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How To: Analyze a Split-Plot Design  

Using STATGRAPHICS Centurion 
  

by 

Dr. Neil W. Polhemus 
 

August 13, 2005 
 

Introduction 
When performing an experiment involving several factors, it is best to randomize the order in 
which the experiments are performed. This reduces the chance that any unexpected effects, such 
as a gradual change in some uncontrolled variable over time, will bias the results of the 
experiment. Randomization protects the experimenter against the effects of “lurking variables”, 
which are factors that affect the experiment but are not recognized until after the experiment is 
completed (if they ever are). Randomization also insures that all experimental factors are 
subjected to the same level of experimental error, which simplifies the type of analysis that needs 
to be performed on the results. 
 
In some cases, pure randomization is not practical, since certain factors may be hard to change. 
For example, when experimenting with a chemical process, it may be very easy to change the 
initial temperature by turning a dial, but changing a factor such as the type of catalyst may be 
considerably more involved. In such cases, experimental designs such as the split-plot design 
provide economical alternatives to full randomization. Unfortunately, the restricted 
randomization complicates the statistical analysis that must be performed on the resulting data. 
 
This “How To” guide shows how STATGRAPHICS Centurion can be used to analyze typical 
split-plot designs. Two examples are considered, one involving categorical experimental factors 
and the other involving quantitative factors. 
 

Example #1 
The first example we will consider comes from the latest edition of Statistics for Experimenters, 
second edition (Wiley, 2005) by Box, Hunter and Hunter. It is an experiment designed to study 
the corrosion resistance of steel bars that have been treated with four different coatings. The bars 
have been randomly positioned in a furnace and baked at three different temperatures. Although 
the position of the bars in the furnace could be randomized, multiple experiments involving a 
particular temperature needed to be conducted at the same time, since it was impractical to 
change the temperature of the furnace for each sample.   
 
The following table shows the layout of the experiment. Six experimental runs were performed, 
each at a selected temperature. During each run, four bars were baked, one bar with each coating. 
The position of the bars in the oven was randomly determined for each run. However, the 
temperature was changed in a systematic manner: 
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Run Temperature Coating of Bar by Position in Furnace 
1 360 C2, C3, C1, C4 
2 370 C1, C3, C4, C2 
3 380 C3, C1, C2, C4 
4 380 C4, C3, C2, C1 
5 370 C4, C1, C3, C2 
6 360 C1, C4, C2, C3 

          Figure 1: Experimental Design 

The results of the experiment have been placed in a file called howto11.sf6, which has the 
structure shown below: 
 

Temperature Replicate Coating Corrosion 
360 1 2 73 
360 1 3 83 
360 1 1 67 
360 1 4 89 
370 1 1 65 
370 1 3 87 
370 1 4 86 
370 1 2 91 
380 1 3 147 
380 1 1 155 
380 1 2 127 
380 1 4 212 
380 2 4 153 
380 2 3 90 
380 2 2 100 
380 2 1 108 
370 2 3 150 
370 2 1 140 
370 2 3 121 
370 2 2 142 
360 2 1 33 
360 2 4 54 
360 2 2 8 
360 2 3 46 

          Figure 2: Experimental Results in File Howto11.sf6 
 
The goal of the experiment is to determine the effect of the type of coating and the temperature 
on corrosion. 
 
 

Step 1: Plot the Data 
The first step when analyzing any new data set is to plot it. In this case, a coded scatterplot is 
very useful. 
 
 



Procedure: X-Y Scatterplot 
 

To plot the experimental data, let’s begin by pushing the X-Y Scatterplot button  on the main 
toolbar. On the data input dialog box, indicate the variables to be plotted on each axis as shown 
below: 
 

 
     Figure 3: Data Input Dialog Box for X-Y Scatterplot 

 
The resulting plot shows a general increase in corrosion with increasing temperature: 
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Figure 4: X-Y Scatterplot for Chlorine Data 

 
To introduce the type of coating into the plot, double-click on the graph to enlarge it and press 

the Pane Options button  on the analysis toolbar. This will display the following dialog box: 
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                 Figure 5: X-Y Plot Options Dialog Box 
 
Enter Coating in the Point Codes field to generate a coded scatterplot: 
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Figure 6: Coded X-Y Scatterplot 

 
Each type of point symbol represents a different coating. At each of the 3 temperatures, there are 
2 replicates for each type of coating. Based on this plot, one would be hard pressed to select the 
best type of coating. 
 

