
1. What is the process of analyzing a dataset and making predictions? 

• Data cleaning and pre-processing: check for skewness (box-cox transformation), check for number 
of categories, missing data, outliers, interactive effects, check the base rate (if distribution is 
significantly unbalanced – what to do?), etc.  

• Check the relationship between predictors and outcome: using scatter plot matrix. Also, to check 
for nonlinear relationship, could plot: (1) observed – predicted plot; (2) predicted – residual plot 
(some curvature).  

• Check multicollinearity (between-predictor correlations): (1) Check correlation matrix. To diagnose 
multicollinearity in the context of linear regression, the variance inflation factor can be used (Myers, 
1994), which is computed for each predictor and a function of the correlation between the selected 
predictor and all of the other predictors. Remove highly correlated predictors. (2) Perform PCA 
(check scree plot and variance explained by each component). But challenge with this it PCA does 
not consider any aspects of the response when selecting components. (3) PLS (Jing’s note: idea 
similar to relative weights): PCA (unsupervised), linear combinations are chosen to maximally 
summarize predictor space variability; the PLS (supervised), linear combinations of predictors are 
chosen to maximally summarize covariance with the response (a compromise between the 
objectives of predictor space dimension reduction and a predictive relationship with the response).  

Other remedy may include PLS, or ridge, lasso, or elastic net.  

• May scale (standardize) the dataset to put them on the same scale 

• Feature selection is needed 

• Choose the right model 

• Training set: used to tune the parameters, estimate the models, and determine initial estimates of 
performance using repeated 10-fold cross-validation.  

• Testing set: used for a final characterization of the models of interest.  

• Use validation data (or cross-validation) for choosing the tuning parameters 

• Avoid the temptation for over-fitting 

• Apply on real data 

• Plot and visualize the data 

• Check Chapter3: Data Pre-processing. 

2. What are some ways to make my model more robust to outliers? 

• Use a model that's resistant to outliers. Tree-based models are generally not as affected by 
outliers, while regression-based models are. If you're performing a statistical test, try a non-
parametric test instead of a parametric one. 

• Use a more robust error metric. As Peter Mills mentions in his excellent answer, switching from 
mean squared error to mean absolute difference (or something like Huber Loss) reduces the 
influence of outliers. The mean is the default measure of central tendency, but one main problem is 
that it can be overly influenced by outliers. This is why distributions like household income or 
average house value is usually summarized by the median rather than the mean. 

• Here are some changes you can make to your data: 

o Winsorize your data. Artificially cap your data at some threshold. SeeWhen are some 
applications of winsorization? 



o Transform your data. If your data has a very pronounced right tail, try a log transformation. 

o Remove the outliers. This works if there are very few of them and you're fairly certain they're 
anomalies and not worth predicting. 

3. In which cases is the mean square error a bad measure of the model performance? 

• MSE will be a bad measure is those cases where linear regression's (parametric) assumptions are 
violated, like skewed distribution, nonlinear relationship, outliers, etc.  

• MSE is good for decomposing sums of squares into meaningful components like "between group 
variance" and "within-group variance." 

• MSE is a derivative measure, which is easier to solve for finding the minimum: Often we want to 
minimize our error. When the error is a sum of squares, we are minimizing something quadratic. 
This is easily accomplished by solving linear equations. 

4. What error metric to use for evaluating how good a binary classifier is?  

• Classification Accuracy (misclassification error):   

o Weaknesses: (1) Not cost-sensitive – one of several ways to see the problems with proportion 
classified correctly is that if the overall proportion in one category is 0.9 you will be correct 0.9 
of the time by ignoring the data and classifying every observation as being in that category. 
Works poorly when the signal in the data is weak compared to the signal from the class 
imbalance. (2) Also, you cannot express your uncertainty about a certain prediction. 

