ensemble
-~ 6 terminal nodes trees
: = n: “memory” factor
“Parallel” < - - v% samples without replacement
= = Post-processing
Bag RF [ MART  Seq_0.01_20%_P

Bag_6_5%_P RF_6_5%_P ‘

Seq_0.1_50%_P

+ Sequential ISLE tend to perform better than parallel ones

— Consistent with results observed in classical Monte Carlo integration
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Overview

 Ensemble Methods

— Ensemble Learning & Importance Sampling (ISLE)
— Generic Ensemble Generation
— Bagging, Random Forest, AdaBoot, MART

> Rule Ensembles
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Ensemble Methods
Rule Ensembles (Friedman & Popescu, 2005)

* Ensemble Recap:

Model: Foo=a,+>" a,f,00

{f.00}" : “basis” functions (or “base learners”)

« Derived predictors capture non-linearities and interactions

2-stage fitting process:

i. generate basis functions

li. Post fit to the data via regularized regression

Simple representation offered by a single tree no longer available
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Ensemble Methods
Rule Ensembles (2)

J
+ Trees as collection of conjunctive rules: T,(x)=> ¢, 1(xeR,,)

j=1

R = 1r(x)=1(x >22)-1(x, >27)

R, = hL(X)=1(x >22)-1(0<x, <27)
R = () =1(15<x<22)-1(0<X,)
R, = r,(X)=10<x <15)-1(x, >15)

R = r,(X)=10<x <15)-1(0<x, <15)

— These simple rules, I',(X) € {O,l}, can be used as base learners

— Main motivation is interpretability
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Ensemble Methods
Rule Ensembles (3)

* Rule-based model: F(x)=a,+> a,r,(x)
— Still a piecewise constant model

« Linear targets can still be problematic...

— We can complement the non-linear rules with purely linear terms:

F(X)=a,+ 8,6, (X)+ Y bX,

+ Original continuous variables X; can be replaced by their “winzorized”
versions
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Ensemble Methods
Rule Ensembles (4)

* Rule generation
— Use some approximate optimization approach to solve

p,, =argmin Z L(yi, Fo (X)) + r(xi;p))

p €S, ()

where p,, are the split definitions for rule r,(x)

— Take advantage of a decision tree ensemble

» E.g., one rule for each terminal node in each tree T, (x)

» In the case of shallow trees (boosting), regions corresponding to non-
terminal nodes can also be included

— Each J —terminal node tree generates 2x(J —1) rules
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Ensemble Methods
Rule Ensembles (5)

* Rule fitting

— Linear regularized procedure
(ta}. ) =arzmin 371, Ly, a,+ 3 an00)+ 27y
+A[S Jal+ 20

« K=Y 2x(J,-1) total number of rules

m=1

* p<n total number of linear terms

— Tree size controls rule “complexity”
* A J-terminal node tree can generate rules involving up to (J -1) factors

» Modeling J -order interactions requires rules with J or more factors
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Overview

 Ensemble Methods

— Ensemble Learning & Importance Sampling (ISLE)
— Generic Ensemble Generation

— Bagging, Random Forest, AdaBoot, MART
* Rule Ensembles

» Interpretation
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Ensemble Methods

Interpretation

 Importance scores

— Which particular variables are the most influential?
« i.e., relative influence or contribution in predicting the response

— Higher importance variables are more likely to be of interest
— Detection of “masking”

Appendix 6

* Interaction statistic

— Which variables are involved in interactions with other variables?
— Strength and degrees of those interactions

+ Partial dependence plots

— Nature of the dependence of the response on influential inputs
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Ensemble Methods

Interpretation — Example

+ Simulated data
— Predictor vars: n=10
p(x, ==1) = p(x, =1) = 1/2
p(X, =—1) = p(x, =0) = p(x, =1) =1/3

— Response var:

343X +2- X, + X, +2 X =-1

v v ooy |
{ 343X+ 24,42 X=1

— Training: N =200

m=2,...