Step 2: Analyze the Data 
The corrosion experiment was conducted to determine the effect of two factors, temperature and 
type of coating, on a single response variable, corrosion. As in a standard factorial experiment, 
data has been collected at all combinations of the levels of the two experimental factors. What 
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makes this experiment special is that the size of the experimental unit for one factor is different 
than for the other, causing the experimental error affecting the estimates of the factor effects to 
be different. In particular, the furnace temperature was set only six times, corresponding to the 
six rows in Figure 1. Each of these rows is called a “whole-plot”, with analogies to early 
agricultural experiments in which one type of fertilizer might be applied to an entire field. Within 
each whole-plot, the coatings are randomly allocated to positions within the furnace. Position is 
referred to as the “subplot”. 
 
There are two sources of variability in this experiment: variability in bringing the furnace to a 
particular temperature, and variability amongst positions within the furnace. The variance of the 
first source will be labeled , while the variance of the second will be labeled . Since 
coatings were randomized across the subplots, estimates of differences between the coatings are 
subject only to the subplot error, while estimates of the temperature effects involve both the 
subplot and whole-plot error. 

2
Wσ

2
Sσ

 
The secret to analyzing this split-plot experiment is to view it as two experiments, one contained 
within the other. The whole-plot experiment involves changes in temperature. It can be viewed 
as a one-way comparison amongst the three levels of temperatures, with two replicates at each 
level: 
 

T1: 360ºC T2: 370ºC T3: 380ºC 
R1,R2 R1,R2 R1,R2 

 
Each replicate represents a “whole-plot” or run of the furnace. A standard ANOVA table for the 
whole-plot design would look like: 
 

Source of Variation Degrees of Freedom 
Temperature 2 
Error (Replicates) 3 

 
The second experiment crosses coating with the whole-plots: 
 

 T1 R1 T2 R1 T3 R1 T1 R2 T2 R2 T3 R2 
C1 Y Y Y Y Y Y 
C2 Y Y Y Y Y Y 
C3 Y Y Y Y Y Y 
C4 Y Y Y Y Y Y 

 
One bar was baked at each of the 4×6 combinations of coating and whole-plot. The terms in the 
ANOVA table for this experiment look like: 
 

Source of Variation Degrees of 
Freedom 

Whole-Plots 5 
Coating 3 
Temperature×Coating 6 
Error 9 
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Tests of significance for the terms in each experiment are done by comparing them to the 
corresponding error component. 



 
Procedure: General Linear Models 
 
A fully randomized factorial design, in which there is only one source of experimental error, is 
usually analyzed using the Multifactor ANOVA procedure. When there is more than one source 
of error, the General Linear Models procedure must be used instead. This is accessed from the 
main STATGRAPHICS Centurion menu by selecting: 
 

• If using the Classic menu: Compare – Analysis of Variance – General Linear Models.  
• If using the Six Sigma menu: Improve – Analysis of Variance – General Linear Models. 
 

The data input dialog box is shown below: 
 

 
     Figure 7: Data Input Dialog Box for General Linear Models 

 
Although not strictly necessary, it is helpful to enter the factors in the order shown: 
 

1. Whole-plot factors before subplot factors. 
2. Replicate after Temperature, since the replicates are performed at each temperature level. 

 
After completing the first dialog box, a second dialog box is displayed on which to specify the 
statistical model. It should be completed as shown below: 
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Figure 8: Model Specification Dialog Box for General Linear Models 
 
Note the following: 
 

1. The main effect of the whole-plot factor Temperature is specified by placing the single 
letter A in the Effects field. Since specific values of temperature were used (360, 370, 
380), it is a fixed rather than a random factor. 

