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Completion of the first draft of the human reference genome1,2 
was a landmark achievement in human genetics, establish-
ing a standardized coordinate system for annotating genomic 

elements and comparing individual human genomes. The reference 
genome serves as a scaffold for mapping and assembling short DNA 
sequencing reads into longer consensus contigs, thus underpinning 
the quality of all ensuing analyses and ultimately the ability to draw 
conclusions of clinical significance from DNA sequencing.

The current human reference genome is represented as a linear 
haploid DNA sequence3. This structure poses practical limitations 
due to the prevalence of genetic diversity in human populations: any 
given human genome has, on average, 3.5–4.0 million SNPs or indels 
and ~2,500 large structural variations (SVs) compared with the ref-
erence genome4,5. This genetic divergence may cause sequencing 
reads to map incorrectly or to fail to map altogether6,7, particularly 
when they span SV breakpoints. Read-mapping accuracy thus var-
ies significantly across genomic regions in a given sample and across 
genetically diverged samples. Misplaced reads may in turn result in 
both missed true variants (false negatives) and incorrectly reported 
false variants (false positives), as well as hamper other applications 
that rely on accurate read mapping. Identifying SVs is particularly 
challenging: despite the large number of SVs already characterized5, 
most methods for genotyping SVs still rely on detecting complex 
combinations of abnormal read alignment patterns to detect SVs8,9, 
although more recent algorithms such as BayesTyper10 can take into 
account known SVs.

Recent large-scale resequencing efforts have comprehensively 
catalogued common genetic variants4,11,12, prompting suggestions to 
make use of this information through multigenome references13,14, 
which have been suggested to alleviate reference bias by facilitating 
read mapping15,16. Despite these promising observations, currently 

available implementations of multigenome graph references are 
either orders of magnitude slower than conventional linear refer-
ence genome-based methods on human whole-genome sequenc-
ing (WGS) data (one example is BWBBLE17) or are intended for 
use with small genomes13 and small regions within large geno
mes15,16,18,19. Graphtyper19 is a recently published tool that performs 
local realignment of reads initially aligned by a linear aligner. 
Although whole-genome workflows using graph genomes are under 
active development20,21, the full genome-wide impact of using mul-
tigenome references for human genomic analyses has only recently 
begun to be assessed20,22.

Here we present a graph genome pipeline for building, aug-
menting, storing, querying and variant calling from graph genomes 
composed of a population of genome sequences. We show that 
graph genomes improve the mapping accuracy of next-generation 
sequencing reads on the genome-wide level. Our next-generation 
sequencing read alignment and variant calling pipeline, Graph 
Genome Pipeline, leverages our graph genome data structure and 
outperforms the state of the art linear reference-genome pipeline23 
comprising BWA-MEM and GATK HaplotypeCaller23, as measured 
by multiple complementary benchmarks. By including breakpoint-
resolved SV polymorphisms into the graph genome, we demon-
strate that SVs can be genotyped rapidly and accurately in a unified 
fashion. As novel genetic variation data are accumulated in graph 
genomes, incremental improvements in read mapping and variant 
calling accuracy can be achieved. This will allow our approach to 
scale and improve with expanding genetic variation catalogs.

Results
A computationally efficient graph genome implementation. 
We implemented a graph genome data structure that represents  
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genomic sequences on the edges of the graph (Fig. 1a and 
Supplementary Note). A graph genome is constructed from a popu-
lation of genome sequences, such that each haploid genome in this 
population is represented by a sequence path through the graph. 
To facilitate the use of widely available datasets, we implemented a 
process to build a graph genome using VCF files indicating genetic 

variants with respect to a standard linear reference genome, which 
is provided using a FASTA file. For representational purposes, the 
linear reference genome path is labeled as the initial edge, and all 
coordinates of genetic variants are reported with respect to it. This 
method ensures backward compatibility of graph coordinates to lin-
ear reference genome coordinates. In practice, a graph genome is 
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Fig. 1 | The graph genome architecture and computational resource requirements. a, A graph genome is constructed from a standard linear reference 
genome FASTA file augmented by a set of genetic variants provided in VCF format. A graph genome can further be augmented with additional genetic 
variants in a second VCF file or, in the case of variants within variants, using Graph Genome Pipeline. The coordinate system of each constructed graph 
genome is backward compatible with that of the linear reference genome. Each segment between vertices corresponds to an edge in the graph; inserting 
a variant to the graph can therefore add two (for insertions) or three (other variants) edges to the graph as the original edge is split into separate edges 
(as needed) at the start and end vertices of the new edge as well as the edge corresponding to the additional variant. The three graphs shown contain 1, 9 
and 13 edges, respectively. A rendering of these graphs constructed using Graph Genome Pipeline is shown in Supplementary Figure 1. b, A graph genome 
is indexed by creating a hash table with k-mers along all possible paths of the graph as keys and their corresponding graph genome positions as values. 
These k-mer positions can then be used as seeds for aligning sequencing reads against the graph. c, Computational resource requirements of building, 
indexing and storing graph genomes on one high-coverage WGS sample. All tests were performed using a single thread on the Amazon AWS instance 
type c4.8xlarge. d, Runtime and memory usage for BWA and Graph Aligner using the global graph for ten randomly selected samples from the Coriell 
cohort. Both BWA-MEM and Graph Aligner were executed using 36 threads on the Amazon AWS cloud instance type c4.8xlarge.
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built by iteratively adding edges corresponding to a non-reference 
allele, terminating at nodes corresponding to genomic loci on the 
initial edge. Insertions are represented as cyclic edges starting and 
terminating at the same node, but our mapping algorithm enforces 
acyclic traversal of the graph (Fig. 1a) by requiring that a path tra-
verses a cycle at most once and traverses at most one cycle from 
each vertex. Genomic features such as tandem repeat expansions 
and inversions are represented as insertions or sequence replace-
ments in the graph. Our graph genome infrastructure supports 
building and aligning reads against general graph topologies such as 
hierarchical variation (Fig. 1a and Supplementary Fig. 1). However, 
unlike VG and HISAT2, we do not support bidirectionality or 
cycles, because such structures impose unnecessary computational 
complexity; our directed acyclic graph data structure is able to fully 
describe all genetic variation encapsulated in the sequential repre-
sentation of nucleotides comprising chromosomes. For querying a 
graph genome, we use a hash table that associates short sequences of 
length k (k-mers) along all valid paths in the graph with their graph 
coordinates (Fig. 1b). Uninformative k-mers that occur exception-
ally frequently are omitted (Supplementary Note).