.10

z~N(0,2)

Xg» Xg, X are "noise’

© 2007 Seni & Elder Source: CART KDDO7
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Ensemble Methods

Interpretation — Example (2)

» Single tree vs. rule-ensemble

10
100 [ 1.80 |0.30 |X1=1&X2e{0,1}
95 | 225 [014 | X1=-18X5e{-1}
] X1=18X2 ef-1,0} &
83 1.59 | 0.24 X3 ef-1, 0}
71 | 100 [035 [X1=-18X6¢ {1}
X1=18&X2 {0, 1} & X3
- b 62 | 137 |0.47 con
212 224
57 [125 [035 [X1=-18X6¢e{1,0}
X1=-1&X5€e{1}&
achs 5 o b 46 100 |0.11 oo
-T55 -4 -1.27-2.18-0.704 568 605
42 091 [051 [X1=1&X4 e {1}
40 -0.67 | 0.51 X1= -1

-5.50 -3 fid 121 36% 128 284 378 6
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Ensemble Methods
Interpretation — Example (3)

» Variable importance

100 1
a0

B0

Relabve imporance

40

N HDD
I DDD::=
2 % 2 2 % % g 2 8

X

Input variable

— See R package “rulefit”
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Ensemble Methods

Interpretation — Example (4)

* Interaction statistic — “null” adjusted

035 4

0320

=} =1 o =
o . [ i
o = =] &

1 1 1 1

Mull adjusted interaction strength

= [t} ©

o8 o2 Xor 2

wwl N mEmB
2 2 2 £ 2
=

Variable
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Ensemble Methods
Interpretation — Example (5)

« Two-variable interaction statistic: (X,,*) and (X,,*)

085 4 — 035 - —
& X
=030 £ 030 o
: :
005 A 2025
& &
5’020 S0+
-
i 5
C015 E01s
b= 1=
& It}
g g
2010 010
o o
El ]
o l .. -
.. HmlEEEE oo | N o I m il
X % R % R R R R Z = 0% % R o2 ' 2 % 7
Variabla Vemable
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Ensemble Methods
Interpretation — Example (7)

» Two-Variable Partial Dependencies

— Effect of x; and x, on response after accounting for the (average)
effects of tlf1e other variables...

X1 =41 X1 =1
8 R
[343:%,+2:X,+X,+2 X =1 g0 5
=< - L=
1—3+3-x5+2-x4,+xﬁ+z X =-1 H]
3
5 4 44
1=
o
0
2 2
0= — — (- —— —
= - =
F: Here translated to have a minimum value of zero X5 S
© 2007 Seni & Elder KDDO7 84

42



References

Breiman, L., Friedman, J.H., Olshen, R., and Stone, C. (1993). Classification and Regression
Trees. Chappman & Hall/CRC.

2. Breiman, L. (1995). Better Subset Regression Using the Nonnegative Garrote. Technometrics,
37(4):373-384.

3. Breiman, L. (1996). Bagging Predictors. Machine Learning, 26:123-140.

4. Breiman, L. (1998). Arcing Classifiers. Annals of Statistics 26(2):801-849.

5. Breiman, L. (2001). Random Forests, random features. Technical Report, University of California,
Berkeley.

6. Efron, B., Hastie, T., Johnstone, |. and Tibshirani, R. (2004). Least Angle Regression. Annals of
Statistics, 32(2):407-499.

7.  Elder, J. (2003). The Generalization Paradox of Ensembles. Journal of Computational and
Graphical Statistics, 12(4):853-864.

8.  Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. Machine
Learning: Proc. of the 13 Intl. Conference, Morgan Kauffman, San Francisco, 148-156.

9. Freund, Y. and Schapire, R.E. (1997). A decision theoretical generalization of on-line learning and
an application to boosting. Journal of Computer and systems Sciences, 55(1):133-68.

10. Friedman, J.H. (1999). Stochastic gradient boosting. Technical Report Department of Statistics,
Stanford University.

© 2007 Seni & Elder KDDO7 85

References (2)

11. Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive Logistic Regression: a Statistical View
of Boosting. Annals of Statistics, 28:337-40.

12.  Friedman, J. (2001). Greedy function approximation: the gradient boosting machine, Annals of
Statistics, 29:1189-1232.