 
2. Replicate is entered using the notation B(A). This indicates that replicate (Factor B) is 

nested within temperature (Factor A). Specifying the factors as nested indicates that the 
experimental unit for the first replicate of T1 is not the same as the experimental unit for 
the first replicate of temperature T2 or T3. Indeed, each combination of T and R forms a 
separate whole-plot. Factor B is also specified to be a random factor, since the two 
replicates are but a small random sample of all replicates that could have been performed. 

 
3. After entering the whole-plot terms, the subplot effects are specified. First, main effects 

of Coating are requested using the symbol C. Then the Temperature×Coating interaction 
is entered as A*C. Since four specific coatings are being tested, Coating is also a fixed 
rather than a random factor. 

 
Pressing OK causes the specified model to be fit. The Analysis Summary pane summarizes the 
fitted model. The top section of that summary is shown below: 
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General Linear Models 
Number of dependent variables: 1 
Number of categorical factors: 3 
   A=Temperature 
   B=Replicate 
   C=Coating 
Number of quantitative factors: 0 
 
Analysis of Variance for Corrosion 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 48517.8 14 3465.55 27.83 0.0000 
Residual 1120.88 9 124.542   
Total (Corr.) 49638.6 23    

 
Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Temperature 26519.3 2 13259.6 2.75 0.2093 
Replicate(Temperature) 14439.6 3 4813.21 38.65 0.0000 
Coating 4289.13 3 1429.71 11.48 0.0020 
Temperature*Coating 3269.75 6 544.958 4.38 0.0241 
Residual 1120.88 9 124.542   
Total (corrected) 49638.6 23     

Figure 9: GLM Analysis Summary – Top Section 
 
The most important information in the above table is in the section labeled Type III Sums of 
Squares. The rightmost column of that table contains a P-Value for each term in the model. P-
Values less than 0.05 indicate effects that are statistically significant at the 5% significance level. 
Both the main effect of Coating and the Temperature×Coating interaction are significant.  
 
Also included in the Analysis Summary is the table shown below: 
 

F-Test Denominators 
Source Df Mean Square Denominator 
Temperature 3.00 4813.21 (2) 
Replicate(Temperature) 9.00 124.542 (5) 
Coating 9.00 124.542 (5) 
Temperature*Coating 9.00 124.542 (5) 

 
Variance Components 
Source Estimate 
Replicate(Temperature) 1172.17 
Residual 124.542  

Figure 10: GLM Analysis Summary – Bottom Section 
 
The F-Test denominators indicate which line in the ANOVA table has been used to test the 
significance of each effect. For Temperature, the (2) indicates that it has been compared against 
the whole-plot error on the second line of the ANOVA table (labeled Replicate(Temperature)). 
The other factors have been compared to the Residual or subplot error in line 5. 
 
Also shown are the estimates of the error components: 
 

Whole-plot error variance:  17.1172ˆ 2 =Wσ
 
  Subplot error variance:  542.124ˆ 2 =Sσ
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Notice that the subplot error, which represents differences between positions in the furnace, is 
much smaller than the whole-plot error, which represents differences between runs of the 
furnace. From the discussion in Box, Hunter and Hunter, it seems that this is evidence of 
difficulties in maintaining the desired temperature when an experiment is run. 

 
Step 3: Display the Results 
Once the important factors have been identified, it is useful to display the estimated effects 

graphically. To plot the main effects of each factor, press the Graphs button  on the analysis 
toolbar. If you select Means Plot, the mean response will be plotted at each level of a selected 
factor. Using Pane Options, you can also choose an uncertainty interval to place around each 
mean. In the plot below, the mean value of Corrosion is shown for each of the three 
temperatures, together with Tukey’s HSD intervals: 
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Figure 11: Means Plot for Temperature 

 
Since all of the intervals overlap, we can not declare any means to be significantly different from 
any other means, which matches the insignificant result for the Temperature main effects in the 
ANOVA table. Using Pane Options to switch factors displays the following: 
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Figure 12: Means Plot for Coating 
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In this plot, the intervals for the first three coatings all overlap, indicating no significant 
differences amongst them. However, the uncertainty interval for Coating 4 does not overlap the 
other intervals, indicating a significant difference between Coating 4 and the other 3 coatings. 
 