We used the 1000 Genomes (1000G) Phase 3, Simons Genome 
Diversity, and other variant datasets to construct a graph genome 
reference that we refer to as the global graph (Supplementary Note, 
Supplementary Table 1 and Supplementary Figs. 2 and 3). The 
global graph can be built and indexed in less than 10 min in total 
(Fig. 1c). Such a graph reference can be stored in less than 30 giga-
bytes (GB) of memory or just over 1 GB of disk space (Fig. 1c and 
Supplementary Note). Loading a stored graph reference into mem-
ory takes less than 2 min. Over a tenfold range in the number of 
variants included (the reference genome remains constant), time, 
memory and disk storage consumption only grew around fourfold, 
twofold and 50%, respectively (Fig. 1c).

Improved read mapping accuracy using graph genomes. To 
support genomic analyses on our graph genome implementation, 
we developed a graph aligner for short reads that uses the k-mer 
index for seeding (Fig. 1b and Supplementary Fig. 1) and then local 
read alignment against the graph (Supplementary Note). The read 
alignments against a path in the graph are projected to the stan-
dard reference genome and output to a standard BAM file, with the 
alignment path along the graph reported using custom annotation 
tags. Thus, the output format of our graph aligner maintains full 
compatibility with existing genomics data processing tools. When 
an unambiguous projection is not possible (for example, for reads 
fully mapped within a long insertion variant), the reads are placed 
to the closest reference position, so that downstream analysis tools 
can access these reads conveniently.

We measured the graph aligner runtimes on ten randomly 
selected high-coverage whole-genome sequencing datasets 
(Supplementary Table 2). Read alignment against the global graph 
containing around 16 million variants (Supplementary Table 1) 
required around 4.5 h per sample when using 36 threads, which 
was on average 9% shorter than that of BWA-MEM24 (Fig. 1d). This 
trend is reversed when only 8 or 12 threads are used, but the run-
times remain comparable (Supplementary Table 3). The peak RAM 
memory usage of the Graph Aligner was approximately 17.5 GB 
compared with an average of 21 GB of BWA-MEM (Supplementary 
Table 3). Overall mapping coverage between Graph Aligner and 
BWA-MEM are similar, with small differences in low- and high-
coverage regions (Supplementary Fig. 4).

In order to test the read mapping accuracy of the graph aligner, 
we simulated sequencing reads from individual samples drawn from 
VCFs from the 1000G4 and the GiaB25 projects (Supplementary 
Note and Supplementary Fig. 5). While reads without any vari-
ants are mapped equally accurately to the reference genome by the 
Graph Aligner and BWA-MEM, the Graph Aligner maintains a high  

mapping rate and accuracy even in reads containing long indels rela-
tive to the standard linear reference genome (Fig. 2 and Supplementary  
Figs. 6–8). Less than 1% of the reads with >​10-base pair (bp) inser-
tions and deletions are mismapped using the 1000G graph, whereas 
this number is two and three times as high with BWA-MEM, 
respectively (Fig. 2). Even against a linear reference without vari-
ants, our graph aligner is able to align more reads containing indels 
than BWA-MEM (Fig. 2).

Graph Genome Pipeline improves recall in variant detection. 
Graph Genome Pipeline (Supplementary Fig. 9) calls variants, 
including SVs, using a reassembly variant caller and variant call 
filters, as suggested previously23 (Supplementary Note). Generating 
variant calls from raw FASTQs in the Coriell cohort (29–42×​ cover-
age) took on average 6 h 19 min (σ​ =​ 25 min) using Graph Genome 
Pipeline on 36 CPU cores and 20 GB of memory. In comparison, 
the best practices GATK pipeline using GATK HaplotypeCaller 
(https://software.broadinstitute.org/gatk/best-practices/, hereafter  
referred to as BWA-GATK) executed on the same hardware  
required 50 GB of memory and an average of 11 h 30 min (σ​ =​ 3 h 
16 min) of runtime.

