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Abstract Working memory training has been the focus of
intense research interest. Despite accumulating behavioral
work, knowledge about the neural mechanisms underlying
training effects is scarce. Here, we show that 7 days of training
on an n-back task led to substantial performance improve-
ments in the trained task; furthermore, the experimental group
showed cross-modal transfer, as compared with an active
control group. In addition, there were two neural effects that
emerged as a function of training: first, increased perfusion
during task performance in selected regions, reflecting a neu-
ral response to cope with high task demand; second, increased
blood flow at rest in regions where training effects were
apparent. We also found that perfusion at rest was correlated
with task proficiency, probably reflecting an improved neural

readiness to perform. Our findings are discussed within the
context of the available neuroimaging literature on n-back
training.
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What happens in the brain when training improves perfor-
mance on a trained task? We aimed to answer this question by
means of an n-back intervention that trains working memory
(WM), our ability to store and manipulate a limited amount of
information for a short period of time (Jonides et al., 2008).
WM is the underlying mechanism that drives performance in
many complex cognitive tasks, such as fluid intelligence,
reading comprehension, and mathematics (e.g., Daneman &
Carpenter, 1980; Pickering, 2006).1 Therefore, it is not sur-
prising that training on WM has been repeatedly shown to
improve not onlyWM skills, but also other complex cognitive
skills that rely on WM processes (e.g. Chein & Morrison,
2010; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Jaeggi,
Buschkuehl, Jonides, & Shah, 2011; Jaeggi, Buschkuehl,
Shah, & Jonides, 2013; Jaeggi, Studer-Luethi et al., 2010;
Jaušovec & Jaušovec, 2012; Rudebeck, Bor, Ormond,
O’Reilly, & Lee, 2012; Stephenson & Halpern, 2013).
Despite the increasing popularity of WM interventions, there
are still very few studies investigating the neural effects of
WM training. Most of these have examined functional activa-
tion changes (e.g., Dahlin, Neely, Larsson, Bäckman, &

1 We note at this point, and elaborate below, that Professor Edward Smith
devoted a good deal of his career to the study ofWMprecisely because he
viewed it as a cornerstone for cognitive processing, as do we. Ed saw that
the architecture of WM was central to the architecture of many higher
cognitive skills. In that the lion’s share of Ed’s scholarly work was
devoted to a variety of higher cognitive functions, his investment in
understanding the processes that feed into these functions was both
considerable and impactful.
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Nyberg, 2008; Hempel et al., 2004; Jolles, Grol, Van Buchem,
Rombouts, & Crone, 2010; Olesen, Westerberg, & Klingberg,
2004; Schneiders, Opitz, Krick, & Mecklinger, 2011;
Westerberg et al., 2007). In addition, there are also studies
investigating the effect of training on cerebral perfusion at rest
and on functional connectivity (Kundu, Sutterer, Emrich, &
Postle, 2013; Mozolic, Hayasaka, & Laurienti, 2010;
Takeuchi et al., 2012), on brain structure (Takeuchi et al.,
2010, 2011), and on dopaminergic functions (e.g., Bäckman
et al., 2011; McNab et al., 2009). Due to the small body of
literature and the substantial methodological differences
among these studies, it is currently difficult to draw firm
conclusions about the underlying neural mechanisms of WM
training, and therefore, it is difficult to make predictions about
training-related activation changes (Buschkuehl, Jaeggi, &
Jonides, 2012). In the present study, we focus on the neural
effects of an n-back intervention that is a relatively common
vehicle used in behavioral WM training research and whose
effects on untrained tasks have been documented by several
independent laboratories and with different populations
(Colom et al., 2013; Jaeggi, Buschkuehl, Jonides, & Perrig,
2008; Jaeggi, Buschkuehl, Jonides, & Shah, 2011; Jaeggi
et al., 2013; Jaeggi, Studer-Luethi, et al., 2010; Jaušovec &
Jaušovec, 2012; Owens, Koster, & Derakshan, 2013;
Rudebeck et al., 2012; Schweizer, Grahn, Hampshire,
Mobbs, & Dalgleish, 2013; Schweizer, Hampshire, &
Dalgleish, 2011; Stephenson&Halpern, 2013). To our knowl-
edge, there are only four studies to date that have investigated
the neural correlates of n-back training by means of fMRI
(Hempel et al., 2004; Schneiders et al., 2011, 2012; Schweizer
et al., 2013). Here, we aim to build upon this prior work to
further elucidate the underlying neural mechanisms that are
involved in n-back training. Our results reveal that as little as
2.5 h of n-back training are enough to result in behavioral
changes that have a measurable neural correlate.

Task-relevant activation changes

In principle, there are four classes of outcomes that would be
of interest when examining brain activations as a function of
cognitive training. One is activation of the same brain regions
before and after training, but with less overall activation after
training. This pattern would reveal a single circuitry underly-
ing the task, a circuit that becomes more efficient in its
operation. A second pattern is the opposite: The same circuit
is active before and after training, but with greater activation
after training. This pattern would reveal a common underlying
mechanism that might implicate a larger population of cells
consuming greater energy as a function of the training expe-
rience. A third potential outcome is a combination of the first
two, if there are increases of activation in some brain areas and
decreases in others. Finally, a fourth possible result of interest

would be a qualitatively different pattern of activation that
results from the training experience. This would indicate that
new and different mechanisms have been called to the table by
the training regimen (see Kelly, Foxe, & Garavan, 2006, for a
detailed discussion of this topic).