We can also select Interaction Plot from the Graphs dialog box to display the interaction 
between Temperature and Coating: 
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Figure 13: Interaction Plot for Temperature×Coating 

Each point on the interaction plot shows the mean value for a specific combination of 
Temperature and Coating. Note that the difference between Coating 4 and the others is more 
pronounced at 380º than it is at the other temperatures. Also, Coating 2, which gives lowest 
Corrosion at 360º and 380º, is not the lowest at 370º.  
 
We can also use Pane Options to add uncertainty intervals to the interaction plot: 
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Figure 14: Interaction Plot with Uncertainty Intervals 
 

It appears that the only temperature at which the coatings are significantly different is 380º, since 
all of the intervals overlap at the other temperatures. 
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Example #2 
The second example comes from Design and Analysis of Experiments, sixth edition by Douglas 
Montgomery (Wiley, 2005). It is an example of an experiment performed with a single wafer 
plasma etching process. The goal of the experiment was to determine how Uniformity changed as 
a function of 5 factors:  
 
 A = electrode gap 
 B = gas flow 
 C = pressure 
 D = time 
 E = RF power 
 
The first 3 factors were relatively hard to change, while the last two could be changed easily. 
 
An excellent design for studying the effects of 5 factors is the 25-1 fractional factorial design, 
consisting of 16 runs at different combinations of two levels of each factor. The design is 
resolution V, meaning that it can estimate clearly all main effects and two-factor interactions. In 
running such a design, the 16 runs are ordinarily done in random order. Unfortunately, this 
means that all of the factors will be changed frequently, which could be expensive and time-
consuming. 
 
Montgomery describes an approach that reduces the number of times the hard-to-change factors 
need to be changed. He suggests arranging the 16 runs in the 25-1 design as a split-plot design. In 
his approach, each of the 8 combinations of the 3 hard-to-change factors defines a whole-plot. 
Each time a whole-plot is created, two different combinations of factors D and E are tested. The 
layout of the design is shown below: 
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        Figure 15: 25-1 Split-Plot Experiment 
 
Each of the 16 rows of the table represents an experiment that was performed. The – and + signs 
indicate whether a factor was run at its low or high level during a particular run. For example, 



during the first run, factors A, B, C and D were run at their low levels, while factor E was run at 
its high level. The measured Uniformity for that run was 40.85. The eight whole-plots were run 
in random order. Once the whole-plot conditions were set, the two runs in the whole-plot were 
performed, also in random order. With this approach, the hard-to-change factors A, B and C 
were changed less frequently then the easy-to-change factors D and E. 
 
 
Step 1: Construct the Design 
To construct the above experiment using STATGRAPHICS Centurion, the Design of 
Experiments section can be used. From the main menu, begin by selecting: 
 

• If using the Classic menu: DOE – Design Creation – Create New Design.  
• If using the Six Sigma menu: Improve – Experimental Design Creation – Create New 

Design. 
 
On the first dialog box, select the Screening option (this includes the two-level factorials) and 
indicate that 5 experimental factors are to be varied: 
 

 
Figure 16: First Design Creation Dialog Box 
 
On the second dialog box, specify the names of the 5 experimental factors: 
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Figure 17: Second Design Creation Dialog Box 
 
Select each button A through E and enter the following names: 
 
 A: electrode gap 
 B: gas flow 
 C: pressure 
 D: time 
 E: RF power 
 
Since the low and high levels of each factor were not stated in Montgomery’s example, leave the 
levels at -1.0 and 1.0. 
 