13. Friedman, J. and Popescu, B. E. (2003). Importance Sampled Learning Ensembles. Technical
Report, Stanford University.

14. Friedman, J. and Popescu, B. E. (2004). Gradient directed regularization for linear regression and
classification. Technical Report, Stanford University.

15. Friedman, J. and Popescu, B. E. (2005). Predictive learning via rule ensembles. Technical Report,
Stanford University.

16. Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning (ESL) —
Data Mining, Inference and Prediction. Springer

17. Ho, T.K. (1995). Random Decision Forests. Proc. of the 3" Intl. Conference on Document Analysis
and Recognition, 278-282.

18. Kleinberg, E. (2000). On the Algorithmic Implementation of Stochastic Discrimination. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(5):473-490.

19. Rosset, S. (2003). Topics in Regularization and Boosting. PhD. Thesis, Stanford university.

© 2007 Seni & Elder KDDO7 86

43



References (3)

20. Seni, G, Yang, E. and Akar, S. (2007). Yield Modeling with Rule Ensembles. Proc. of the 18t
IEEE/SEMI Advanced Semiconductor Manufacturing Conference.

21. Tibshirani, R. Regression shrinkage and selection via the lasso (1996). J. Royal Statistics Society
B., 58:267-288.

22.  Zhao, P. and Yu, B. (2005). Boosted lasso. Proc. of the SIAM Intl. Conference on Data Mining,
Newport Beach, CA, 35-44.

23. Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Keynote
Address, SIAM workshop on Variable Selection, Newport Beach, CA.

© 2007 Seni & Elder KDDO7 87

Appendices

1. Visualizing Bagging and AdaBoost Decision Boundaries

2. On AdaBoost: Equivalence to Forward Stagewise Fitting
Procedure

3. On AdaBoost: Prove population minimizer of exponential loss is
the half the log-odds of Pr(Y =1|x)

4. On Gradient Boosting: Solving for robust loss criterion

5. On MART: tree specific optimization
* LAD-regression algorithm

6. Interpretation Statistics for Ensemble Methods

7. On Complexity and Generalized Degrees of Freedom
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Appendix 1

Visualizing Bagging and AdaBoost (2-dimensional, 2-class example)

o
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Appendix 1

Decision boundary of a single tree
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Appendix 1
100 bagged trees leads to smoother boundary

1.0

0.5
I

-0.5
I

-1.0
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Appendix 1

AdaBoost, after one iteration (CART splits, larger points have great weight)

1.0

0.5
I

x2
0.0

-1.0
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Appendix 1

After 3 iterations of AdaBoost

1.0

x2
0.0
I
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Appendix 1

After 20 iterations of AdaBoost

x2
0.5 1.0
I

0.0

-0.5
I

-1.0
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Appendix 1

Decision boundary after 100 iterations of AdaBoost

1.0
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-0.5
I

-1.0
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Appendix 2
On AdaBoost — Equivalence to FSF Procedure

+ We have (c,.p,)=argmin > L(y,, F, (x)+c-T(x;p))

c.p i=1

L(Y. ) =exp(=y-¥) = (Cp.Py,)=argmin Y exp(~Y;-Fo (X)) — Y, T(X;:P))

[ ]

N
=arg minZW:m cexp(-=c-y, T(x;;p))  with w™ =g ¥fm®) (1)

cp o

— w™ doesn’t depend on corp, thus can be regarded as an observation weight

— Solution to (1) can be obtained in two steps:
+ Step1: given c, solve for T(x;p,,)

N N
T, =arg minz“w‘”'H exp(=c-y, -T(X‘)) = T,= argmin{ZW}m)l(yi #T(X ))}
T i=1 T

+ Step2: given T, solve for ¢

N
N - W™y, = T, (%
Co arglninZV\A‘“‘ cexp(=c-y, - T.(x)) = ¢ :lloglﬂ where err, :M

¢ & "2 err, Z.N:.Wlm)
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Appendix 2
On AdaBoost — Equivalence to FSF Procedure (2)

