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Introduction 
When data are recorded at equally spaced points in time, the data are commonly referred to as a 
time series. Typical examples include monthly sales, daily closing stock prices, weekly airline 
passenger miles, and automated samples taken from a manufacturing process. When the data 
show cyclical ups and downs at a fixed period, such as sales of candy that peak around Easter 
and Halloween, the data are said to have a seasonal component. 
 
This guide examines procedures designed to analyze and forecast seasonal time series data. In 
STATGRAPHICS Centurion, there are several important procedures for handling such data: 
 

Descriptive Methods – for plotting the data and identifying the frequency of a seasonal 
component if it is not known already. 
 
Seasonal Decomposition – for splitting the time series into trend, cycle, seasonal, and 
irregular components. 
 
User-Specified Model – for fitting a forecasting model specified by the analyst. 
 
Automatic Forecasting – for automatic selection of the best fitting forecast model from 
amongst different candidates. 

 

Sample Data 
As an example, we will consider recorded monthly traffic volumes across the Golden Gate 
Bridge during the period from January, 1968 through December, 1981. This data was taken from 
the records of the Golden Gate Bridge Authority while the author was on sabbatical at the 
University of California at Berkeley. It covers a time period during which there were two major 
gasoline shortages, both of which had significant impact on traffic in the Bay Area. The data are 
contained in the file Howto5.sf6. 
 

Step 1: Descriptive Methods 
The first step in analyzing any data is to plot it. For time series data, this is best done by: 
 

• If using the Classic menu, select: Describe – Time Series – Descriptive Methods. 
• If using the Six Sigma menu, select: Forecast – Descriptive Time SeriesMethods.  
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The procedure begins by displaying a dialog box on which to specify information about the time 
series: 
 

 
Figure 1: Data Input Dialog Box for Descriptive Methods Procedure 
 
The data have been placed in a column of the datasheet named Traffic. The dialog box indicates 
that the data were sampled once every month, beginning in January of 1968. It also suggests that 
the data may have a seasonality of 12, which means that we expect to see a cyclical effect with a 
period of 12 months. If the seasonality is not known, this field may be left blank. 
 
The analysis window displays several panes, including a Time Sequence Plot of the data: 
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Time Series Plot for Traffic
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Figure 2: Time Sequence Plot of Monthly Traffic Volumes 
 
Notice that the overall trend during the sampling period was up, although that trend was 
interrupted twice: in the fall of 1973, and in the spring of 1979, both times due to gasoline 
shortages which caused a drop in traffic across the bridge. Note also the very regular cycle of ups 
and downs every 12 months, rising to a peak during the summer months when tourist traffic in 
San Francisco is the heaviest. 
 
A second important tool for examining seasonal data is the Autocorrelation Function, shown 
below: 
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Figure 3: Sample Autocorrelation Function 
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The autocorrelation at lag k is defined as the correlation between observations separated by k 
time periods. For example, the relatively large positive correlation at lag 1 reflects the fact that 
observations one month apart tend to be similar in magnitude. The correlation falls off as the 
separation between observations increases, but rises again at lags 12, 24, 36, and 48, reflecting 
the fact that traffic in a given month tends to be similar to that observed during the same month 
in previous years. This is a clear indication of a seasonality of order 12. 
 
One additional plot worth noting is the Periodogram: 
 

Periodogram for Traffic
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Figure 4: Sample Periodogram 
 
The periodogram shows the contribution to the overall variance of the time series data 
attributable to oscillations at different frequencies. It is based on a Fourier decomposition of the 
data into a sum of sine waves. A strong seasonal component at a frequency such as 1/12 months 
will result in a large spike as shown above. You can also see very small peaks at multiples of the 
fundamental frequency (call harmonics), which reflect the fact that the seasonal oscillation is not 
very sinusoidal. The contributions at very low frequencies come from the overall trend in the 
series. 
 
The periodogram is one of the best tools for identifying cyclical patterns at unknown 
frequencies. If a large peak is observed, it may well provide a clue to some important source of 
variability in the data. In a manufacturing process, removal of that source could reduce the 
overall variability in the process. 
 