On the third dialog box, specify a label for the response variable: 
 

 
Figure 18: Third Design Creation Dialog Box 
 
The fourth dialog box shows a list of screening designs for 5 factors: 
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Figure 19: Fourth Design Creation Dialog Box 
 
The design desired is the Half fraction. It has 16 runs and is Resolution V. Note that 0 degrees of 
freedom are available to estimate the experimental error. This means that all 16 runs will be used 
to estimate the average, the main effects, and the two-factor interactions. To obtain degrees of 
freedom for estimating the experimental error, additional runs could be added on the final dialog 
box: 
 

 
Figure 20: Fifth Design Creation Dialog Box 
 
Most commonly, centerpoints would be added at values of each factor positioned halfway 
between the lows and the highs. In Montgomery’s example, however, no centerpoints were used, 
so no formal statistical tests of significance will be possible. 
 
After the final dialog box, the design will be created and placed into the STATGRAPHICS 
datasheet: 

© 2005 by StatPoint, Inc.  How to Analyze a Split-Plot Design - 14 
 



 
Figure 21: Datasheet Containing Generated Design 
 
The order of the design differs somewhat from that shown in Figure 15. In particular, the 8 
desired whole-plots consist of the following rows: 
 
 Whole-plot #1: runs 1 and 9 
 Whole-plot #2: runs 2 and 10 
 Whole-plot #3: runs 3 and 11 
 Whole-plot #4: runs 4 and 12 
 Whole-plot #5: runs 5 and 13 
 Whole-plot #6: runs 6 and 14 
 Whole-plot #7: runs 7 and 15 
 Whole-plot #8: runs 8 and 16 
 
The two runs in each whole-plot have identical values for factors A, B and C, but the levels of 
factors D and E are different. As stated earlier, the 8 whole-plots would be run in random order. 
After selecting a whole-plot, the two runs would also be done in random order. 
 
 
Step 2: Analyze the Results 
To analyze the results of the experiment, enter the Uniformity values in the rightmost column as 
shown in the above datasheet. Then select from the main STATGRAPHICS Centurion menu: 
 

• If using the Classic menu: DOE – Design Analysis – Analyze Design.  
• If using the Six Sigma menu: Improve – Experimental Design Analysis – Analyze Design. 

 
Specify the response variable on the data input dialog box: 
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Figure 22: Analyze Design Data Input Dialog Box 
 
An analysis window will be created, containing several tables and graphs. Of particular interest 
is the Pareto Chart, which plots the magnitude of each main effect and interaction in decreasing 
order: 
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Figure 23: Pareto Chart of Estimated Effects 

 
The largest effects appear to involve factors A, B and E and some of their interactions. 
 
Since the whole-plot factors are subject to a different experimental error than the subplot factors, 
the results need to be analyzed in two groups. To analyze the whole-plot experiment: 
 

1. Press the Analysis Options button  on the analysis toolbar. 
2. On the Analysis Options dialog box, press the Exclude button. 
3. On the Exclude Effects Options dialog box, double-click on any effect involving either 

subplot factor D or E to exclude it from the model: 
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Figure 24: Excluding Subplot Effects 

 
4. Press OK twice to refit the model using only factors A, B and C. 

5. Press the Graphs button   on the analysis toolbar and select Normal Probability Plot 
of Effects. 

6. When the normal probability plot appears, double-click on it to maximize its pane and 

then press the Pane Options button   on the analysis toolbar. Complete the options 
dialog box as shown below to request a Half-Normal Plot and to Label Effects: 

 

 
Figure 25: Normal Probability Plot Options 

 
The above steps will create a normal probability plot that can be used to help determine which 
effects are statistically significant: 
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Figure 26: Half-Normal Plot for the Whole-Plot Experiment 

 
The estimated effects that are merely manifestations of noise will appear at the bottom left and 
should lie approximately along a straight line. The estimated effects corresponding to real signals 
will lie off the line toward the upper right. In this case, it appears that both electrode gap and gas 
flow are statistically significant and that they interact. Pressure does not seem to have a 
significant effect. 
 