Let us briefly review the available n-back training literature
in the light of these four potential outcomes. In a study
conducted by Hempel et al. (2004), participants were
instructed to train on a spatial 0-back, a 1-back, and a 2-back
task twice a day over the course of 4 weeks. Functional brain
imaging data were collected while participants performed the
trained tasks, not only before and after the intervention, but
also at an intermediate point after 2 weeks of training. Hempel
et al. reported an activation increase in the first half of training,
followed by an activation decrease in the second half of
training. This pattern was significant for the right intraparietal
sulcus (Brodmann area [BA] 39, 40) and the superior parietal
lobe (BA 40). The authors also reported a trend for a similar
activation pattern for the right inferior/medial frontal gyrus
(BA 9, 45, 46). Schneiders et al. (2011) let their participants
train on either an auditory or a visual n-back training task for
8–10 sessions over a period of 2 weeks. Each training session
lasted approximately 1 h, and the training was adaptive in that
it adjusted to participants’ performance. Before and after
training, participants were scanned while performing a visual
0-back and 2-back task. Irrespective of training condition,
participants showed significant activation decreases in the
right superior middle frontal gyrus (BA 6) and posterior
parietal regions (BA 40). In the group that trained on the
visual n-back task, Schneiders et al. (2011) reported additional
activation decreases in the right middle frontal gyrus (BA 9,
46). There was no region in which there were activation
increases as a function of training. In another study,
Schneiders et al. (2012) trained participants on an adaptive
auditory n-back task in eight sessions that were distributed
across 2 weeks; training time per day was 50 min, on average.
Before and after training, participants were tested on auditory
and visual 0-back and 2-back tasks. The authors reported
decreased activation in the auditory and the visual n-back
tasks in right inferior parietal regions (BA 40) and the right
superior frontal gyrus (BA 6). In the auditory n-back task,
there were additional activation decreases in the right inferior
frontal gyrus (BA 46, 47). In a recent study conducted by
Schweizer et al. (2013). participants were trained on an affec-
tive dual n-back task in which participants were presented
with emotionally neutral or emotionally negative faces and
words. The training lasted for approximately 20 sessions,
daily training time was between 20 and 30 min, and the
training was adaptive. Before and after the intervention, par-
ticipants were scanned on the trained task at 1-back, 2-back, 3-
back, and 5-back levels. Similar to the studies reviewed be-
fore, Schweizer et al. (2013) reported activation decreases
when the data for the 3-back condition were analyzed. These
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decreases were observed in the left dorsolateral prefrontal
cortex, right superior frontal gyrus, left and right
supramarginal gyrus, left and right middle temporal gyrus,
and left and right middle occipital lobe. However, when the
data for the 5-back condition were analyzed, only activation
increases were found. These increases were observed in the
right orbitofrontal cortex, right inferior frontal gyrus, and right
inferior parietal cortex. Schweizer et al. (2013) explained their
pattern of results by arguing that increased effort is related to
increased activation especially in WM-relevant brain areas, a
result that is in line with previous findings of neural effects of
n-back training and also in line with studies investigating brain
activation as a function of n-back load (see Owen, McMillan,
Laird, & Bullmore, 2005, for a meta-analysis).

To summarize, the available brain-imaging literature on n-
back training seems to agree on several points. All four studies
reported task-related activation decreases if the scanned n-
back task was relatively easy—that is, within the WM capac-
ity range of the trainees after training. The finding of Hempel
et al. (2004) suggests that there could be two distinct neural
processes at work that occur in succession: first an increase in
activation, followed by a decrease in activation. The former
could reflect controlled and effortful processes that are re-
placed by more automatic processes as training goes on and
participants get more proficient at the task, manifested as
lowered activation levels. This view is largely consistent with
the dual-process theory of human performance (Chein &
Schneider, 2005; Posner & Snyder, 1975), and it is also in
line with the findings of Schweizer et al. (2013).
Unfortunately, Hempel et al. did not report how long their
participants trained per day, and therefore, it is difficult to
compare their results with the those in the two studies from
Schneiders et al. (2011, 2012) and the one by Schweizer et al.
(2013). However, since Schneiders et al. (2011, 2012) report-
ed decreased activations after approximately 6.5 and 8 h of
training, it is conceivable that the overall training time in the
Hempel et al. study was within this range as well (the partic-
ipants trained twice a day for 4 weeks). Therefore, we hypoth-
esize that training on an n-back task for less than 3 h results in
increased task-related activations as long as participants are
tested on an n-back level that still requires effortful processing.
Furthermore, the four studies crudely agree regarding the
brain regions in which activation changes were found.
Uniformly involved in all four studies is BA 40, which is
commonly thought to be involved in functions of semantic
representation and spatial orientation and which is often acti-
vated in spatial WM tasks. Also involved in three of the four
studies are BA 6 and BA 9, both areas that are commonly
thought to be involved in executive control and WM process-
ing. It is also worth mentioning that only one of the four
studies implemented an active control group (Schweizer
et al., 2013), so there has been little control for potential
unspecific training effects, such as expectation effects or

effects of motivation, an issue that we address with the present
study.

Activation changes at rest

Beyond what training might confer on the task-challenged
brain, there are two interesting patterns of activation that
might characterize the resting brain as a result of training.
One is greater activation in the regions responsible for the
task. This might be an indication of the increased readiness of
these areas to participate in the task. A second result might be
decreased activation at rest in task-engaged regions. This
might be an indication of fatigue in these regions caused by
the training (e.g., Persson, Larsson, & Reuter-Lorenz, 2013).

To our knowledge, there are no n-back training studies
available that have investigated activation changes at rest.
However, there are two WM training studies that examined
activation changes at rest, relying on interventions other than
n-back (Mozolic et al., 2010; Takeuchi et al., 2012). Mozolic
et al. trained older adults on an interference focused interven-
tion, and Takeuchi et al. trained younger adults on four differ-
ent WM tasks. Both studies reported increased baseline activ-
ity levels as a result of training—Mozolic et al. in the right
inferior frontal cortex2 and Takeuchi et al. (2012) in the right
lateral prefrontal cortex. These two findings suggest that WM
training leads to increased perfusion—that is, a “fitter” brain
as a result of cognitive (or brain) training.

