
A Data Driven
Approach to Leading
Software Teams

Introduction
Whether you’re the VP of Engineering at a large enterprise or a startup CEO, one thing reigns
supreme: Shipping product is king. And typically the stress of leading a team toward that goal
boils down to a few key questions:

• What is my engineering team doing right now?

• Why is the release running late?

• How can we do better?

 
Just like you, we’ve been haunted by those same nagging questions. Our mission is to build a
tool that finally answers those seemingly impossible questions, to help software teams reach
their highest potential.

We’ve been writing about our lessons and experiences on the GitPrime blog, and wanted to
now share with you: a data-driven approach to leading software teams.

Here’s to making your software engineering team’s work visible, quantifiable, and actionable.

—The GitPrime team  

http://blog.gitprime.com

First, a few foundational points
Engineers are valuable
The reality of our era is that software engineers are in such high demand that negative-
unemployment is the norm. We’re all lucky to have every engineer that we do! The real
challenge is providing guidance, timely feedback and learning where team members are  
most engaged.

The data is there, ready to speak
Software engineering can be one of the most quantifiable activities in any organization, yet
this powerful asset sits largely ignored. Mining version control data offers realtime insights to
make teams stronger and reach their highest potential.

Forward progress is not the same as effort
Using flat lines of code as proxy for productivity is a deeply flawed approach — engineering is
just more subtle than that. What matters are more subtle metrics: how long that code sticks
around, the manner in which it’s introduced into the codebase, and why it’s being written in
the first place.

Peter Drucker was Right
“What gets measured gets managed,” and we consistently see that the mere act of paying
attention to what’s happening in engineering leads to tangible improvement. Knowing which
metrics matter for your team and consistently measuring them is key.

Agile is great, but it’s lacks hard data
Agile & Scrum methodologies are perfect for establishing targets and setting goals. While
burndown charts give some visibility here, agile is still limited to a narrative view of the team’s
success, as story points & tickets have no inherent connection to the actual engineering work.

Data-driven insights are launching points for conversation
Building a high-performing engineering culture starts with raising the visibility on positive
behavior, knowing when to give precise praise for heroic feats, and knowing how to give
specific direction when someone is struggling. There’s no replacement for a technical
manager paying attention to the big picture and having timely conversations with the team.

Let’s jump in. 

Not all work is created equal
Checking in huge amounts of code is a nice vanity metric, but only the code that sticks
around actually moves the project forward. One of the most powerful ways to measure
developers’ productivity is their “Time to 100 Productive Lines” (tt100). Averaged out over
time, this metric gives an accurate sense of how well the team is doing.

ON A ROLL  
Between January and June, Alex
improved from an average of
~3.5 hours to <1 hour for the
amount of time required to
deliver 100 lines of productive
code (tt100 Productive). Not only
is he delivering productive code
more quickly, but the larger
diameter circle shows he is
taking on more work.

It looks like Alex is learning and
thriving. Congrats are in order.  

STEADY AS EVER  
Samantha is the developer you
can count on to give you a bunch
of productive code quickly. In the
past 6 months, there is little
movement in volume or time that
it takes her to commit 100 lines
of productive code. She’s one of
the team’s cornerstones.

It’s probably time to give
Samantha some additional
critical responsibilities.  

SUDDENLY STRUGGLING  
It sure looks like Noah is taking a
long time to write productive
code (nearly 20 hours!) and that
small circle means it’s a relatively
small volume. While tempting to
think he is simply
underperforming, consider his
pattern in January — he was
efficient and prolific.

Noah might be spinning his
wheels and in need of a new
challenge.  

Success is not always “more work”
This is why tracking Churn is important. Think of churn as the waste that happens when an
engineer rewrites their own recent code. The root cause could be any number of factors. Is
someone stuck on a tough problem and grinding their gears? Polishing a feature to death at
the cost of shipping it? Flying under the radar and working on pet projects? Under-engaged
and running in circles because of indecision from the product team? Spotting Churn is critical
to a healthy engineering culture.

WARNING FLAG  
In the four months from January to April, Sanjay
demonstrated a consistent ~3 hours for 100 lines of
raw code, ~4 hours for 100 lines of Productive code,
and a stable amount of Churn. In May, his tt100
Productive doubled and Churn soared. June looks
similar, and is trending the wrong direction, so his
work pattern in May is not an isolated event.

It’s time to address the change in behavior with
Sanjay and discuss what the root cause may be.  

IN THE ZONE  
In the same time period, Michelle efficiently wrote
100 lines of Raw Code and her time to 100
Productive lines (tt100 Productive) hovered steady
around 2 hours. The delta between her Raw and
Productive—the area between the two lines—is
consistently small. She’s clearly moving the  
project forward.

Michelle is on a roll. Probably best to stay out of her
way and let her continue with what is working.  

How do organizational events affect productivity?
Instinctively we know that releases, spec changes and personnel changes play a dramatic
role in the productivity of teams. A data-driven approach allows decision makers to access
these correlations in post-mortem analysis as an aid for future success.

A In early Q1, we see ~70% of the
team’s attention went toward
New Work as they made the
frantic push toward release v1.6.
Shortly after release, there is
elevated Churn as the team
scrambled a bit to rewrite issues
that surfaced after it went live.

You can demonstrate the impact
of rushing through a release
without ample QA testing.  

B By early Q2 things are settling
down for the team with the focus
put back on New Work. In May,
the distinctive spike in Churn
follows closely on the heels of
when the Product Team wavered
in direction and handed over a
spec that gutted the efforts of
the last few months.

Mid-term requirements changes
can have dramatic
consequences on team
performance.  

C By late Q3 the team recovers
from this hiccup and finds a
groove of New Work. In
September, a new lead Architect
joins the team. After getting
settled, she pinpoints the root of
some nagging performance
issues and much of the team’s
focus is devoted to  
Legacy Refactor work and
environmental changes.

A clear & objective answer to the
question “What was the team
doing in Q4?”  

This, and much more
The concepts and metrics in this report hint at the possibilities and power of the data-driven
approach to leading software teams. GitPrime is the pioneer in this field, and has launched a
SaaS platform to help teams perform at the highest level.

Winning teams are built on results not superstars
In the absence of data, teams are built on personality and skill tests. With statistical insight,
software teams can use the same kinds of feedback loops that other industries have been
using for years to build high-performing teams.

Measure engagement & activity
Understanding team engagement and the patterns that naturally occur in software
engineering is the first step in building a team that promotes individual success and
consistently delivers.

Identify work focus
Get a realtime view on how engineering is being deployed. Is it mostly new work? Is the team
spending an inordinate amount of time paying down technical debt? Does one member of the
team consistently write code that needs to be refactored before it’s ready for production?

Target risk patterns
There is alway risk in new code, but with GitPrime, this is visible. The level of risk associated
with every commit is clearly called out, making it easy to deploy QA resources or make sure
this work has received a serious review.

Pay attention to what matters
Time is our most valuable asset. Knowing how to best spend that time is critical. With
GitPrime, team leads know exactly where to focus their effort in code reviews and coaching.

Learn more about how GitPrime can help you bring concrete data  
into software engineering.

Sign up for a free trial today at: http://gitprime.com

http://gitprime.com