• Area under the curve (AUC): Definition (direct) - The area under the ROC curve. 

o ROC: In statistics, a receiver operating characteristic (ROC), or ROC curve, is a graphical plot 
that illustrates the performance of a binary classifier system as its discrimination threshold is 
varied. The curve is created by plotting the true positive rate against the false positive rate at 
various threshold settings. (The true-positive rate is also known as sensitivity in biomedical 
informatics, or recall in machine learning. The false-positive rate is also known as the fall-out 
and can be calculated as 1 - specificity). The ROC curve is thus the sensitivity as a function of 
fall-out. 

o Definition: A reliable and valid AUC estimate can be interpreted as the probability that the 
classifier will assign a higher score to a randomly chosen positive example than to a randomly 
chosen negative example (binary outcome). (Intuitive: given a random positive instance and a 
random negative instance, the probability that you can distinguish between them.) 

o Strengths - Works well when you want to be able to test your ability to distinguish the two 
classes. 

o Weaknesses: (1) In general, it is not a good idea to compress such a curve into one number. 
One recent explanation of the problem with ROC AUC is that reducing the ROC Curve to a 
single number ignores the fact that it is about the tradeoffs between the different systems or 
performance points plotted and not the performance of an individual system. (2) You may not 
be able to interpret your predictions as probabilities if you use AUC, since AUC only cares 
about the rankings of your prediction scores and not their actual value. Thus you may not be 
able to express your uncertainty about a prediction, or even the probability that an item is 
successful.  

• Confusion Matrix (sensitivity and specificity): Sensitivity (also called the true positive rate, or the 
recall rate in some fields) measures the proportion of actual positives which are correctly identified 
as such (e.g., the percentage of sick people who are correctly identified as having the condition), 



and is complementary to the false negative rate. TPR = TP/P = TP/ (TP+FN). Specificity 
(sometimes called the true negative rate) measures the proportion of negatives which are correctly 
identified as such (e.g., the percentage of healthy people who are correctly identified as not having 
the condition), and is complementary to the false positive rate. SPC = TN/N = TN / (FP + TN). 

5. What error metrics to use for multiclass (or multinomial) classifications? 

• Misclassification error.  

• Confusion Matrix. For N classes you have to consider either a single N×N table or N 2×2 tables 
each of them comparing one of the classes (A) against all other classes (not A). 

• AUC: As in several multi-class problem, the idea is generally to carry out pairwise comparison (one 
class vs. all other classes, one class vs. another class. Product ROC Curves using One-Vs-All 
Approach 

6. How to deal with unbalanced prior distribution (base rate)? 

• Prior probability, cost estimate.  

• When the classes are unbalanced, the baseline is not 50% but the proportion of the bigger class. 
You could add a weight on each class to balance the error. Let Wy be the weight of the class y. Set 

the weights such that " and define the weighted empirical error. 

7. Linear Regression: 

• Ordinary Linear Regression: minimizes the sum-of-squared errors (SSE) between the observed 
and predicted response.  

• Partial Least Squares (PLS): linear combinations of predictors are chosen to maximally 
summarize covariance with the response (a compromise between the objectives of predictor 
space dimension reduction and a predictive relationship with the response). One tuning 
parameter: number of components to retain, use cross-validation to tune. (Similar to relative 
weights, better for handling multicollinearity problem).  

o Weakness: still assume linear relationship.  

• Penalized Models: such as Ridge Regression, the LASSO, and the Elastic Net.  

• Similarity: decompose (expected) MSE into components of model variance, model bias (close to 
true relationship), and irreducible variation.  

o Model Variance: refers to the amount by which f would change if we estimated it using a 
different training data set. In general, more flexible statistical methods have higher variance. 

o Model Bias: refers to the error that is introduced by approximating a real-life problem. 
Generally, more flexible methods result in less bias.  

o So there is bias-variance trade-off (the danger of over-fitting): if you want to minimize the 
bias and mimic the pattern in the data as closely as possible, your model will have high 
variance – any small change in data will significantly impact the model fit. [Complex model -> 
high variance -> over-fitting.] May usually results in a U-shape where MSE first decrease 
because of increase in flexibility, but then increase because of large increase in variance.  