The present study

Primarily, our experiment was designed to examine the vari-
ous possibilities for task-related and rest-related brain activa-
tions as a function of training. Using arterial spin labeling
(ASL) as an imaging technique, we tested how cerebral per-
fusion changes as a function of n-back training. ASL allows
one to map brain activity quantitatively (Detre, Leigh,
Williams, & Koretsky, 1992; Williams, Detre, Leigh, &
Koretsky, 1992). Perfusion estimates can be obtained during
task activity and at rest by fitting a linear model as in the case
of BOLD weighted functional magnet resonance imaging
(fMRI) and scaling the parameter estimates appropriately
(Hernandez-Garcia, Jahanian, & Rowe, 2010). BOLD imag-
ing’s sensitivity to scanner drift makes it very challenging to
carry out longitudinal designs and designs with very low
frequency paradigms. On the other hand, while the noise of
an ASL time-course within a single run is higher than with
BOLD, it has been demonstrated that ASL data are practically
insensitive to scanner drifts and, thus, much less variable

2 Due to significant baseline differences, this finding remains unfortu-
nately inconclusive.
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across sessions than is BOLD (Aguirre, Detre, & Alsop, 2002;
Wang, Aguirre, Kimberg, & Detre, 2003; Wang, Aguirre,
Kimberg, Roc, et al., 2003). Additionally, the self-calibrating
nature of ASL data reduces the variance of the signals across
participants relative to BOLD, thus requiring fewer partici-
pants to be scanned per experiment (Tjandra et al., 2005). To
conclude, ASL is ideally suited for longitudinal studies inves-
tigating low-frequency signals such as ours because the meth-
od quantifies a physiological parameter and is not prone to
scanner drifts within and across sessions (cf. Hernandez-
Garcia & Buschkuehl, 2012, for further discussion about this
issue).

In our study, young adults trained for approximately
20 min per day over a period of 7 consecutive days on an
adaptive version of a visuospatial n-back task. That is, the task
difficulty (i.e., level of n) continuously adjusted to the partic-
ipants’ performance. Before and after the intervention, func-
tional brain data were collected while participants lay in the
scanner and worked on the trained n-back task on a 1-back and
a 4-back level. The 1-back level served as a control condition
because previous research has revealed that participants per-
form very well at this level (Jaeggi, Studer-Luethi, et al.,
2010), and thus, we did not expect any group differences or
changes as a function of training. The relatively difficult 4-
back condition was chosen because prior work indicated that
participants usually struggle with this level at pretest but are
able to performwith adequate accuracy after 7 days of training
(Jaeggi, Studer-Luethi, et al., 2010). Thus, we predicted that
participants who trained on the task would outperform the
control group in the 4-back task after training; however, they
would still be adequately challenged after an accumulated
training time of only 2.5 h. On the basis of previous findings,
we predicted an increase in perfusion during 4-back, especial-
ly in prefrontal and posterior parietal brain areas. Finally, we
hypothesized that training on n-back would result in increased
perfusion at rest, as previous studies have suggested.

As an additional focus, we were interested in whether we
could replicate an interesting behavioral finding reported by
Schneiders et al. (2012). In their paper, these authors presented
behavioral within-modality transfer effects (from an auditory
n-back training to a different auditory n-back task), but not
cross-modal effects (from an auditory n-back training to a
visual n-back task). In our previous work, we demonstrated
that training on a visuospatial n-back task resulted in transfer
on an n-back task with random shapes as stimuli—a transfer
within the same modality (Jaeggi, Studer-Luethi, et al., 2010).
Here, we wanted to go a step further and test whether training
on a visuospatial n-back task would lead to transfer to an
auditory n-back task, a transfer result that would seem rather
unlikely given the nonexistent cross-modal effect reported by
Schneiders et al. (2012).

In sum, the present study adds to the existing literature by
(1) using ASL as a desired imaging technique for longitudinal

designs, (2) using an adequate sample size, (3) comparing the
training effects with an active control group, (4) assessing the
training outcome with a measure (4-back) that is adequate in
difficulty (i.e., preventing ceiling performance at posttest), (5)
testing for perfusion changes at rest, and finally, (6) testing for
behavioral cross-modal transfer.

Method

A total of 69 participants were recruited for our study. Of these
69 participants, 14 were excluded from data analysis. One
participant was excluded because of ceiling performance at
pretest in both criterion tasks; 1 participant was excluded
because of claustrophobia; 4 participants were excluded due
to equipment problems; and the remaining 8 participants (3
from the experimental group, 5 from the control group) were
excluded because they did not adhere to the study schedule.
Therefore, for the data analysis, we included a total sample of
55 participants (20 women; mean age = 21.8 years, SD= 2.7).
There were 27 participants in the experimental group (10
women; mean age = 22.3 years, SD = 3.1) and 28 in the
control group (10 women; mean age = 21.2 years, SD =
2.1). There was no statistical difference in age between the
groups, t(46) = 1.50, p = n.s., r = .22, or in any of the
behavioral measures at pretest (all ps = n.s.). Participants were
recruited from the Ann Arbor/University of Michigan com-
munity and were compensated $20/h for the scanning sessions
(pre and post); no compensation was provided for training.

Procedure

Participants were assigned to either an experimental condition
or a control condition.3 The two groups differed only in the
training task; all other aspects of the study were identical for
both groups. In the testing sessions before and after training,
both groups were tested on an auditory n-back task outside of
the scanner and on a visuospatial n-back task while we ac-
quired brain-imaging data. Participants performed two blocks
of the visuospatial n-back task in the pretest and two blocks in
the posttest, resulting in a total of 4 scans × 55 participants =
220 total scans (refer to Fig. 1). The training lasted 7 consec-
utive days, with approximately 20 min of training each day.
Participants in both groups trained at home and were
instructed to send us their training data via e-mail on a daily
basis. This procedure allowed us to monitor their training

3 With a few exceptions and due to logistical reasons, participants were
first assigned to the experimental group and then to the control group.
That is, we first collected data for the experimental group, and later, we
collected the data for the control group. However, when recruiting the
control group, we tried to match participants to the experimental group as
closely as possible on age and gender.
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progress and to follow up in the case of training irregularities.
The scanning sessions took place 2 days before and 1 day after
the 7-day intervention. Note that a subset of 8 participants
from the experimental group completed an additional visuo-
spatial n-back testing session after the pretest fMRI session—
that is, before the start of training—as well as after the posttest
fMRI and behavioral sessions. These 8 participants were
exposed to transcranial magnetic stimulation (TMS) to inves-
tigate its impact on the trained task, and the corresponding
data will be reported elsewhere (Bernard, Jaeggi, Buschkuehl,
Hernandez-Garcia, & Jonides, 2014). In order to account for
potential functional training effects of this single TMS session
in those 8 participants, we included an additional regressor in
the statistical model (refer to Fig. 1 and associated text).