+ Step1: given c, solve for T(x;p,)
N
T, =argmin > w™ -exp(-c-y,-T(x,)) =argmin{e’°~ DwW™ + et Zwi“"):|
T T BT 06 WA ()
N
:argmin[e’“-Zwi"“’ —e’ >w™ + et ZW:'“)}
T i=1

Yi#T (%) Yi#T (%)

= argmin|:<e° —e’°)~zN:w§”‘)l (v, 2T(x) + €° -ZN:Wi‘”"} =arg min[ZN: W™l (y,; ¢T(xi))}
T i=1 i=1 T i=1

constant doesn’t depend
onT

— i.e., T, is the classifier that minimizes the weighted error rate (line a.)

+ Step 2: given T, solve for c

N N
C, =arg min[(eC —e’°)~ SW™I(Y; # T, (%) + e -Zw{’“’} = compute and set to zero derivative
c =] i1 with respect to C

© 2007 Seni & Elder KDDO7 97

Appendix 2
On AdaBoost — Equivalence to FSF Procedure (3)

+ Step2: (cont)

%((e” o) 3 Wy 2T, ) e T )= (e et 3 Wi (y, 2T, (x-S X W™ =0

i= i=1 |
=t YN WY AT 0) + e Y WY # T, 06) - e W = 0

= (dividingbye™®)  *- Y wW™I(y, #T,06) + 2o WY 2T, (%) = Do W™ =0

= 3 WOy, 2T, 060 = S0 w3 Wiy, £ T, (%)

e DW= Wy, £ T, (0) 1S W™ =3 Wy, £ T, (%)
=& = N (m) = CZEIH N (m)
D WY # T (%)) D WY £ T (%)
and
LTI 2Ty 00) 2w - 3w (Y £ Ty ()
1-err, > W W YW =S Wy = T, ()
= N m = N m = N m
err, > ’IN<y. # T (X)) > ’IN<y. # T (X)) D WY = T (%))
2w 2w
© 2007 Seni & Elder KDDO7
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Appendix 2
On AdaBoost — Equivalence to FSF Procedure (4)

+ Finally, weight update w™" expression:
F.)=F,  (00+C, T,(X) = W™ =g W00 _ g nlFritirenTatx]

— Vi X)) | a=CnYiTn (%) _ (M) a=CreYi T (Xi)
7e\m\|.em\m|7wi e mYirim i

SV T ) =20 # T ) -1 = =™ e 0T g

—w(m | a@n ! i#ETa (X)) | a=Cn
=W, " -e -e
multiplies all weights... has no effect

- a,=2-c, is the quantity in line 2¢

— Equivalence to d. \

= AdaBoost minimizes the exponential loss with a forward-stagewise additive
modeling approach!
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Appendix 3

On AdaBoost — Population Minimizer

oo P =110

1
* Prove F'(x)=argminE,, (e ®)==
) L ol ) 2 T Pr(Y =—1|x)

E(e—yf(x) | X):Pr(Y :1| X)_e—f(x) +Pr(Y :—1|X)-ef(’<)

-yf )
OE(e |X):_Pr(Y:llx).eff(x)_’_Pr(Y:_llx).ef(x)
af (x)

-yf(x)
M:O = pr(y :_1| X).ef(x) :Pr(Y :1| x).e*f<x)

of (x)
= InPr(Y ==1|xX)+ f(X) =InPr(Y =1|x)— f(x)
= 2f(X)=InPr(Y =1|X)=InPr(Y =-1|Xx)
= f(x)= llnw
2 Pr(Y =-1]x)
© 2007 Seni & Elder KDDO07 100
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Appendix 4
On Gradient Boosting

+ Solving for robust loss criterion (e.g., absolute loss, binomial
deviance) requires use of a “surrogate”, more convenient,
Ly, 9)

. N .