We devised four independent and complementary experiments to 
compare the variant calling accuracy of our Graph Genome Pipeline 
against that of two commonly used linear pipelines (BWA-GATK 
and BWA-Freebayes) as well as a recently published graph-based 
approach (Graphtyper). Furthermore, to separate the impact of 
the graph aligner and from the variant caller, we also benchmarked 
GATK HaplotypeCaller results derived from Graph Aligner BAMs 
(Fig. 3b and Supplementary Table 4, which also presents results 
from BayesTyper, though we note that BayesTyper is not designed 
to detect variants not present in the graph, placing a limit on the 
recall with the graphs we use in this paper). The first benchmarking 
experiment is based on sequencing data simulation, which provides 
a known ground truth for all variants throughout the genome, but 
likely incompletely reproduces the error modalities of real sequenc-
ing data. The second benchmarking experiment uses truth data 
established by the Genome in a Bottle Consortium (GiaB)25 for five 
high-coverage whole-genome sequenced samples (50×​ coverage). 
These truth data cover only about 70% of the genome considered 
as ‘high-confidence’ regions by GiaB, likely excluding the ~30% of 
the genome that is hardest to align and call variants against. The 
third variant-calling benchmark is based on measuring Mendelian 
consistency in family trios (Supplementary Figs. 10–12), which is 
an indirect proxy for variant calling accuracy, but can be conducted 
on real data throughout the genome. To support this approach, we 
developed computational methods to resolve variant representation 
differences in trio comparison and estimate the precision and recall 
rates of a variant caller using variant calls derived independently 
from each member of a family trio (Supplementary Note). Finally, 
we compared the variant calling results to SNP genotyping results 
from two commonly used SNP array platforms (Supplementary 
Note, Supplementary Fig. 13, and Supplementary Table 5).

In addition to the standard approach of filtering the false positive 
variants that we mainly use in this paper, we have also developed a 
machine learning–based approach (Supplementary Note). Although 
this method yields a significant improvement in the results and 
outperforms all other pipelines in the PrecisionFDA Truth contest 
(Supplementary Figs. 6 and 7 and Supplementary Table 6), we do 
not use it as the main indicator of the Graph Genome Pipeline’s per-
formance, as it relies on training using one of the GiaB samples, 
which are extensively used in most of our benchmarks.

A consistent pattern emerges from the benchmarking experi-
ments. In both SNP and indel calling, Graph Genome Pipeline 
either has an equally good precision with better recall (Fig. 3a,b and 
Supplementary Tables 4 and 7) or better precision with the same 
recall (Fig. 3c and Supplementary Table 8) compared with other 
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pipelines. Graph Genome Pipeline has the lowest rate of Mendelian 
violations and calls the second highest number of variants after 
Graphtyper (Fig. 3d,e, Supplementary Fig. 16 and Supplementary 
Tables 9 and 10), but Graphtyper has lower precision overall  
(Fig. 3). The gain in SNP calling accuracy is driven by graph align-
ment, as SNPs called by GATK-HC from Graph Aligner BAMs have 
a recall similar to those by BWA-GATK (Fig. 3). Interestingly, Graph 
Genome Pipeline’s good performance in indel recall is driven pri-
marily by our graph alignment–aware reassembling variant caller 
(Fig. 3). Overall, Graph Genome Pipeline has a similar precision 
to BWA-GATK but improves recall by around 0.5%, correspond-
ing to around 20,000 additional true variants being detected when 
extrapolated genome-wide.

The GiaB variant call sets provide an estimate for the practical 
upper limit in achievable accuracy using the standard linear ref-
erence genome, because they are carefully curated from an exten-
sive amount of high-quality data generated from a combination of 
several different sequencing platforms and meta-analyzed across a 
suite of state-of-the-art bioinformatics tools25. Interestingly, among 
the variants detected by Graph Genome Pipeline but asserted as 
homozygous reference by GiaB, a substantial proportion (26–42% 
across four samples, Supplementary Table 11) exhibited strong 
support from alternative sequencing technologies and in terms of 
Mendelian concordance (Supplementary Fig. 17). These variants 
are often located in variant-dense regions, half (52%) of them are 
part of the global graph, and most of the remaining variants (46%) 
are phased with one or multiple nearby variants present in the graph 
(Supplementary Fig. 17 and Supplementary Table 12). Contrary to 
the linear reference genome, Graph Aligner is by design able to 
map reads across known variations without reference bias, which 
allows it to mitigate the impact of reference bias in repetitive or 
variant-dense genomic regions. We therefore hypothesized that 

these variants could be real but missed by all other linear refer-
ence genome–based pipelines used by GiaB due to reference bias. 
We successfully carried out Sanger sequencing at 351 and 598 of 
these “false FP” variants in two GiaB samples, HG001 and HG002, 
validating 63.6% and 60% of these variants as real variants missed 
by GiaB, respectively (Supplementary Tables 11 and 13). Although 
these numbers constitute only 8.7% and 15.5% of the total number 
of FP calls made by our pipeline, they demonstrate that our graph 
genome implementation is able to overcome some practical accu-
racy limitations of linear reference approaches.

