

DANIEL MARTINEZ, JAMES P. CAIN, ELIZABETH RESTITUYO-ROSARIO, KATYA KARANKEVICH, NATHANIEL COSPER Protein Technologies, Inc. Tucson, Arizona, U.S.A. Tel: +1-520-629-9626, Website: www.ptipep.com, Email: info@ptipep.com

# **INTRODUCTION**

New and optimized methods for rapid peptide synthesis, combined with instruments capable of parallel synthesis enable the production of peptide libraries with high throughput.<sup>1</sup>

Optimization of synthesis protocols is explored, using the Symphony X parallel synthesis platform, to reduce cycle times and decrease solvent consumption and waste generation by removing DMF washes after coupling steps.

# METHODS & ANALYSIS

The 65-74ACP peptides were synthesized on the Symphony X peptide synthesizer at 20 µmol scale using Fmoc-Gly-Wang resin (loading 0.32 mmol/g). Deprotection was performed twice with 20% piperidine in DMF for 2.5 min at RT. Washes: DMF 6 x 30 sec. Couplings were performed at a final concentration of 100 mM AA (10 eq.), 100 mM HCTU (10 eq.) and 200 mM NMM (20 eq.) for 2 x 5 min at RT. Cleavage cocktail used was TFA/Anisole/H<sub>2</sub>O/EDT and the reaction was performed for 2 h at **RT.** Triplicates were performed for each peptide.

The resulting crude peptide was dissolved in water and analyzed on a Varian ProStar HPLC using a C18, 180 Å, 5 um, 250 x 4.6 mm column (Agilent Polaris), over 60 minutes with a flow rate of 1 mL/min, and using a gradient of 5-95% B, where Buffer A is 0.1% TFA in water, and Buffer B is 0.1% TFA in acetonitrile. Detection was at 214 nm. Mass analysis was performed on a Shimadzu LCMS-2020 Single-Quad mass spectrometer, equipped with a C18, 100 Å, 2.6 um, 50 x 2.1 mm column (Phenomenex Kinetex), over 7 min with a flow rate of 1 mL/min and using a gradient of 5-50% B where Buffer A is 0.1% formic acid in water and Buffer B is 0.1% formic acid in acetonitrile

## REFERENCES

Chan, W., White, P. Eds.; Fmoc Solid Phase Synthesis – A Practical Approach. Oxford University Press: New York, NY, 2000.



# Reduced Cycle Times & Solvent Consumption of 65-74 ACP on Symphony® X

# RESULTS

The synthesis of <sup>65-74</sup>ACP was optimized by reducing the number of washes after coupling. Eliminating post-coupling washes reduced cycle times from 2.8 to 2.3 minutes and solvent consumption from 55 to 41 mL without significantly affecting the purity of the final peptides (Table 1).

| Number<br>of Washes | Solvent<br>Consumption | Effective Cycle<br>Time | Purity |
|---------------------|------------------------|-------------------------|--------|
|                     | 55 mL                  | 2.8 min                 | 84.9%  |
|                     | <b>50 mL</b>           | 2.7 min                 | 86.8%  |
|                     | 46 mL                  | 2.5 min                 | 85.1%  |
|                     | 41 mL                  | 2.3 min                 | 84.8%  |

Table 1. Effect of wash protocol on peptide purity, cycle times and solvent consumption. Peptide Sequence: VQAAIDYING



info@ptipep.com • www.ptipep.com

(B) 3 DMF washes after coupling steps

- Minimal change in purity
- synthesis

### •24 Reaction vessels

- Preactivation chemistry
- IR heating
- UV monitoring
- Single Shot<sup>™</sup> additions





### **CONCLUSION**

Eliminating post-coupling washes provides:

• 20% Reduction of overall cycle times

25% Reduction in overall solvent consumption

• Overall improvement in time and cost of peptide

### SYMPHONY X