* Like before, we solve (,.p,)=argmin Y L(y,, F,,(x)+c-T(x;:p) in two
steps: o
— Step1: find T(x;p,)... here we use L(y.9

N
Py =argmin Ly, Fy () +6-T(x:p))
P

— Step2: given T, solve for ¢

N
¢, =argmin Y L(y;, F, ,(x)+¢-T(X;:p,))

L

© 2007 Seni & Elder KDDO7 101

Appendix 4
On Gradient Boosting (2)

« L(v.9) is derived from analogy to numerical optimization in
function space

— Learning: F =argmin, R(F) — i.e., minimum “risk”

— Each possible F is a “point” in ®" — i.e., F=(F(x,),F(X,),....F(xy))
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Appendix 4
On Gradient Boosting (3)

» Steepest descent in function space (“non-parametric” view)

F, : initial guess

F,=F,~ pVR(F)

'EM = Z::O Fa

AR/F (x,) aL(y,, F(x))/oF (x,)
— Gradient components V,R= =
ORJOF () |, ¢ AL(yy, F(xy))/0F (xy) .

— Step size (line search): p, =argmin, R(F, ,—pV,R) = like “Step2” before
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Appendix 4
On Gradient Boosting (4)

» Problem: F, defined on training data only
— Select parameterized function (defined for all x): T(x;p)
— Choose p so that T(x;p) is most “parallel” to VR(F)

» Geometric interpretation of correlation:
cos@:corr({—VR(F(x))},’il, {T(xi;p)}i“il)

* Most highly correlated T(x;p) is found from

solution :
N
P, :argﬁminZ(—VmR(F(Xi)) - ﬁ~T(X,;p))Z
P i=1
— Surrogate criterion L:
9 y = _w = Least-squares minimization
=
OF(X;) -
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Appendix 5
On MART

* Adding 1.0 to model is like adding J separate (basis)
functions

J
Tl bR} )=YbI(XxeR) = F,(x)=F, () +C, T,(x) = Fm,,(x)+cm‘ibjm|(XEij)
j=1 j=1

J
= m—l(x)+zyjml(XEij) with }/Jm:Cm'me
=)

» Since regions R, are disjoint, we can do separate updates
in each terminal node

N
— Step2: was: c, =argmin) L(y,, F,,(x)+c-T(X;p,))

i=1

now: 7im =argmin ZL(yi~ Fm,](xi)ﬂf)

X €Rjp

i.e., optimal constant update in each terminal region
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Appendix 5
On MART (2)

+ Summary:
y F,00=argmin, > L(y;.7)

For m=1to M {

// Stepl: find T, (X) using surrogate criterion

v —_ 0L Fx)

' oF (x))

F=F

2
{Bjm,ﬁjm }IJ :argminZN:{Yi 7ZJ:bjml(Xi IS ij)}

bjm-Rjm { =1 j=1

// Step2 : find coefficients
7 jm =argmin Z LY o (X)) +7)

7 XieRjp

// Update expansion

Fm(X) = mel(X)JrU'ZJ:?;jml(Xi € IiJ'm)

j=1

}
write F(x) = F, (X)

© 2007 Seni & Elder KDDO7 106

53



Appendix 5
On MART (3)

« LAD-regression: L(y.F)=|y-F|

— More robust than (Y-F) F, (x) = median {y,
. . . For m=1to M {
— Resistant to outliersin y...

trees already providing
resistance to outliers in x ¥, =sign(y,— Fr ()

// Stepl : find T, (X)

- A|90|’|thm {ﬁjm }f =J — terminal node LS - regression tree({?i ,X; }IN )
// Step2 : find coefficien ts

P =median{y, -F, 0O j=1..

// Update expansion

Fn()= mew(X)JrU'i};jml(Xi <R)
=
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Appendix 6

Interpretation — Variable Importance

- Single tree measure (CART) : 3(x)=Yi(®).5,, ) 1(vt)=1)

teT

i.e., sum the "goodness of split" scores whenever X, is used in a
surrogate split

Sum is over all internal nodes in the tree t €T

If X, was used as the primary split in some node, then corresponding
score I(I,s,) is used in the summation

Normalized measure: Imp(x; )=100- 3(x; )/ max 3(x,)
* i.e., only the relative magnitudes of the S(xj)are interesting

* Tree ensemble generalization

— Average over all of the trees: 3(x, )= ﬁis(xj;m)
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Appendix 6

Interpretation — Variable Importance (2)