A unified framework for SV calling using Graph Genome 
Pipeline. Sequence information of known SVs can be incorporated 
into a graph genome, allowing reads to be mapped across them. 
Graph Genome Pipeline is able to align reads across SVs, whereas 
BWA-MEM fails to do so with both short Illumina reads (Fig. 4a 
and Supplementary Figs. 17 and 18) and long PacBio reads, even 
when PacBio reads are aligned using parameters tuned for PacBio 
data (Supplementary Fig. 18).

To demonstrate that reads spanning SV breakpoints can be used 
to directly genotype SVs, we manually curated a dataset of 230 high-
quality, breakpoint-resolved deletion-type SVs (Supplementary 
Table 14 and Supplementary Note) and genotyped them across 49 
individuals from the Coriell cohort, for which the true SV genotypes 
are available from the 1000 Genomes Project5. Although our SV set 
does not include any events composed purely of inserted sequence, 
many of them involve novel sequence insertions at their breakpoints 
(Supplementary Fig. 3). The fractions of reads spanning SV break-
points segregates cleanly into three clusters based on SV genotype 
(Fig. 4b), suggesting that graph genome-based SV genotyping could 
be accomplished, even with a simple read counting–based method 
(Supplementary Note and Supplementary Table 15). On the basis of 
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these reads, the Graph Genome Pipeline reassembles SVs (along-
side SNPs and indels) with an SV genotyping accuracy compa-
rable to those of current SV callers (Fig. 4c and Supplementary  

Table 15). Its SV genotyping performance within the 230 SVs is on par  
with BayesTyper, and although both Delly and Graphtyper  
have high precision, they suffer from low recall (Fig. 4c and 
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Delly2) across 230 SVs and 49 individuals. BayesTyper and Graph Genome Pipeline use raw FASTQ as input, whereas Delly2 requires aligned reads. Within 
the curated 230 SVs, BayesTyper and Graph Genome Pipeline outperform Delly2 on recall (Supplementary Note). All tools perform equally well in precision. 
d, Example of an alignment that causes a false positive SNP due to misalignment against the linear reference genome. This sample has a homozygous 
deletion in this region, and Graph Aligner (top) aligns reads successfully across it. BWA-MEM (bottom) fails to align reads across the SV, but because the SV 
has 20 bp of imperfect microhomology at the breakpoint, BWA-MEM aligns the reads on the right, resulting in a spurious single-nucleotide mismatch. e, The 
total number of transition and transversion SNPs in 1000G aggregated over the 460 breakpoints of 230 SVs and grouped by distance to an SV breakpoint in 
10-bp bins. Positive distances (>​0 bp) are within an SV and negative distances (<​0 bp) are outside an SV. For example, positions +​1 to +​10 bp correspond to 
the 10 bp closest to an SV breakpoint within a deletion, and positions −​1 to −​10 bp correspond to the 10 bp closest to an SV breakpoint outside a deletion.
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Supplementary Table 15). However, we acknowledge that the SV 
set presented here lacks more complex variants such as mobile ele-
ments and inversions, and Graph Genome Pipeline’s performance 
with complex SVs is yet to be fully tested.

To compare the SV genotyping performance of the graph aligner 
to competing technologies, we focused on the GiaB sample HG002, 
for which both Illumina read and PacBio long read data are publicly 
available. We manually examined the alignment results from each 
technology in the 230 SVs in this sample by the graph aligner. BWA-
MEM is unable to align Illumina reads across any of these SVs (Fig. 4a  
and Supplementary Figs. 18 and 19). Similarly, PacBio long read align-
ment fails in all of these SVs, even when aligned with BWA-MEM 
using parameters tuned for PacBio data (Supplementary Fig. 19).  
Thus, graph genomes could potentially improve SV genotyping for 
short-read and long-read sequencing technologies alike.

Two events among the 230 curated SVs, esv3642033 and 
esv3638126, are in strong linkage disequilibrium with SNPs signifi-
cantly associated (P <​ 5 ×​ 10−8) with breast cancer (rs1436904) and 
obesity class II risk (rs11639988), respectively26,27 (Supplementary 
Fig. 19). We were able to correctly genotype the presence of these 
two SVs in 48/49 and 49/49 samples, respectively. Thus, graph 
genome technology may enable integrated methods for genotyping 
of common SVs, including those of clinical and biological relevance.