Training task

N-back training

Participants were presented with a sequence of single blue
squares that could appear at any of eight locations on a
computer screen. The task required determining whether the
current stimulus appeared at the same location as the stimulus
presented npositions back in the sequence. One trial consisted
of a blue square that was presented for 500 ms, followed by a
blank screen for 2,500 ms. A training session consisted of 15

blocks, and each block entailed 20 + n trials, of which 6 were
targets and 14 + nwere nontargets. Training duration for one
session was approximately 20 min. Participants responded to
targets with their left hand and to nontargets with their right
hand. After each block, the participant’s individual perfor-
mance was determined, and if the participant made fewer than
three errors, the level of n increased by 1; it decreased by 1 if
the participant made more than five errors; in all other cases, n
remained unchanged. Training performance per session was
operationalized as the average n-back level of the last 12 out of
15 blocks (Jaeggi, Studer-Luethi, et al., 2010).

Control training

In this computerized task, participants were presented with a
series of vocabulary and general knowledge questions one at a
time, similar to a control task that we have used previously
(Anguera et al., 2012; Jaeggi et al., 2013). Every question was
accompanied by four answer alternatives presented below the
question, one of them being correct. Participants were
instructed to select the answer alternative that they thought
to be correct by pressing a corresponding key on the keyboard.
After making their choice, participants were told whether their
answer was correct or not, along with the correct response,
followed by the presentation of the next question. Incorrectly
answered questions were shown again in the next training
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Fig. 1 Design matrix used in the second-level analysis. The main effects
of interest are represented to the right of the figure: (1) a constant mean
effect across all scans, (2) the effect of coming in for a second scanning

session (regardless of training), (3) the effect of group (having received
working memory or control training), (4) the effect of time, and (5) the
transcranial magnetic stimulation (TMS) effect
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session, providing a potential learning experience for the
participants. Identical to the n-back training, each session
lasted approximately 20 min. We have used this control task
in previous work, and typically participants training with this
control task are as motivated as the participants who are
training on the n-back task (Anguera et al., 2012; Jaeggi
et al., 2011). This feature and the fact that the control task
does not explicitly target WM processes make it an ideal task
for the present study in that any improvements can be attrib-
uted to improvements in WM skills, while excluding the
possibility that any improvements are solely due to motiva-
tional factors.

Criterion tasks

Visuospatial n-back task

The stimulus material and the timing parameters of this task
were the same as the ones of the trained n-back task. The task
was presented while we acquired functional brain-imaging
data and consisted of two identical 19-min runs. One run
consisted of six blocks of 1-back, six blocks of 4-back, and
six blocks of rest, presented in the same fixed order to each
participant. Block lengths in the 1-back and 4-back conditions
were counterbalanced and were 48 s (16 trials), 72 s (24 trials),
or 96 s (32 trials) in length. Rest periods lasted 30 s, and
participants were not required to do anything but look at
a fixation cross in the center of the screen. Each block
was preceded by an instruction screen for 5 s, which
informed the participant about the nature of the next
block. Task accuracy was measured as the proportion of
hits minus false alarms for each block, separately for 1-
back blocks and 4-back blocks. The average of the
accuracies for the two n-back conditions across blocks
was used as a dependent measure.

Auditory n-back task

This task was very similar to the trained n-back task, but
instead of visuospatial material, spoken letters (C, D, G, K,
P, Q, T, V; presented in a female voice) were used. The letters
were also presented for 500 ms, followed by 2,500 ms of
silence. During stimulus presentation, a fixation cross was
shown in the center of the screen (Jaeggi, Buschkuehl,
Perrig, & Meier, 2010). Participants were presented with a
total of nine blocks: three blocks of 2-back, three blocks of 3-
back, and three blocks of 4-back, in that order. Each block
consisted of 20 + n trials. Task accuracy was measured as the
proportion of hits minus false alarms for each n-back level
separately. The average of all accuracies across blocks was
then used as a dependent measure.

Brain-imaging acquisition

Participants were scanned while they performed the visuospa-
tial n-back task using a pseudocontinuous ASL sequence
followed by a spiral image acquisition. We used the following
parameters for image acquisition: TR/TE = 4,000/3 ms; tag-
ging time = 2,100 ms; postinversion delay = 1,500 ms; matrix
size = 64 × 64 voxels; 12 slices; slice thickness = 6 mm. The
pseudocontinuous labeling segment of the sequence consisted
of a train of slice-selective Hanning window pulses separated
by 1.5-ms intervals (flip angle = 35°). The slice selective
gradient was 6 mT/m, and the fractional moment was 0.9
(Dai, Garcia, de Bazelaire, & Alsop, 2008). In order to max-
imize label efficiency, a phase correction to the pseudocontin-
uous labeling pulses was employed in order to overcome
magnetic susceptibility distortions in the neck region
(Jahanian, Noll, & Hernandez-Garcia, 2011). The efficiency
of the arterial inversion label was measured in a separate scan
by collecting a spiral image 50 mm above the inversion plane
and by calculating the magnetization change in the carotid
arteries between control and tagged images (Hernandez-
Garcia, Lewis, Moffat, & Branch, 2007).

The images were reconstructed, realigned usingMCFLIRT
(Jenkinson, Bannister, Brady, & Smith, 2002), smoothed with
a 4-mm Gaussian kernel, and surround-subtracted to obtain a
perfusion-weighted time series of images. Perfusion estimates
of the baseline and task levels were obtained using linear
regression (Hernandez-Garcia et al., 2010). We constructed a
general linear model of the experimental paradigm’s signal.
The observed signal was modeled using the following 16
regressors: (1) 1-back condition, (2) 4-back condition, (3)
instruction screens between the task blocks, (4) rest, and we
also used 12 additional confound regressors (5–16). As con-
founds, we used six rigid-body movement parameters gener-
ated by the realignment step, as well as six additional param-
eters generated by a modified version of the CompCor
denoising method. CompCor consists of constructing a mask
of voxels exhibiting a high-variance mask outside the gray
matter and conducting principal (or independent) component
analysis of that region to identify the main sources of nuisance
variance (see Behzadi, Restom, Liau, & Liu, 2007). The
model’s parameters and their variance were estimated for each
participant using least squares. Next, the model’s parameter
estimates were scaled by a standard kinetic model in order to
quantify perfusion. We used the following constants: T1gray
matter = 1,400 ms, T1blood = 1,660 ms, and transit time = 1,200
ms. Gray matter M0 was computed from the mean control
image by correcting for T1 effects.