* Rule ensemble measure:

— Term (global) importance: absolute value of coefficient of standardized
predictor

. 1Y
* Rule term: 3, =[4,]-y/s,-(1-5,) where rule’s support is s, :Wz r.(x,)
i=1
+ Linear term: 3, :‘Bj‘std(xj)

— Term (local) importance: at each point x ... absolute change in F(x)
when term is removed

* Rule term: 3, (x)=

a,

: ‘rk x)- Sk‘
3(¥) =3, (¥)+ D T (x)/size(r,)

« Linear term: Sj(x):‘bj‘-‘xjfij‘ i
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Appendix 6
Interpretation — Partial Dependence Plots (Friedman, 2001)

* Visualize the effect on F(x)of a small subset of the important
input variables x, c {x,,x,,....,%, }

— after accounting for the (average) effects of the other (“complement”)
variables x. — i.e., Xs UX¢ = {X,X,,..., X,

— F0=F(Xs,Xc)
— Partial dependence on Xs: F¢(xs)=E,_F(Xs,Xc)

— Approximated by: F, (xs)ﬁZLF(xs,xm)

{Xc,-..» Xyc } @re the values of x. occurring in the training data
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Appendix 6
Interpretation — Partial Dependence Plots (2)

+ Example

— The shape of the function on either variable is affected by the values
of the other, suggesting the presence of an interaction
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Appendix 6

Interpretation — Interaction Statistic (Friedman, 2005)

» If x; and x,do not interact, then

— F(x) can be expressed as sum of two functions: F(x)= £+ fi(xy)

e., f;(x,;) does notdependon x;; f,(x,) is independent of x,

— Thus, partial dependence on x, = {xj,xk} can be decomposed:
Ifj,k(xj’xk) = Ifj(xj)+ 'fk(xk)

i.e., sum of respective partial dependencies

+ Test for the presence of (x;, x,) interaction

H j2k = Z ['fj,k(xij > Xie) — 'fj (Xij)_ 'fk(xik)] Z lsz,k(xij > Xik )

i=1
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Appendix 6

Interpretation — Interaction Statistic (2)

+ If x; does not interact with any other variable

— F(x) can be expressed as sum of two functions: F(x)= f,(x;)+ f,(x,;)

where f,(x))is a function only of x;

— Thus, F(0)=F;(x)+F;(x)
 Test whether x; interacts with any other variable

H? zz[ﬁ(xo—ﬁ,.<xi,->—Fi,-(xi\j>] /Z F2(x,)
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Appendix 7
Complexity of Ensembles

Outline:

* Ensembles generalizing well was a theoretical surprise

— Importance Sampling helps us understand some behavior
» Chief danger of data mining: Overfit

» Occam’s razor: regulate complexity to avoid overfit

+ But, does the razor work?
- counter-evidence has been gathering

*  What if complexity is measured incorrectly?
* Generalized degrees of freedom (Ye, 1998)
+ Experiments: single vs. bagged decision trees

* Summary: factors that matter
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Appendix 7

Overfit models generalize poorly

f—Y=1(x)
R @ TestPNts oo ee e ool bl feeee

YhatX

Yhatx2
— YhatX3
— YhatX4
—— YhatX5
— YhatX6
—— YhatX7
—— YhatX8
— YhatX9

0 + T h
0.1 0.6 1.1 1.6 21 26 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6 71 76 8.1 8.6 9.1 9.6
X
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Appendix 7

Occam’s Razor

* Nunguam ponenda est pluralitas sin necesitate
“Entities should not be multiplied beyond necessity”
“If (nearly) as descriptive, the simpler model is more correct.”

* But, gathering doubts:

— Ensemble methods which employ multiple models (e.g.,
bagging, boosting, bundling, Bayesian model averaging

— Nonlinear terms have higher (or lower) than linear effect

— Much overfit is from excessive search (e.g., Jensen 2000), rather
than over-parameterization

— Neural network structures are fixed, but their degree of fit grows
with time

* Domingos (1998) won KDD Best Paper arguing for its death

— What if complexity is measured incorrectly?
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Appendix 7

Target Shuftling can measure “over search”
(e.g., Battery MTC, Monte Carlo Target in CART )

+ Break link between target, Y, and features, X
by shuffling Y to form Ys.