Graph genomes prevent erroneous variant calls around SVs. 
Structural variations mediated by certain DNA repair mechanisms 
can exhibit microhomology, including imperfect microhomol-
ogy, around their breakpoints28. If an aligner is not aware of an 
SV, sequencing reads spanning the SV could become erroneously 
aligned over a region of imperfect microhomology instead, caus-
ing mismatches over the region to be spuriously reported as SNPs 
and indels (Fig. 4d). To quantify this effect in 1000G, we compared 
the rate of 1000G SNPs around the SV breakpoints with the back-
ground rate of SNPs in 1000G (Fig. 4e). These metrics are computed 
in aggregate over all 230 SVs. Within the deleted portions of the 230 
curated deletion SVs combined, the aggregate rate of 1000G SNPs 
is 1.8 per bp, and these SNPs have a transition/transversion ratio  
(Ti/Tv) of 2.28, which is expected from real biological SNPs29  
(Fig. 4e). In contrast, in the first 10 bp immediately after an SV 
breakpoint, the aggregate 1000G SNP rate is increased threefold to 
5.5/bp, suggesting that 67% of 1000G SNPs called within 10 bp of an 
SV breakpoint are false (Fig. 4d,e). The Ti/Tv of these SNPs is 0.83, 
deviating considerably from the expected ratio of 2.1. Assuming 
that spurious SNPs have an expected Ti/Tv of 0.5, the FP SNP rate 
over this region estimated using Ti/Tv is 79%, reaching a similar 
value to that estimated using total SNP counts (Supplementary 
Note). In addition to FP variant calls, we also encountered examples 
where variants overlapping with an SV erroneously appear homozy-
gous, because BWA-MEM fails to align reads across the SV and thus 
fails to detect the corresponding SV haplotype (Fig. 4a). Thus, using 
population variation information in graph genomes can mitigate 
variant calling and genotyping errors around SVs.

Incremental improvement in variant calling recall through itera-
tive graph augmentation. As common genetic variants continue 
to be catalogued across populations, newly discovered variants 
can be incrementally added to existing graph genomes to increase 
the comprehensiveness of the graph while maintaining backward 
compatibility to samples analyzed using earlier versions of the 
graph (Fig. 1a). To test whether incremental graph augmentation 
would improve variant calling, we augmented the global graph 
with variants detected in ten samples from three super-populations 
of the Coriell cohort as well as a Qatar genome project cohort30 
(Fig. 5a,b and Supplementary Table 16) and compared the vari-
ant calls obtained using the global graph and the four augmented 
global graphs. Augmenting the global graph genome increases the 

number of known variants (present in dbSNP) discovered slightly  
(5% and 10% median increase in known SNPs and indels discov-
ered, respectively; Fig. 5c,d and Supplementary Table 16). However, 
the augmented graphs result in almost twice the number of novel 
(those not present in dbSNP) SNPs and indels being called (Fig. 5c,d 
and Supplementary Table 16).

We measured the quality of the detected variants indirectly  
using Ti/Tv and heterozygous-to-homozygous alternate allele ratio 
(het/hom) for SNPs and indels, respectively29. For each tested pipe-
line, known SNPs and indels have a Ti/Tv ratio of 2.04–2.06 and  
het/hom ratio of 1.3–2.0, respectively (except for indels called by the 
graph pipeline in the African population). These values fall within 
the expected range for common variants29. In contrast, these met-
rics fall outside the expected range for novel SNPs and indels. The  
Ti/Tv ratios of novel SNPs are closer to the expected Ti/Tv when 
called by Graph Genome Pipeline compared with BWA-GATK, 
whereas the ordering is reversed for the het/hom ratios of novel 
indels (Fig. 5c,d). Importantly, although graph augmentation results 
in more known and novel variants being called, their Ti/Tv and  
het/hom ratios remain unaffected.

Graph augmentation had a similar impact in the other read 
alignment and variant calling experiments. Read alignment recall 
reaches almost 100% if a target sample is aligned against a graph 
genome that contains all of its actual variants (Fig. 2). Likewise, trio 
concordance and variant calling recall is further improved if variant 
calling in a child is performed using a graph genome augmented 
with variants detected in the respective parents (Fig. 3c–e and 
Supplementary Tables 8–10). Thus, incremental augmentation of 
graph genome references yields cumulative improvements in vari-
ant calling recall without an accompanying decrease in precision.

Discussion
Our benchmarking experiments demonstrate that using a graph 
genome reference improves read mapping and variant calling recall, 
including that of SVs, without a concomitant loss in precision 
(Figs. 2–5). Our graph aligner is able to readily align reads across 
breakpoint-resolved SVs included in the graph, unlike linear ref-
erence genome–based methods even with long reads (Fig. 4a and 
Supplementary Fig. 18 and 19). Direct genotyping of SVs using 
these reads is possible in some cases (Supplementary Table 15). 
In contrast, existing methods for identifying and genotyping SVs 
require specifically designed multistep algorithms8. Graph Genome 
Pipeline allows the identification and genotyping of SVs and small 
variants in a single unified process, raising the prospect for popula-
tion-scale SV genetics and association studies.

Currently, Graph Genome Pipeline analyzes samples individu-
ally, and a version that performs joint variant calling23,31 is under 
development. Further improvements to variant calling could be 
achieved by representing haplotypes of small variants and SVs as 
paths in the graph genome. Information such as allele frequencies 
of each variant and linkage disequilibrium between them could be 
incorporated into the graph, providing additional statistical infor-
mation for read alignment and variant calling. This approach could 
provide a computationally efficient alternative to joint variant call-
ing in leveraging previously accumulated population genetics infor-
mation when analyzing a newly sequenced sample. Future efforts 
from us and others32 will be required to assess the benefits of using 
graph genomes with encoded allele frequency and linkage disequi-
librium information.