• Difference: along the spectrum of the bias-variance trade-off. OLR, at one extreme, finds 
parameter estimates that have minimum bias, whereas ridge regression, the lasso, and the 
elastic net find estimates that have lower variance.  

• Advantage of linear regression model: (1) highly interpretable; (2) their mathematical nature 
enables us to compute standard error of the coefficients. These standard errors can then be used 
to assess the statistical significance of each predictor in the model.  

• Limitation of linear regression model: (1) the relationship would need to fall close to a flat 
hyperplane (linear). (2) It is prone to chasing observations that are away from the overall trend of 
the majority of the data to minimize SSE – sensitive to large outliers (limitation of parametric 
approach). Remedy for this – use absolute errors when residuals are above a threshold (Huber 
function).  

Variations on ordinary least regression: 

• Poisson regression: used to model count data. 

• Why do we want to use some regularized least-squares regression methods: 

o Increase prediction accuracy: by constraining or shrinking the estimated coefficients, we can 
often substantially reduce the variance at the cost of a negligible increase in bias, which will 
result in smaller MSE.  

o Model interpretability: less coefficients, easier to interpret a model.  

• Regularized least-squares regression (LASSO): more restrictive (set some coefficients to zero), 
more inflexible, but more interpretable (because of smaller number of coefficients). We will often 
obtain more accurate predictions using a less flexible method.  

o Helps when you have too many predictors by favoring weights of zero. The Lasso is a 
shrinkage and selection method for linear regression. It minimizes the usual sum of squared 
errors, with a bound on the sum of the absolute values of the coefficients (values s: a tuning 
parameter – smaller s has a larger shrinkage). 

• Ridge regression: can help with reducing the variance of your weights and predictions by shrinking 
the weights to 0.  

How to reduce model variance in linear regression: 

• Subset Selection: best subset of p, forward/backward stepwise selection, choose the optimal 
model (using cross-validation). 

• Shrinkage (or Regularization): Ridge, Lasso.  

o Ridge regression: instead of minimizing RSS, ridge regression minimizes    

This added shrinkage penalty has the effect of shrinking the estimates of b towards zero, and 
lambda is a tuning parameter that control the impact of the penalty.). 

− Note: it is best to apply standardization before ridge regression.  

− Limitations: will reduce the magnitudes of the coefficients but will not result in 
exclusion of any of the variables (i.e., will not set any of the predictors as 0).  



o LASSO: minimizes   

The penalty will set some parameters to be 0 when lambda is sufficiently large, so LASSO 
performs variable selection.  

o Neither ridge nor lasso will universally dominate the other, depending on whether predictors 
are all related to outcome, one might be better than another. So it is important to use cross-
validation to determine which approach is better.  

• Dimension Reduction: PCA (principle components regression), PLS (partial least square).  

o Step 1: obtain the M transformed predictors. 

o Step 2: fit eh model using these M predictors.  

o Note: PCA is not a feature selection method! PCR is very closely related to ridge regression. 

o M: the number of components is a tuning parameter that could be chosen from cross-
validation. 

8. Metrics for evaluating linear regression: 

• RMSE: interpreted as either how far on average the residuals are from zero or as the average 
distance between the observed values and the model predictions.  

• MSE: mean squared error is sometimes used to refer to the unbiased estimate of error variance. 

MSE = RSS (residual sum of squares) / N-P (the number of degrees of freedom) or N?? 

• R2 (coefficient of determination): proportion of the information in the data that is explained by the 
model. Must remember – this is a measure of correlation, not accuracy.  

        

o Problem: R2 is dependent on the variation in the outcome.  