This approach yielded the baseline perfusion, as well as
perfusion in the 1-back and the 4-back conditions, for each
participant. We used the contrast between 4-back and 1-back
as an indicator of WM activation. Having performed this first-
level analysis on each scanning session for each participant,
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we analyzed the resulting perfusion estimates of the baseline
and of the difference between 4-back and 1-back conditions at
the group level.We constructed a second-level linear model of
these effects to estimate the changes in activation in the
population as a result of training. This model included the
following regressors: (1) a constant mean effect across all
scans, (2) the effect of coming in for a second scanning session
(regardless of training), (3) the effect of group (having re-
ceivedWM or control training), (4) the effect of time,4 and (5)
the effect of TMS (whether or not the participant received
TMS). Additionally, we included one confound regressor for
each participant to capture the variation due to each individual
participant’s brain activity level. The corresponding design
matrix is shown in Fig. 1.

Prior to estimation of the model, we identified scans whose
signal-to-noise ratio was unacceptable and excluded them
from the analysis. This affected fewer than 2% of all scans
(4 out of 220 scans). Further, we scaled the data (i.e., the
individual first-level activation estimates) by the global mean
resting cerebral blood flow (CBF) during each session in order
to reduce the variability across participants. Estimation of this
model’s parameters yielded separate statistical maps for each
of the five regressors. In our analysis, we will focus mainly on
the third regressor, because it captures exactly the variance of
interest, which is the variance that is introduced by having
trained on the n-back versus the control task. In order to detect
significant activation clusters at an overall significance level
of p= .05, we combined an intensity threshold of p< .005 and
a cluster size threshold of 19 voxels. These parameters were
determined throughMonte Carlo simulations using AlphaSim
from the AFNI software package (Cox, 1996). Next, we
identified overlapping brain regions between altered perfusion
in the 4-back condition and altered perfusion during rest, both
as a function of training, by calculating a conjunction of the
corresponding statistical maps (Nichols, Brett, Andersson,
Wager, & Poline, 2005). Finally, we correlated perfusion at
rest with performance in the 4-back condition across both test
sessions in order to investigate the impact of n-back proficien-
cy and perfusion.

Results

Specific training effects

Of the 55 participants, 48 trained for seven sessions as
instructed. The remaining 7 participants completed only six
training sessions but were, nonetheless, included in the data
analyses (3 from the experimental group, 4 from the control
group).

Analysis of the n-back training data revealed a reliable
performance improvement (n-back level at the first session,
M= 4.35, SD= 1.07; n-back level at the last session,M= 5.85,
SD = 1.35, t(24) = 6.54, p < .000, r = .80.

Although it is important to confirm that the experimental
group improved on the training task itself, the main goal of the
present study was to compare the n-back improvement across
the n-back training group and the control group. The descrip-
tive data are represented in Fig. 2.5 A session (pre vs. post) ×
load (1-back vs. 4-back) × group (experimental vs. control)
analysis of variance (ANOVA) revealed significant main ef-
fects for session, F(1, 52) = 30.44, p< .001, η2partial = .37, and
load, F(1, 52) = 164.99, p < .001, η2partial = .76. Furthermore,
there was a significant session × group interaction, F(1, 52) =
12.41, p< .001, η2partial = .19, and a session × load interaction,
F(1, 52) = 39.68, p< .001, η2partial = .43. Most important, there
was a significant session × load × group interaction, F(1, 52) =
26.01, p< .001, η2partial = .33, confirming that the experimental
group improved more from pre to post than the control group
in the 4-back condition. Furthermore, there was a reliable
correlation between the gain in n-back training (last session
minus first session) and the gain in visuospatial 4-back, r =
.55, p < .01, in the experimental group.

Transfer effects across modalities

The descriptive data of the auditory n-back task are visualized
in Fig. 3.6 A session (pre vs. post) × load (2-back vs. 3-back
vs. 4-back) × group (experimental vs. control) ANOVA re-
vealed significant main effects for session, F(1, 94) = 48.21,
p < .001, η2partial = .51, and load, F(2, 94) = 162.53, p < .001,
η2partial = .76. Furthermore, there was a significant session ×
group interaction, F(1, 94) = 9.36, p < .01, η2partial = .17.
Again, there was a significant session × load × group interac-
tion, F(2, 52) = 3.48, p < .05, η2partial = .07. Separate session
(pre vs. post) × group (experimental vs. control) ANOVAs
revealed a significant interaction only for the 3-back condi-
tion, F(1, 47) = 13.34, p< .001, η2partial = .31,7 indicating that
the significant three-way interaction is mainly driven by
the 3-back condition. Focusing only on the experimental
group, this finding is further strengthened by correlations
between the 4-back gain in the visuospatial n-back task
and the gain in the three different n-back levels in the
auditory n-back task, where the largest correlation was
observed in the 3-back condition, r = .61, p < .01, while

4 This regressor accounted for the fact that most of the control group’s
data were collected after the experimental group.

5 Note that we discarded the behavioral data of 1 participant in the control
group because the participant pressed the wrong response buttons starting
midway through the experiment.
6 Note that 6 participants in the experimental group did not complete this
task.
7 Note that the significance level remains the same if an ANCOVA is used
to control for numerical pretest differences.
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there were only modest correlations in the 2-back, r = .18,
p = n.s., and the 4-back, r = .14, p = n.s., conditions.