The potential benefits of an unbiased multigenome graph ref-
erence are not limited to variant calling, but cover the full range 
of genomics research. Graph genomes provide an unbiased, repre-
sentative scaffold for read alignment, which is critical to sequenc-
ing alignment quantification applications such as RNA-sequencing 
analysis, ChIP-seq analysis and CNV calling. Our graph genome 
implementation can also be used to encode information other than 
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whole human genomes. Individual gene families or related micro-
bial strains could be compressed and efficiently searched using our 
graph genome algorithms. Similarly, the transcriptome could be 
represented as genomic deletions, allowing RNA-seq reads to be 
directly aligned across exon–exon junctions21. A personalized graph 
genome could be constructed from a sequenced germline genome, 

in order to provide an optimized scaffold for somatic variant detec-
tion in matched cancer genomes.

As more genetic variants are accumulated on a reference graph 
genome, cumulative accuracy gains in genomics analysis can be 
achieved. This is consistent with recent efforts to establish popula-
tion-specific reference panels, which have been shown to contribute  
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to increased accuracy in imputation33–35 and genetic risk predic-
tion36. The current wave of national sequencing projects will extend 
the catalogs of population-specific genetic variants, which will 
incrementally improve the prospects for graph genome reference 
approaches16,20,21, including ours. Completion of the first draft of the 
human reference genome marked the beginning of human genom-
ics. Our computationally efficient and flexible graph genome imple-
mentation supports the community for a gradual transition toward 
a graph-based reference system.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41588-018-0316-4.
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Methods
Genome graphs. All analyses are based on the human reference genome  
version GRCh37 (ref. 37). Variants for the Global Graph Reference (Figs. 1–4)  
were obtained by combining common SNPs and indels from 1000 Genomes  
Phase 3 (ref. 4), Simons Genome Diversity Project11, the Mills indels database38, 
1000 Genomes Phase 3 indels39, and a curated set of 704 long deletions from  
1000 Genomes Phase 3. Variants were normalized using Bcftools norm  
(https://samtools.github.io/bcftools/bcftools.html) prior to being merged into  
a single VCF used to build the Global Graph Reference.

Pedigree Graph References (Fig. 3d,e) were generated by adding parents’ 
variants to the Global Graph Reference. Each Pedigree Graph Reference’s parents’ 
variants were generated using the respective variant calling pipeline; Graphtyper 
was used to generate parents’ variants for the Pedigree Graph Reference used in the 
Graphtyper experiments.

Population-augmented graph references for each population (Fig. 5) were 
generated by combining the Global Graph Reference variants with variants called 
from a randomly selected set of ten individuals from the same population. For 
these individuals, initial variant calling was performed using the Graph Genome 
Pipeline and the Global Graph Reference. Individuals used for augmenting the 
Global Graph Reference were distinct from the individuals used to produce 
benchmarking metrics in Fig. 5 (Supplementary Table 16).

Graph structure. We use adjacency lists to store the set of connected vertices for 
each vertex in the graph. Each vertex stores references to the set of incoming and 
outgoing edges. The sequence data are stored separately in a buffer; edges need 
only contain an offset address in the buffer and length, thus inserting a new edge 
(which involves splitting an existing edge) is a fast operation.

The graph is efficiently serialized by handling the sequence data and graph 
structure separately. The sequence data are compressed in blocks using an n-bit 
encoding, where n is determined according to the alphabet size of the data in the 
block; n =​ 2 for a sequence containing {A,C,T,G}. The structure of the graph is 
serialized by storing a reference to the sequence represented by the ith edge along 
with the start and end loci at which the edge was inserted into the graph containing 
i – 1 edges; in other words, the set of graph manipulations are stored in the same 
order they were used to generate the graph. The index is not serialized.

Given these approaches, the graph containing the complete 1000G variant set 
occupies 23.8 GB of RAM, comprising of 13.3 GB for the graph structure, 3 GB for 
the sequence data, 7.5 GB for the index and (when serialized) 1.1 GB of disk space, 
of which 63% is used for sequence data and the remainder for the graph structure.

Read alignment. A hash-based search index is used for efficiently placing reads 
into a graph reference. A hash value is calculated for nucleotide sequences 
of length k (k-mer) in the graph reference. Each search index entry contains 
a list of start positions of k-mers (k-mer loci) that have the same hash value. 
The k-mers are determined by sequentially traversing the graph and indexing 
sequences of length k starting at every sth position, where s is the indexing step 
and 1 ≤​ s ≤​ k (Supplementary Fig. 1). Variant edges are similarly indexed at every 
sth position until the k-mer would start on the parent edge. For the purposes 
of indexing, the position on an alternate branch is counted starting from the 
beginning of the graph and taking the reference path in all branching points 
preceding the variant branch(es) of interest (Supplementary Fig. 1). A k-mer 
is limited to follow up to 16 edges in the graph, where the limit of 16 follows 
from the observation that such regions of the graph act as k-mer attractors 
(sites where excessively large numbers of k-mers match). Entries in the index 
that contain more than a certain number of loci (hash list size threshold) are 
removed to prioritize seeding based on informative k-mers (k-mers containing 
less common nucleotide sequences), thus speeding up the search and reducing 
memory requirement. The results presented in this study were calculated for 
k =​ 21 and s =​ 7. This combination of settings was found to deliver a good trade-
off between index size and performance.