Step 2: Seasonal Decomposition 
When analyzing time series data, it is common to view the data as consisting of four 
components: 
 

1. Trend (T) – a general long-term pattern observed over the entire data set. For example, 
many economic time series tend to show an increasing trend when viewed over many 
years. 
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2. Cycle (C) – cyclical variations around the trend line. Unlike seasonal effects, these cycles 

do not have a fixed frequency. General up and downs of the world economy is a typical 
example. 

 
3. Seasonality (S) – cyclical variations with a fixed frequency, such as yearly cycles in the 

sales of lawnmowers. Seasonal effects repeat on a regular and predictable basis. 
 

4. Random or Irregular (R) – the residual component left behind after the other three 
components have been accounted for. 

 
There are two basic models upon which a decomposition of a time series into its component parts 
may be based: a multiplicative model and an additive model. The multiplicative model assumes 
that the data at time t may be represented as the product of the four components according to: 
 

ttttt RSCTY =          
 
The additive model assumes that the components add: 
 

ttttt RSCTY +++=         
 
To decompose an observed time series into its various components: 
 

• If using the Classic menu, select: Describe – Time Series – Seasonal Decomposition. 
• If using the Six Sigma menu, select: Forecast – Seasonal Decomposition.  

 
The data input dialog box is the same as for Descriptive Methods. By default, a multiplicative 
model is assumed, although Analysis Options may be used to switch to an additive model.  Three 
graphs are useful in illustrating the decomposition. The first displays the Trend-Cycle: 
 

Trend-Cycle Component Plot for Traffic
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Figure 5: Plot of Trend-Cycle Component 
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This plot displays the original data, on which a moving average of length equal to the seasonal 
order has been added. The moving average estimates the combined trend and cycle components 
TtCt, which are not usually separated. The effect of the two gasoline shortages is easily seen. 
 
The second plot displays the Seasonal Indices: 
 

Seasonal Index Plot for Traffic
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Figure 6: Plot of Seasonal Indices 
 
The seasonal indices estimate the seasonal component St. When using a multiplicative model, the 
indices are expressed on a percentage basis, such that an index of 90 for a given month would 
indicate that such a month is only 90% of an average month. Note the strong seasonal effect for 
the traffic data, rising from a low in January to a peak in August and then falling off again. 
 
The third graph displays the Irregular Component: 
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Irregular Component Plot for Traffic
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Figure 7: Plot of Irregular or Residual Component 
 
For the multiplicative model, this component is also expressed on a percentage basis, with the 
average value scaled to equal 100. In March of 1974, the irregular component fell to 
approximately 86%, implying that traffic during that month was 14% less than expected, having 
already accounted for the trend-cycle and seasonal components. 
 
Once the decomposition has been performed, we can take the original data and divide it by the 
estimated seasonal indices to obtain the seasonally adjusted data tY ′ , defined by: 

t

t
t S

Y
Y =′  

 
The seasonally adjusted data are plotted below: 
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Seasonally Adjusted Data Plot for Traffic
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Figure 8: Seasonally Adjusted Data 
 
The seasonally adjusted data retain the trend-cycle and irregular components. However, the 
seasonality has been removed. 
 
 

Step 3: Forecasting 
 
Let’s suppose that we now wish to forecast the values of traffic across the Golden Gate Bridge in 
the months immediately following the end of the data sample. We can do this in two ways: 
 

1. Use a seasonal forecasting model to forecast the traffic data directly. 
 
2. Use a nonseasonal forecasting model to forecast the seasonally adjusted data, and then 

multiply the nonseasonal forecasts by the seasonal indices to put the seasonality back.  
 
We will try both methods and compare the results. 
 
 
Seasonal Forecasting Models 
To fit a seasonal forecasting model to the Golden Gate Bridge time series, we will use the 
Automatic Forecasting procedure. To access this procedure: 
 

• If using the Classic menu, select: Describe – Time Series – Automatic Model Selection. 
• If using the Six Sigma menu, select: Forecast – Forecasting - Automatic Model 

Selection.  
 