9. Parametric vs. Non-Parametric Method: 

• Parametric Method:  

o 2 steps – (1) make an assumption about the functional form, or shape of f (the model); (2) use 
training data and some method to find the estimates of the (p+1) parameters. This model-
based approach reduces the problem of estimating an arbitrary p-dimensional function f to 
one of estimating a set of parameters.  

o Weakness: (1) the model we choose will usually not match the true unknown form of f. (2) But 
if we want to fit a more flexible model, then it requires estimating more parameters, which will 
lead to over-fitting (chasing the errors/noise too closely).  

o Advantage: more interpretable.  



• Non-parametric Method: 

o Do not make explicit assumptions about the functional form of f. Instead they seek an 
estimate of f that gets as close to the data points as possible without being too rough or 
wiggly. So the fitting can be accurate for a wide range of possible shapes of f. 

o Weakness: as they don’t reduce the problem to estimating a small number of parameters, a 
large number of observations is required to obtain an accurate estimate for f.  

10. When p is very large, even p > n, forward stepwise selection is a viable subset method while 
background stepwise would not work.  

11. What metrics to use when choosing the best model among a collection of models? 

• Couldn’t use RSS or R2: because these quantities are related to the training error.  

• Metric 1: make an adjustment to the training error to account for over-fitting. 

o Cp, AIC, BIC, Adjusted R2 (which adjust for number of predictors). 

o These metrics are not appropriate in high-dimensional setting.  

• Metric 2: test data set or cross-validation (preferred).   

o 1-SE rule: first calculate the standard error of the estimated test MSE for each model size, 
and then select the smallest model for which the estimated test error is within one SE of the 
lowest point on the curse. The rational is that if a set of models appear to be more or less 
equally good, then just choose the simplest model with the smallest number of predictors.  

12. What is the curse of dimensionality?  

• The test error tends to increase as the dimensionality of the problem (i.e., the number of features 
or predictors) increases, unless the additional features are truly associated with the response.  

• High dimensionality makes clustering hard, because having lots of dimensions means that 
everything is "far away" from each other. It's hard to know what true distance means when you 
have so many dimensions. That's why it's often helpful to perform PCA to reduce dimensionality 
before clustering. 

• High dimensionality is also a curse when one is trying to do rejection sampling. With a higher 
dimension probability distribution, it becomes increasingly harder to find an appropriate enveloping 
distribution since the acceptance probability will keep shrinking with dimensionality. 

13. What could be some issues if the distribution of the test data is significantly different than the 
distribution of the training data? 

• This is called dataset shift, which could lead to inaccuracy of the model. 

• As pointed out by Justin Rising, this is a problem of dataset shift. I looked online and find this 
slide, which summarizes some reasons as follows 

o Covariate shift: training and test input follow different distributions, but functional relation 
remains unchanged. 



o Sample selection bias: the training examples have been obtained through a biased method, 
such as non-uniform selection. 

o Non-stationary environments: Training environment is different from the test one, whether it's 
due to a temporal or a spatial change. One typical scenario is adversarial classification 
problems, such as spam filtering and network intrusion detection. 

14. How to choose among different classification algorithms: 

• How large is your training set? If your training set is small, high bias/low variance classifiers (e.g., 
Naive Bayes) have an advantage over low bias/high variance classifiers (e.g., kNN or logistic 
regression), since the latter will overfit. But low bias/high variance classifiers start to win out as 
your training set grows (they have lower asymptotic error), since high bias classifiers aren't 
powerful enough to provide accurate models.  

• You can also think of this as a generative model vs. discriminative model distinction. 

• Advantages of some particular algorithms: 

o Advantages of Naive Bayes: Super simple, you're just doing a bunch of counts. If the NB 
conditional independence assumption actually holds, a Naive Bayes classifier will converge 
quicker than discriminative models like logistic regression, so you need less training data. And 
even if the NB assumption doesn't hold, a NB classifier still often performs surprisingly well in 
practice. A good bet if you want to do some kind of semi-supervised learning, or want 
something embarrassingly simple that performs pretty well. NB is good for text data.  