The search procedure is implemented as follows. For each k consecutive 
symbols in a read, a hash index is calculated by applying the hash function used 
during the search index construction; a list of k-mer loci corresponding to the 
calculated hash index is determined. We use a sliding search window approach to 
locate substantial spatial clusters of loci belonging to an aggregate of k-mer lists 
determined for the read. These clusters represent candidate match regions. We 
allow for gaps between loci. A search window size is selected based on the read 
length and the upper limit for novel indels. Each located cluster is assigned a score, 
which is calculated by analyzing matching k-mers, their positions in the graph and 
corresponding positions in the read. The higher the score, the larger the probability 
of match with the read. Clusters with scores exceeding a threshold are treated as 
seeds for local alignment. Each seed thus represents a region in the graph against 
which the read might align. Paired-end reads are treated as single search patterns 
with gaps. These reads are processed in the same way as single-end reads, which 
significantly reduces the computational complexity of paired-read search.

The majority of reads do not contain novel insertions or deletions. We take 
advantage of this fact by employing a hierarchical approach to local alignment: 
for each candidate seed, we first attempt a fast gapless alignment algorithm and 
then, if required, a slower alignment algorithm that permits novel insertions and 

deletions. In both cases, the graph region is extended on either side of the seed 
to accommodate cases where k-mers at each end of the read are not contained in 
the graph index or the read contains novel variations or comes from a repetitive 
region. We use a graph-aware version of the bit-parallel approximate (BPA) string-
matching algorithm (also known as the bitap algorithm) for the first stage. Reads 
in that presence of novel indels and structural variations not contained in the 
graph are mapped using a custom SIMD-optimized implementation of the Smith–
Waterman algorithm against the graph reference40 in cases where BPA fails to find 
an alignment with fewer than a given number of mismatches for a seed (default: 4). 
For BAM output, each read aligned to the graph genome is projected to and given 
a CIGAR string against the linear reference genome. Reads fully aligned within 
an insertion are placed to the linear reference nucleotide just before the insertion. 
Mapping qualities for single-end reads are computed by closely following the 
approach taken in MAQ41. Mapping qualities for paired-end reads are computed 
by summing the individual single-end mapping qualities for each mate. Further 
details are presented in the Supplementary Note (section 3.1).

Aligner benchmarking was run on Amazon AWS c4.8xlarge instance with 
36 CPU cores and 60 GB of RAM.

Variant calling. The Reassembling Variant Caller of the Graph Genome 
Pipeline takes elements from Samtools41, FreeBayes42 and HaplotypeCaller43. 
An important novel aspect of our approach is the use of the graph reference to 
help guide the assembly and genotyping phases (Supplementary Note, section 
3.2.5), reducing the effects of reference bias. We combine regions with candidate 
variants based on read CIGARs into reassembly windows of roughly 300 bp. For 
each reassembly window, overlapping reads are compressed into a De Bruijn-
like graph43. Non-unique k-mers are flagged and treated separately to avoid 
loops in the De Bruijn-like graph (Supplementary Note, section 3.2). Candidate 
haplotypes are derived from the De Bruijn-like graph using depth-first search 
by prioritizing variants with the highest degree of read support and scored 
using the pair Hidden Markov Model43,44. SNPs, small indels and large SVs were 
all assembled and called using the same variant calling algorithm. The graph 
reference genome factors into variant calling in that: (1) k-mers present in the 
graph are prioritized during a k-mer filtering preprocessing step; (2) variants in 
the graph are given a higher prior probability.

For the benchmarking experiments in the main text, we used the standard 
Graph Genome Pipeline that employs a set of previously proposed hard variant 
filters45 to filter raw variant calls. For the PrecisionFDA Truth Challenge 
benchmarking experiment only (Supplementary Fig. 14), we used a logistic 
regression model to filter variants based on the GATK best practices45 and 
other features extracted from the raw variant calls (Supplementary Note, 
section 3.4).

Benchmarking experiments. We simulated reads for ten genomes using the open-
source Mitty program (https://github.com/sbg/Mitty). As truth VCFs, we used 
five samples from the GiaB project (HG001, HG002, HG003, HG004, HG005) 
and five samples from the 1000G Phase 3 release (HG00096, HG00551, HG03585, 
NA12878 and NA18488). We generated 50×​ coverage reads from the whole 
genome, excluding regions with masked reference sequence (i.e., those with ‘N’s).

Benchmarking on real data (Fig. 3b) was done on all five GiaB25,46 samples: 
HG001 (NA12878), HG002 (son of the Ashkenazim Jewish Trio), HG003 (father of 
the Ashkenazim Jewish Trio), HG004 (mother of the Ashkenazim Jewish Trio), and 
HG005 (son of the Chinese Trio). HG001–HG004 were sequenced to 50×​ coverage 
using PCR-free library preparation protocol and 2 ×​ 150 sequencing reads, and 
HG005 was sequenced using 2 ×​ 250 bp reads. All files were downloaded from the 
GiaB FTP site (ftp://ftp-trace.ncbi.nih.gov/giab/ftp/).