NOTE: the normal probability plot is the only means of determining statistical 
significance for the whole-plot factors in this experiment. Although the ANOVA table 
shows P-Values for each effect, they are based on the subplot error which does not apply 
to the whole-plot factors. Had degrees of freedom been available to estimate the whole-
plot error, perhaps from the inclusion of several runs with replicated centerpoints, then 
the average result in each whole-plot could have been calculated and an analysis of 
variance performed on the whole-plot averages. 

 
It is also useful in this case to display an interaction plot for factors A and B. This may be done 
by: 
 

1. Press the Graphs button  on the analysis toolbar and select Interaction Plots. 
2. When the plot appears, double-click on it to maximize its pane. 
3. Press the Pane Options button and select only electrode gap and gas flow. 

 
The resulting plot is shown below: 
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Figure 27: Interaction Plot for Electrode Gap and Gas Flow 

 
At the low level of electrode gap, gas flow makes little difference. However, at the high level of 
electrode gap, gas flow makes a big difference.  
 
It is also useful to plot the estimated model for uniformity as a function of the two important 
factors. The plot below was created by selecting Response Plots from the Graphs dialog box. It 
plots the estimated corrosion as a function of electrode gap and gas flow, with the other factors 
held halfway between their low and high values: 
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Figure 28: Uniformity versus Electrode Gap and Gas Flow 

 
The strong interaction between the factors causes the surface to twist dramatically, resulting in 
unusually high Uniformity when both electrode gap and gas flow are at their high levels. 
 
The same analysis can now be repeated on the subplot experiment. Returning to the Exclude 
Effects Options dialog box, we now create a model with any term (main effect or interaction) that 
involves a subplot factor: 
 

© 2005 by StatPoint, Inc.  How to Analyze a Split-Plot Design - 19 



 
Figure 29: Excluding Whole-Plot Effects 
 
The resulting normal probability plot shows that factor E (RF power) is significant, as is its 
interaction with factor A (electrode gap): 
 

Half-Normal Plot for Uniformity

Standardized effects

St
an

da
rd

 d
ev

ia
tio

ns

BE
DE

BD
CE

CD
D:time

AD

E:RF power

AE

0 0.2 0.4 0.6 0.8 1 1.2
0

0.4

0.8

1.2

1.6

2

 
Figure 30: Half-Normal Plot for Subplot Effects 

 
Again, an interaction plot displays the essential information: 
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Figure 31: Interaction Plot for Electrode Gap and RF Power 

 
As with gas flow, RF Power appears to have an effect only at the high level of electrode gap. 

 

Conclusion 
When the order of experiments cannot be fully randomized, a split-plot design is often useful. 
Those factors that cannot be changed as easily are varied across large experimental units called 
whole-plots, while the easily changed factors are varied across the subplots. Usually, the 
experimental error amongst subplots is considerably less than that amongst whole-plots, so that 
subplot factors and their interactions can be estimated with greater precision than the main 
effects of the whole-plot factors. 
 
As pointed out by the authors of the two books referenced in this guide, it is easy to slip into a 
split-plot setup without realizing it. Often, the “logical” way to conduct an experiment prevents 
one or more factors from being fully randomized. When randomization is restricted on one or 
more factors, the usual tests of significance generated assuming full randomization may make 
those factors appear more significant than they really are. For experimenters that face the 
problem of not being able to fully randomize the order of their experiments, careful study of 
split-plot designs is a must. 
 
 
Note: The author welcomes comments about this guide. Please address your responses to 
neil@statgraphics.com. 
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	Each point on the interaction plot shows the mean value for a specific combination of Temperature and Coating. Note that the difference between Coating 4 and the others is more pronounced at 380º than it is at the other temperatures. Also, Coating 2, which gives lowest Corrosion at 360º and 380º, is not the lowest at 370º.  
	Example #2 The second example comes from Design and Analysis of Experiments, sixth edition by Douglas Montgomery (Wiley, 2005). It is an example of an experiment performed with a single wafer plasma etching process. The goal of the experiment was to determine how Uniformity changed as a function of 5 factors:  
	 
	Conclusion 