*  Model new Ys ~ f(X)
* Measure quality of resulting (random) model
* Repeat to build distribution

-> Best (or mean) shuffled (i.e., useless) model
sets the baseline above which true model performance
may be measured
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Appendix 7

Complexity can be measured by the Flexibility of the Modeling Process

* Generalized Degrees of Freedom, GDF (Ye, JASA 3/1998)

— Perturb output, re-fit procedure,
measure changes in estimates

* Covariance Inflation Criterion, CIC (Tibshirani & Knight, 1999)

— Shuffle output, re-fit procedure,
measure covariance between new and old estimates.

* Key step (loop around modeling procedure) reminiscent of
Regression Analysis Tool, RAT (Faraway, 1991) -- where
resampling tests of a 2-second procedure took 2 days to run.
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Appendix 7
Generalized Degrees of Freedom (GDF)

» #terms in Linear Regression (LR) = DoF, k
* Nonlinear terms (e.g., MARS) can have effect of ~3k (Friedman, Owen ‘91)

»  Other parameters can have effects < 1
(e.g., under-trained neural networks)

Procedure (Ye, 1998):
«  ForLR, k = trace(Hat Matrix) = X 8y, / 8y

» Define GDF to be sum of sensitivity of each fitted value, y, ., to perturbations in the
corresponding output, y. That is, instead of extrapolating from LR by counting terms, use
alternate trace measure which is equivalent under LR.

* (Similarly, the effective degrees of freedom of a spline model is estimated by the trace of
the projection matrix, S: Yy, = Sy )

* Put a y-perturbation loop around the entire modeling process (which can involve multiple
stages)
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Appendix 7
GDF computation

w perturbations

%)
o)
2

~\ = (yeayehat)

y — ) [ Ye &
7]
3

Modeling

X Yehat ¥
Process ™ 2o a0 a» 4 a0 o

y=02502x-0.821

Ye robustness trick:
average, across perturbation
runs, the sensitivities for a
given observation.

Ye
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Appendix 7

Example: data surface is piecewise constant
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Appendix 7
Additive N(0,.5) noise
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Appendix 7

100 random training samples
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Appendix 7

Estimation Surfaces for bundles of 5 trees

4-leaf trees 8-leaf trees
(some of the finer structure is real)

Bagging produces gentler stair-steps than raw tree
(illustrating how it generalizes better for smooth functions)
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Appendix 7
Equivalent tree for 8-leaf bundle (25% pruned)

>?><1<06 5

4
-1.97.0a8008)1

ol
-2 1Z2BP00as 900D

-1 272680005 aReB84800 2. 2436000007 208000

So a bundled tree is still a tree.
But is it as complex as it looks?
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Appendix 7

Experiment: Introduce selection noise (an additional 8 candidate input variables)

Estimation surface for ... for 8-leaf trees
5-bag of 4-leaf trees

Main structure here is clear enough for simple models to avoid noise inputs
but their eventual use leads to a distribution of estimates on 2-d projection.
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Appendix 7
Estimated GDF vs. #parameters

Noise x’s increase complexi

——Bagged Tree 2d

Tree 2d+ 8 noise

Bagged Tree 2d+ 8 noise
............................................................................................... —*— Linear Regression 1d

1 2 3 4 s 6 7 8 9
Parameters, k
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Appendix 7

Ensembles & Complexity Summary

Bundling competing models improves generalization.
Different model families are a good source of component diversity.

If we measure complexity as flexibility (GDF)
the classic relation between complexity and overfit is revived.

— The more a modeling process can match an arbitrary change made to its output, the
more complex it is.

— Simplicity is not parsimony.
Complexity increases with distracting variables.
It is expected to increase with parameter power and search thoroughness, and
decrease with priors, shrinking, and clarity of structure in data. Constraints
(observations) may go either way...
Model ensembles often have less complexity than their components.

Diverse modeling procedures can be fairly compared using GDF
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