We used two sets of trios in the experiments based on the related genomes: 
the CEU Trio (NA12878 (daughter), NA12891 (father), and NA12892 (mother)), 
and the AJ Trio (HG002 (son), HG003 (father), and HG004 (mother)). Data for 
the CEU trio are 40×​ coverage of 100-bp paired-end reads (available from 1000 
Genomes FTP, http://ftp.1000genomes.ebi.ac.uk/), and the AJ Trio is based on 50×​ 
coverage of 150-bp paired-end read data from the GiaB FTP site (ftp://ftp-trace.
ncbi.nih.gov/giab/ftp/).

Variant sets called by each pipeline were evaluated against their respective 
truth sets using vcfeval47 and hap.py (https://github.com/Illumina/hap.py). For 
trio benchmarking, we developed a variant comparison tool (https://github.
com/sbg/VBT-TrioAnalysis) that generalizes the idea of vcfeval to family trios 
(Supplementary Note, section 4.6.1). This tool computes the numbers of different 
types of Mendelian compliant or inconsistent variants in the entire trio. From the 
computed Mendelian compliant and inconsistent variant counts, we developed an 
expectation maximization approach to estimate the respective underlying precision 
and recall metrics (Supplementary Note, section 4.6.2). Like small variants, SVs 
can have multiple representations in a VCF, but a brute force–based variant 
comparison approach like vcfeval47 is computationally prohibitive for large SVs. We 
therefore developed an SV comparison tool tolerant to different VCF-compatible 
SV representations (Supplementary Note, section 6.2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Code availability
Graph Genome Pipeline is freely available to academic users for non-commercial 
use. Compiled standalone tools and the License of Use can be accessed at https://
www.sevenbridges.com/graph-genome-academic-release/. The source code of the 
Graph Genome Pipeline tools is not publicly available.

Data availability
Raw sequencing data for the 150 Coriell WGS samples (Figs. 1, 4 and 5) 
can be accessed from the European Nucleotide Archive under accession 
PRJEB20654. Raw sequencing data for the Qatari samples (Fig. 5) used can be 
found under NCBI SRA accessions SRP060765, SRP061943 and SRP061463. 
Genome in a Bottle data (Fig. 3) are available from the NCBI FTP site (ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data). The Sanger sequencing traces 
have been deposited in the European Nucleotide Archive under accession 
PRJEB26700.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No code or software was used in data collection.

Data analysis Graph genome toolkit is available for use on the Seven Bridges Cloud Platform (https://www.sevenbridges.com).  
Tool versions used are: 
SBG Graph aligner 0.9.11, 
SBG Reassembly Variant Caller 0.5.20 
 
We also used the following software tools: 
GATK 3.7 (including HaplotypeCaller) https://github.com/broadgsa/gatk 
vcfeval 3.7.0 https://github.com/RealTimeGenomics/rtg-tools 
hap.py 0.3.5 https://github.com/Illumina/hap.py 
bcftools 1.3 https://samtools.github.io/bcftools/ 
Freebayes 1.10 https://github.com/ekg/freebayes 
Graphtyper 1.3 https://github.com/DecodeGenetics/graphtyper 
Bayestyper 1.1 https://github.com/bioinformatics-centre/BayesTyper 
Delly2 0.7.7 https://github.com/dellytools/delly

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability: Raw sequencing data for the 150 Coriell WGS samples (Figs. 1, 4 and 5) can be accessed European Nucleotide Archive, Study Accession 
PRJEB20654, (https://www.ebi.ac.uk/ena/data/view/PRJEB20654). Raw sequencing data for the Qatari samples (Fig. 5) used can be found in the NCBI SRA 
accessions SRP060765, SRP061943 and SRP061463 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP060765%2CSRP061943%2CSRP061463&amp;go=go). 
Genome in a Bottle data (Fig. 3) is available from the NCBI FTP site: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data. The Sanger sequencing traces will be deposited to 
European Nucleotide Archive (Accession ID PRJEB26700).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size selection was done.

Data exclusions No data were excluded.

Replication We ran three different classes f benchmarks using truth sets, simulations and population genetics measures, all of which support the 
conclusions. The described computational methods are deterministic and the results are reproducible.

Randomization We did not take part in selecting participants for any of the cohorts used.

Blinding We did not take part in selecting participants for any of the cohorts used.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) NA12878 and HG002 sample DNA used for validation of calls was obtained from NIST: https://www-s.nist.gov/srmors/
view_detail.cfm?srm=8398 and https://www-s.nist.gov/srmors/view_detail.cfm?srm=8391

Authentication DNA was authenticated by sequencing of 3 private SNPs identified by comparing the GiaB High Confidence Truth Set data to 
set of calls from 1000 Genomes phase 3 project.

Mycoplasma contamination We did not test for mycoplasma contamination.
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Commonly misidentified lines
(See ICLAC register)

We did not use any commonly misidentified cell lines
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