o Advantages of Logistic Regression: Lots of ways to regularize your model, and you don't have 
to worry as much about your features being correlated, like you do in Naive Bayes. You also 
have a nice probabilistic interpretation, unlike decision trees or SVMs, and you can easily 
update your model to take in new data (using an online gradient descent method), again 
unlike decision trees or SVMs. Use it if you want a probabilistic framework (e.g., to easily 
adjust classification thresholds, to say when you're unsure, or to get confidence intervals) or if 
you expect to receive more training data in the future that you want to be able to quickly 
incorporate into your model. 

o Advantages of Decision Trees: Easy to interpret and explain (for some people -- I'm not sure I 
fall into this camp). Non-parametric, so you don't have to worry about outliers or whether the 
data is linearly separable (e.g., decision trees easily take care of cases where you have class 
A at the low end of some feature x, class B in the mid-range of feature x, and A again at the 
high end). Their main disadvantage is that they easily over-fit, but that's where ensemble 
methods like random forests (or boosted trees) come in. Plus, random forests are often the 
winner for lots of problems in classification (usually slightly ahead of SVMs, I believe), they're 
fast and scalable, and you don't have to worry about tuning a bunch of parameters like you do 
with SVMs, so they seem to be quite popular these days. 

− Advantages of SVMs: High accuracy, nice theoretical guarantees regarding over-fitting, 
and with an appropriate kernel they can work well even if you're data isn't linearly 
separable in the base feature space. Especially popular in text classification problems 
where very high-dimensional spaces are the norm. Good for large training dataset. 
Memory-intensive and kind of annoying to run and tune, though, so I think random forests 
are starting to steal the crown. 

• To go back to the particular question of logistic regression vs. decision trees (which I'll assume to 
be a question of logistic regression vs. random forests) and summarize a bit: both are fast and 
scalable, random forests tend to beat out logistic regression in terms of accuracy, but logistic 
regression can be updated online and gives you useful probabilities. Also, having probabilities 



associated to each classification might be useful if you want to quickly adjust thresholds to change 
false positive/false negative rates, and regardless of the algorithm you choose, if your classes are 
heavily imbalanced (as often happens with fraud), you should probably resample the classes or 
adjust your error metrics to make the classes more equal. 

• But, recall, though, that better data often beats better algorithms, and designing good features 
goes a long way. And if you have a huge dataset, your choice of classification algorithm might not 
really matter so much in terms of classification performance (so choose your algorithm based on 
speed or ease of use instead). 

• And if you really care about accuracy, you should definitely try a bunch of different classifiers and 
select the best one by cross-validation. Or, to take a lesson from the Netflix Prize and Middle 
Earth, just use an ensemble method to choose them all! 

Another answer: 

• Logistic regression: no distribution requirement, perform well with few categories categorical 
variables, compute the logistic distribution, good for few categories variables, easy to interpret, 
compute CI, suffer multicollinearity. 

• Decision Trees: no distribution requirement, heuristic, good for few categories variables, not suffer 
multicollinearity (by choosing one of them). 

• NB: generally no requirements, easy to understand, good for few categories variables, compute 
the multiplication of independent distributions, suffer multicollinearity. 

• LDA (Linear discriminant analysis not latent Dirichlet allocation): require normal, not good for few 
categories variables, compute the addition of Multivariate distribution, compute CI, suffer 
multicollinearity. 

• SVM:  no distribution requirement, compute hinge loss, flexible selection of kernels for nonlinear 
correlation, not suffer multicollinearity, hard to interpret. 

• Lasso: no distribution requirement, compute L1 loss, variable selection, suffer multicollinearity. 

• Ridge:  no distribution requirement, compute L2 loss, no variable selection, not suffer 
multicollinearity. 

• Bagging, boosting, ensemble methods (RF, Ada, etc): generally outperform single algorithm listed 
above. 

15. What is p-value? 

• The P value or calculated probability is the estimated probability of rejecting the null hypothesis 
(H0) of a study question when that hypothesis is true. 