Brain imaging

We first investigated the effect of n-back training on task-
related brain areas. For this purpose, we performed a voxel-
wise whole-brain analysis and estimated a regression model
with the five regressors as outlined above. Our third regressor
captured the variance of the effect of being in the n-back
training group versus the control group. The explained vari-
ance of this regressor is comparable to a group (n-back vs.
control) × time (pre vs. post) interaction. The variance of the
factors group and time are already accounted for by the other
regressors of the model. Applying this model and using per-
fusion as a surrogate for neural activity, the imaging data
revealed an increase in the magnitude of perfusion in several

task-related brain areas in the 4-back minus 1-back contrast.
This activation increase was observed in three different clus-
ters, located in the frontal and occipital cortices (Table 1 and
Fig. 4). In order to investigate what drives this increase in
perfusion, we inspected the beta values of our regression
analysis as a function of group (experimental vs. control)
and test occasion (pretest vs. posttest). As visualized in
Fig. S1 in the supplementary online material (SOM), the
increase in perfusion in right BA 6 and right BA 19 was
driven by the experimental group. However, the effect in left
BA 6 was driven only by a decrease of perfusion in the control
group.

Our next analyses addressed perfusion changes at rest. We
observed mainly perfusion increases after training, again in
frontal, but also in parietal brain areas. There was one cluster
in the right parietal cortex that showed a decrease in the
magnitude of perfusion (Table 2 and Fig. 5). A similar inspec-
tion of the beta values in the 4-back minus 1-back contrast
revealed that the effects were driven by the experimental
group (Fig. S2 in the SOM)

In Figs. S3–S6 in the SOM, we provide activation maps of
the 4-back minus 1-back contrast, before and after the inter-
vention, separately for both groups. Note that these figures are
for illustration purposes only, since the effects of training are
not evident from these maps by eye inspection.

A correlational analysis of 4-back task performance and
perfusion at rest revealed positive correlations within lateral
frontal brain areas, demonstrating that higher task proficiency
corresponds to increased resting perfusion in frontal brain
regions (Table 3). In addition, there was one parietal cluster
that correlated negatively with 4-back performance.

Finally, we ran a conjunction analysis to determine brain
regions that showed an increased perfusion during task per-
formance (4-back minus 1-back contrast) after training con-
trasting the two groups, and the brain regions that showed
increased perfusion during rest after training contrasting the
two groups. A statistical threshold of z= 2.3 was used for both
maps, followed by a logical AND conjunction of the two
maps resulting in a conjoint threshold of approximately z =
3.1. Setting a minimal cluster size of 19 contiguous voxels, the
resulting map revealed one common brain area, located in the
left precentral gyrus/frontal middle gyrus/superior frontal gy-
rus (BA 6; 42 voxels; approximate center of mass in MNI
coordinates: −25, 3, 58; see Fig. 6).

Discussion

The behavioral data revealed that the experimental group
substantially improved its performance in the trained task.
As was expected, as compared with the control group, the
experimental group showed significant performance increases
in the 4-back condition that were correlated with
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Fig. 3 Performance in the untrained auditory n-back task as a function of
test session, n-back load, and group. The benefit of visuospatial n-back
training was especially pronounced in the 3-back condition
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Fig. 2 Performance in the visuospatial n-back task as a function of test
session, n-back level, and group. As was expected, all participants per-
formed near ceiling level at 1-back in both sessions, but there was a
significant improvement in the experimental group in the 4-back condi-
tion from pre- to posttest that was not reliably present in the control group
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improvements during training. That is, all participants initially
struggled in the 4-back condition, but participants in the
experimental group became quite proficient after 7 days of
training, although they were not yet at ceiling. In contrast,
there were no measurable group differences or improvements
in the 1-back condition, due to the fact that all participants
already excelled at it at pretest and, therefore, there was not
enough room for improvement. These results confirm our
hypothesized behavioral effects.

The data for the auditory n-back task that we used to assess
cross-modal transfer demonstrated a significant interaction
across all n-back levels (2-back, 3-back, and 4-back) in favor
of the experimental group. The increased improvement from
pre- to posttest was driven mainly by the 3-back condition
and, to a lesser degree, by the 2-back and 4-back conditions.
This finding is also reflected by the observation that the
highest correlation between the training gain in the visuospa-
tial n-back and the three different n-back levels of the auditory
n-back task was observed in the 3-back condition. It seems
that the difficulty of the auditory 3-back condition was ideal
for documenting the cross-modal transfer. In contrast, the 2-
back condition was fairly easy, even for an untrained partici-
pant, especially after having done quite a few n-back trials in
the practice and scanning sessions. On the other hand, in the
auditory 4-back condition, there was more error variance due
to the difficulty of the task, and even though the n-back
training group numerically outperformed the control group
at the 4-back level, the interaction was not significant.

The cross-modal transfer is in line with our earlier finding
that training on an n-back task with one set of stimuli transfers
to an n-back task with different stimulus material (Jaeggi,
Studer-Luethi, et al., 2010). However, in this earlier study,
both sets of stimuli were in the same modality (visuospatial
locations and random shapes). Another study by Schneiders
et al. (2012) investigated transfer from an auditory n-back task
to a visual one, but in contrast to the present data, there was no
significant transfer across modalities. Schneiders et al. (2012)
suggested that the specific three-tone melodies that they used
as stimuli might have prevented cross-modal transfer. In par-
ticular, Schneiders et al. (2012) pointed out that the three-tone
stimuli were specifically distinctive and allowed participants
to recode them semantically, a strategy that was not easily
applicable in their visual task (random black-and-white pat-
terns). In our tasks, participants might have been able to rely
on similar (e.g., verbally oriented) processes in both tasks, and
thus, transfer across modalities was successful. This notion is
further supported by the fact that these particular n-back task
versions are well correlated (r= .56, p< .001; data from pretest
only), suggesting shared processes that could facilitate trans-
fer. However, it remains an open question whether one would
find cross-modal transfer if participants trained on the auditory
n-back task as used in the present study and then were tested
on a visuospatial n-back task variant. Nonetheless, given the
correlations between the two variants, it is likely that transfer
would work both ways (Jaeggi, Buschkuehl, et al., 2010; cf.
Jaeggi, Studer-Luethi, et al., 2010).