This procedure will generate forecasts using various procedures and select the method that works 
best according to a selected information criterion. 
 
On the data input dialog box, be sure the Seasonality field is set to 12: 
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Figure 9: Data Input Dialog Box for Automatic Forecasting 
 
Press OK to create an analysis window. Then select Analysis Options to specify the models to be 
considered: 
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Figure 10: Analysis Options Dialog Box with Selection of Seasonal Models 
 
There are two models that are useful for forecasting data with a strong seasonal component: 
Winter’s Exponential Smoothing, and the ARIMA models. Winter’s Exponential Smoothing 
assumes that the data follow a multiplicative model and uses triple exponential smoothing to 
estimate a linear trend and seasonal indices. The ARIMA models are parametric time series 
models that describe the observation at time t as a linear combination of “shocks” to the system 
at time t and earlier times. The details of both methods are described in the STATGRAPHICS 
documentation for the Forecasting procedure. 
 
The Automatic Forecasting procedure will fit all requested models, optimizing any model 
parameters. In the case of the ARIMA models, it will try various combinations of (p,d,q) and 
(P,D,Q), where p is the order of the nonseasonal autoregressive (AR) component, d is the order 
of nonseasonal differencing, q is the order of the nonseasonal moving average (MA) component, 
P is the order of the seasonal autoregressive component, D is the order of seasonal differencing, 
and Q is the order of the seasonal moving average component. 
 
The Model Comparisons table compares the fit of these two types of models: 
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Model Comparison 
Data variable: Traffic 
Number of observations = 168 
Start index = 1/68             
Sampling interval = 1.0 month(s) 
Length of seasonality = 12 
 
Models 
(L) Winter's exp. smoothing with alpha = 0.4847, beta = 0.0191, gamma = 0.4423 
(M) ARIMA(2,1,1)x(1,1,2)12 
(N) ARIMA(1,1,2)x(1,1,2)12 
(O) ARIMA(2,1,1)x(1,1,2)12 with constant 
(P) ARIMA(1,1,2)x(1,1,2)12 with constant 
(Q) ARIMA(2,0,1)x(1,1,2)12 
 
Estimation Period 
Model RMSE MAE MAPE ME MPE AIC 
(L) 2.31714 1.53852 1.66723 -0.273983 -0.308439 1.71638 
(M) 1.91188 1.23242 1.34833 0.0894087 0.0664659 1.3676 
(N) 1.91211 1.22733 1.3435 0.0393296 0.0136061 1.36784 
(O) 1.91185 1.23266 1.34838 0.0634539 0.0330278 1.37948 
(P) 1.91549 1.21616 1.33134 0.0345006 0.0035009 1.38328 
(Q) 1.92939 1.24165 1.35913 0.186433 0.177926 1.38584  

Figure 11: Comparison of Seasonal Forecasting Models 
 
Model (L) is Winter’s procedure. The three exponential smoothing parameters, α, β, and γ, have 
been optimized by minimizing the mean squared forecasting error. Models (M) through (Q) 
represent the 5 best ARIMA models. To rank the goodness of fit of the models, Akaike’s 
Information Criterion (AIC) has been computed. The AIC is based on the mean squared error in 
attempting to forecast one period beyond the end of the data, penalized by the number of 
parameters that need to be estimated.  It is calculated from 
 

 ( )
n
cRMSEAIC 2ln2 +=         

 
where RMSE is the root mean squared error during the estimation period, c is the number of 
estimated parameters in the fitted model, and n is the sample size. In general, the model will be 
selected that minimizes the mean squared error without using too many parameters (relative to 
the amount of data available). 
 
According to the AIC, model (M) is the best. The forecasts from this model are shown on the 
Time Sequence Plot: 
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Time Sequence Plot for Traffic
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Figure 12: Forecasts from the Optimal Seasonal Forecasting Model 
 
The solid brown line shows the point forecasts, while the red lines show the 95% forecast limits. 
The forecasts appear to extrapolate the recent behavior quite well. The forecast limits are wide, 
but this is to be expected given some of the large residuals in the historical data. 
 