• For dummy: When you perform a hypothesis test in statistics, a p-value helps you determine the 
significance of your results. A small p-value (typically ≤ 0.05) indicates strong evidence against the 
null hypothesis, so you reject the null hypothesis. 

• In statistics, the p-value is a function of the observed sample results (a statistic) that is used for 
testing a statistical hypothesis. Before performing the test a threshold value is chosen, called the 
significance level of the test, traditionally 5% or 1% and denoted as α. If the p-value is equal to or 
smaller than the significance level (α), it suggests that the observed data are inconsistent with the 
assumption that the null hypothesis is true, and thus that hypothesis must be rejected and the 
alternative hypothesis is accepted as true. When the p-value is calculated correctly, such a test is 
guaranteed to control the Type I error rate to be no greater than α. 



• The p-value is calculated as the lowest α for which we can still reject the null hypothesis for a 
given set of observations. An equivalent interpretation is that p-value is the probability of obtaining 
the observed sample results, or a "more extreme" result, when assuming the null hypothesis is 
actually true (where "more extreme" is dependent on the way the hypothesis is tested). Since p-
value is used in Frequentist inference (and not Bayesian inference), it does not in itself support 
reasoning about the probabilities of hypotheses, but only as a tool for deciding if to move from the 
null hypothesis to the alternative hypothesis. 

16. What is maximum likelihood estimation? 

• Maximum likelihood estimation begins with writing a mathematical expression known as the 
Likelihood Function of the sample data. Loosely speaking, the likelihood of a set of data is the 
probability of obtaining that particular set of data, given the chosen probability distribution model. 
This expression contains the unknown model parameters. The values of these parameters that 
maximize the sample likelihood are known as the Maximum Likelihood Estimates or MLE's.   

• In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a 
statistical model. In general, for a fixed set of data and underlying statistical model, the method of 
maximum likelihood selects the set of values of the model parameters that maximizes the 
likelihood function. 

• Intuitively, this maximizes the "agreement" of the selected model with the observed data, and for 
discrete random variables it indeed maximizes the probability of the observed data under the 
resulting distribution. Maximum-likelihood estimation gives a unified approach to estimation, 
which is well-defined in the case of the normal distribution and many other problems. However, in 
some complicated problems, difficulties do occur: in such problems, maximum-likelihood 
estimators are unsuitable or do not exist. 

• The method of maximum likelihood corresponds to many well-known estimation methods in 
statistics. For example, one may be interested in the heights of adult female penguins, but be 
unable to measure the height of every single penguin in a population due to cost or time 
constraints. Assuming that the heights are normally (Gaussian) distributed with some unknown 
mean and variance, the mean and variance can be estimated with MLE while only knowing the 
heights of some sample of the overall population. MLE would accomplish this by taking the mean 
and variance as parameters and finding particular parametric values that make the observed 
results the most probable (given the model). 

• Under normal distribution, maximum likelihood is equivalent to least square estimation.  

• It may not exist.  

17. What is confidence interval? 

• (1) There's some quantity you want to know. This number has a definite value. One that doesn't 
change. Like the average salary of, say, working mothers in the US. (2) You use some method to 
compute an interval (two numbers, one higher than the other). (3) If you use that method a huge 
number of times, 95% (or some other percentage) of the intervals you generate would contain 
the quantity you are looking for. 

• Note this, though: It is NOT "the probability that the quantity you're after is in that particular 
interval". That quantity is fixed, and that interval is fixed, so the quantity is either inside the 
interval, or it isn't. The probability part comes from the fact that you do the procedure a gazillion 
times, generating new intervals each time. That's the part that confuses people. 



• A 95% confidence interval does NOT make the statement that the population mean falls in 
between a lower limit L and an upper limit U 95% of the time. It instead says that 95% of 
confidence intervals constructed from various samples will contain the population mean. 

• 95% is not for the interval constructed, but for the method of constructing the interval, usually 
sample statistics plus minus margin of error. Once the interval is constructed from the sample, 
the parameter is either in, with probability of 1, or out with a probability of 1.