Table 1 Significant perfusion clusters for the 4-back minus 1-back contrast, contrasting the post- and premeasurement between the experimental and the
control groups (z > 2.8; cluster size ≥ 19)

Region Hemisphere BA Voxels z-Valuepeak xpeak ypeak zpeak

Frontal POST right 6 45 3.53 66 −6 39

F1 left 6 35 3.18 −24 −3 60

Occipital O1, O2 right 19 73 3.40 33 −93 30

Note. BA = Brodmann area; xpeak, ypeak, and zpeak represent the MNI coordinates with the highest z-values; z-Valuepeak represents the highest zvalue
in the corresponding cluster. F1 = superior frontal gyrus; O1 = superior occipital gyrus; O2 = middle occipital gyrus; POST = postcentral gyrus

Fig. 4 Task-related perfusion in the 4-back minus 1-back contrast. The numbers next to each slice represent the z-coordinates inMNI space. This figure
corresponds to the data reported in Table 1
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We set the stage for our imaging analysis by the significant
behavioral group differences in the scanned n-back task. Our
imaging data revealed two main effects of training. First,
following the intervention, participants showed more neural
activation in order to perform the n-back task at a 4-back level.
The most pronounced perfusion increases were observed in
right BA 6 and in one cluster in BA 19. In addition, we also
found an increase in perfusion in left BA 6; however, this
effect was driven by a decrease of perfusion in the control
group. This is in line with what we have predicted on the basis
of previous research: an increase in activation if the training
duration is relatively short and if the difficulty level of the
scanned task is relatively high and, therefore, requires execu-
tive control. Such a pattern has been previously demonstrated
by Schweizer et al. (2013), who reported an increase in
activation after participants were tested on a 5-back level
following 4 weeks of training. Thus, even though the partic-
ipants in the experimental group significantly improved per-
formance in the 4-back task, they did not perform at ceiling,
and they still required considerable mental effort to perform
the task, rather than relying on automatic processing. Our data,
together with the data of Schweizer et al. (2013) and
Schneiders et al. (2011, 2012) therefore suggest that further
training would result in a decrease of activation, providing that
participants are able to perform the task effortlessly and with a
high level of accuracy. Such a pattern would be in line with the
dual-process theory of human performance (e.g., Chein &
Schneider, 2005; Posner & Snyder, 1975), which predicts that

training on a task initially requires more effort and controlled
resources and that prolonged training subsequently leads to
more automatic and less effortful task processing. This pre-
dicted increased neural efficiency might be the result of en-
hanced interactions between brain regions, leading to faster
neural processing (Jonides, 2004) and to a shift from relatively
effortful to relatively automatic processing as a consequence
of the adaptive training regimen (Rypma et al., 2006). This is a
hypothesis that is in line with the study of Hempel et al. (2004)
that found such an inverted U-shaped activation pattern as a
function of training time and proficiency.

In general, the activation pattern present in the available
literature that investigated neural changes following n-back
training is remarkably similar to certain aspects of the com-
pensation-related utilization of neural circuits hypothesis
(CRUNCH) that originated from work with older adults
(Reuter-Lorenz & Cappell, 2008). CRUNCH posits an acti-
vation increase (or overactivation in older adults) in prefrontal
brain areas to compensate for neurophysiological challenge
due to conditions that compromise neural efficiency (Reuter-
Lorenz & Cappell, 2008; Rypma et al., 2006). CRUNCH
further predicts that effective cognitive training makes rele-
vant brain circuits more efficient and lowers activation so that
the activation peak is associated with higher load levels, which
is essentially what the available n-back training literature
confirms in younger adults.

Our analysis of task-related activation changes revealed
increases in right BA 6 and right BA 19. The effects in BA

Table 2 Significant perfusion clusters at rest, contrasting the post- and pre-measurement between the experimental and the control groups (z > 2.8;
cluster size ≥ 19)

Region Hemisphere BA Voxels z-Valuepeak xpeak ypeak zpeak

Frontal PRE left 6 20 3.23 −42 −6 48

Parietal AG left 39 74 3.54 −54 −60 24

POST right 5 24 −3.67 27 −45 69

Note. BA = Brodmann area; xpeak, ypeak, and zpeak represent the MNI coordinates with the highest z-values; z-Valuepeak represents the highest z value
in the corresponding cluster. AG = angular gyrus; POST = postcentral gyrus; PRE = precentral gyrus

Fig. 5 Perfusion at rest. The numbers next to each slice represent the z-coordinates in MNI space. This figure corresponds to the data reported in Table 2
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6 are in line with previous findings that also reported training-
related activation changes in this area (Schneiders et al., 2011,
2012; Schweizer et al., 2013) and the observation that BA 6 is
commonly activated when increasing load is placed on the
WM system (de Fockert, Rees, Frith, & Lavie, 2001; Marvel
& Desmond, 2010; Smith & Jonides, 1997). The training-
induced perfusion changes in BA 6 are well in line with the
nature of the training task that requires processes that are
usually mediated by these brain areas. Similarly, BA 19 is
often activated during visual imagery and visual storage,
which fits well with the visuospatial nature of our training
task in which it is a useful strategy to mentally predict up-
coming target locations (Cavanna & Trimble, 2006; Lamm,
Windischberger, Leodolter, Moser, & Bauer, 2001; Wager &
Smith, 2003).

In addition to task-related perfusion changes, we also in-
vestigated perfusion changes at rest, which are prevalent in
frontal brain areas (left BA 6) and also parietal regions (right
BA 5 and left BA 39). BA 6 and BA 39 are regions that are
often associated with aspects of executive control (Wager &
Smith, 2003), and we found increases in perfusion in both of
these regions. Contrary to our expectations, we found a re-
duction in perfusion at rest in right BA 5, which is part of the
association cortex and often is associated with finger and hand
movements (Premji, Rai, & Nelson, 2011). Nonetheless, acti-
vation changes in this region have also been observed as a
function of n-back training (Schneiders et al., 2012). Related
to this, left BA 5 has been found to be active during a complex

version of an n-back task (Yoo, Paralkar, & Panych, 2004).
Although there is some precedence suggesting that BA 5 plays
a role in WM training and n-back task performance, it is
certainly not one of the prominent brain areas associated with
training and proficiency. Therefore, further research is needed
to determine its exact role in training on the n-back task. It is
important to note that perfusion changes at rest were normal-
ized to the global baseline CBF at the group level, and so the
changes are relative or regional CBF changes. Therefore, the
perfusion changes at rest could reflect either an absolute
increase or a redirection of resources.