 
Nonseasonal Forecasting Models Applied to the Seasonally Adjusted Data 
 
To fit nonseasonal models to the seasonally adjusted data, select Analysis Options again. 
Complete the dialog box as shown below: 
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Figure 13: Analysis Options Dialog Box with Selection of Nonseasonal Models 
 
When the Automatic Forecasting procedure fits a nonseasonal model to data for which 
seasonality was specified on the data input dialog box, it: 
 

1. First seasonally adjusts the data as illustrated for the Seasonal Decomposition procedure.  
 
2. Applies the forecasting methods to the seasonally adjusted data and generates forecasts 

for it. 
 
3. Multiplies the forecasts of the seasonally adjusted data by the seasonal indices to create 

forecasts for the original data. 
 
The results are shown below: 
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Model Comparison 
Data variable: Traffic 
Number of observations = 168 
Start index = 1/68             
Sampling interval = 1.0 month(s) 
Length of seasonality = 12 
 
Models 
(A) Random walk 
(B) Constant mean = 93.9718 
(C) Linear trend = 68.8458 + 0.0836141 t  
(D) Quadratic trend = 40.8552 + 0.274889 t  + -0.000318261 t^2  
(E) Exponential trend = exp(4.27143 + 0.0008988 t) 
(F) S-curve trend = exp(4.80816 + -77.9949 /t) 
(G) Simple moving average of 2 terms 
(H) Simple exponential smoothing with alpha = 0.7443 
(I) Brown's linear exp. smoothing with alpha = 0.3269 
(J) Holt's linear exp. smoothing with alpha = 0.7438 and beta = 0.0146 
(K) Brown's quadratic exp. smoothing with alpha = 0.1923 
 
Estimation Period 
Model RMSE MAE MAPE ME MPE AIC 
(A) 2.07408 1.31347 1.43666 -0.00214272 -0.0210771 1.58662 
(B) 5.15304 4.02891 4.39876 0.00647326 -0.300213 3.42203 
(C) 3.07679 2.32241 2.53535 0.00156945 -0.109794 2.40253 
(D) 3.01293 2.19924 2.40124 0.00139851 -0.103337 2.37249 
(E) 3.09741 2.35088 2.56383 0.0512234 -0.0557736 2.4159 
(F) 2.99392 2.21169 2.4117 0.0479026 -0.052079 2.34793 
(G) 2.72468 1.81704 1.9799 0.544652 0.530305 1.68104 
(H) 2.02123 1.3171 1.44231 0.143187 0.130268 1.55027 
(I) 2.22817 1.46057 1.59461 0.0280951 0.0131666 1.74521 
(J) 2.04348 1.30953 1.43489 -0.167097 -0.204924 1.58407 
(K) 2.35599 1.56361 1.70557 0.0039615 -0.015076 1.85678  

Figure 14: Comparison of Nonseasonal Forecasting Models Applied to the Seasonally Adjusted 
Data 
 
Simple Exponential Smoothing gives the lowest value of the AIC, resulting in the following 
forecasts: 
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Time Sequence Plot for Traffic
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Figure 15: Forecasts from Simple Exponential Smoothing of the Seasonally Adjusted Data 
 
While the Simple Exponential Smoothing forecasts pick up the seasonality well, they have no 
trend component. Note also that the AIC is well above that of the best seasonal ARIMA model. 
 
 

Conclusion 
STATGRAPHICS contains several procedures for analyzing time series data. The Descriptive 
Methods procedure is useful for plotting the data, and also for identifying seasonal effects 
through the autocorrelation function and periodogram. The Seasonal Decomposition procedure 
splits the time series into trend-cycle, seasonal, and irregular components. The Automatic 
Forecasting procedure fits many different forecasting models and selects the method that 
optimizes a specified information criterion. 
 
The general approach described in this guide should work well on many time series. In some 
cases, you may need to transform the data using a square root or logarithm before fitting the 
forecasting models. As in all data analysis efforts, it is important to plot the data at each stage to 
be sure that the results make sense in the context of the application for which the results will be 
used. 
 
 
Note: The author welcomes comments about this guide. Please address your responses to 
neil@statgraphics.com. 
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