The second main effect in our imaging results is that blood
flow at rest in the trained brain regions increases along with
task proficiency, probably reflecting an improved neural read-
iness to perform. These predominantly positive correlations
were present in five brain areas (covering BA 4, BA 6, BA 8,
BA 9, and BA 43), and most of these areas are typically
considered part of the WM network (Wager & Smith, 2003).
A conjunction analysis of brain areas that showed an increase
in perfusion at rest with those that showed an increase during
task activity revealed left BA 6 as a common brain area. This
common region is also very close to an area in which we
observed a positive correlation between perfusion at rest and
4-back performance. This overlap lets us speculate that there
is coherence between the two neural effects of training, and it
is conceivable that improved perfusion at rest could ultimately
lead to more efficient task processing. However, as was point-
ed out before, the perfusion increase in the 4-back minus 1-

Table 3 Brain areas that show significant correlations between 4-back performance and perfusion at rest (z> 2.8; cluster size ≥ 19). A positive peak Z-
Value indicates a positive correlation, a negative value indicates a negative correlation

Region Hemisphere BA Voxels z-Valuepeak xpeak ypeak zpeak

Frontal F2, PRE, F3OP, F3T left 8, 9 71 3.55 −48 18 42

F1, SMA, medFG right 6, 8 41 3.44 12 24 60

F2 left 6 21 3.06 −27 6 60

Parietal RO, PRE, POST, SMG right 6, 43 118 −3.67 54 −9 18

PRE, POST left 4, 6 33 3.78 −51 −3 51

Note. A positive peak z-value indicates a positive correlation, a negative value indicates a negative correlation.BA = Brodmann area; xpeak, ypeak, and
zpeak represent the MNI coordinates with the highest z-values; z-Valuepeak represents the highest z value in the corresponding cluster. F1 = superior
frontal gyrus; F1M = superior frontal gyrus, medial; F2 = frontal middle gyrus; F3OP = inferior frontal gyrus, percular part; F3T = inferior frontal gyrus,
triangular part; POST = postcentral gyrus; PRE = precentral gyrus; RO = rolandic operculum; SMG = supramarginal gyrus

Fig. 6 Brain region that showed an increased perfusion during task performance after training and an increased perfusion during rest
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back condition was driven by the control group, and not the
experimental group (Fig. S1, left panel). Therefore, our spec-
ulation should be viewed very cautiously.

A potential caveat for our study design is that due to the fact
that we used a fixed block order, the effects related to perfu-
sion at rest could potentially reflect task-related effects that
were carried over from 1-back or 4-back blocks that preceded
a rest block. In order to test for this possibility, we assumed
that a potential carryover effect is stronger in the first half of
the rest period than in the second half. Therefore, we
contrasted the first 15 s of all rest blocks with the second
15 s of all rest blocks across both test occasions. Our analysis
did not reveal a significant difference in any of the brain areas
in which we found a training-related effect in the present
study, suggesting that carryover effects did not influence our
findings. Nevertheless, we suggest caution in completely
ruling out the occurrence of potential carryover effects.

Previous research has shown that interventions similar to
the one used in the present study resulted in improvements in
nontrained reasoning tasks (Colom et al., 2013; Jaeggi et al.,
2008; Jaeggi et al., 2011; Jaeggi et al., 2013; Jaeggi, Studer-
Luethi, et al., 2010; Jaušovec & Jaušovec, 2012; Rudebeck
et al., 2012; Schweizer et al., 2011; Stephenson & Halpern,
2013). One model that might account for this result is that
trained and untrained tasks activate overlapping brain regions
that implement overlapping psychological processes. The
training, then, would exercise and train these processes, and
this training would transfer to the implementation of those
same processes in the untrained task (Dahlin et al., 2008). This
may be the case for the present n-back task and for reasoning
tasks to which it shows positive transfer. Brain-imaging re-
search on matrix reasoning performance has revealed activa-
tions in areas that are very similar to the areas uncovered by
our conjunction analysis (e.g., Jung & Haier, 2007; Perfetti
et al., 2009). Therefore, our results provide an excellent ratio-
nale for generalized cognitive improvement in visuospatial
reasoning following WM training (Jaeggi et al., 2008; Jaeggi
et al., 2011; Jaeggi et al., 2013; Jaeggi, Studer-Luethi, et al.,
2010).

To conclude, our results reveal not only that training WM
improves task-relevant skills that extend into nontrained mo-
dalities, but also that there are accompanying neural effects
reflected by perfusion increases during task performance and
during rest. These data suggest that the brain changes and
becomes more physically fit as a function of training—a
mental conditioning effect, which could be one of the prereq-
uisites for transfer.

We note at this point the connection between the research
presented in this article and Ed Smith, whose work this issue
commemorates. An anecdote will, perhaps, make this connec-
tion clearer than anything else would. One of us (J.J.) had
lunch with Ed at a west side restaurant one sunny day in New
York in 2007. A napkin served as the blackboard of choice

that day, and we laid out on that napkin the finding that WM
training had an effect on improving fluid intelligence, as
measured by two matrix reasoning tasks. Ed at that time was
an editor at PNAS and invited us to submit our work on this
phenomenon to the journal through him as editor. He then led
the paper through the review process and to eventual publica-
tion. This was routine.What was not routine was Ed’s spark of
recognition of the potential importance of our finding at that
lunch. Hardly had the transfer effect been sketched on the
napkin when Ed saw the reach and the novelty of this
finding. Of this he was a master: recognizing the impor-
tance of phenomena and their implications. That quality
infused his work and his collaborations with others (J.J.
included), and he bettered all the work that he touched
because of his superb taste. This early work of ours has
led to much additional behavioral work and to the present
investigation of the neural underpinnings of training. We
suspect that Ed would be pleased to see the outcome and
the fruit of his editorial adventure when the research
program was yet in its infancy.
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