Ten Data Analysis Tools You Can't Afford to be Without

Neil W. Polhemus, CTO, StatPoint Technologies, Inc.

George H. Dyson, Director of Six Sigma Services

Business Improvement Objectives

- Businesses must create value. This output must be greater than the inputs needed to produce it.
- If the output meets the customers' needs, the business is effective.
- If the business creates added value with minimum resources, the business is efficient.

The Role of Six Sigma is to Help a Business Produce the Maximum Value While Using Minimum Resources

(Pyzdek 2003)

Six Sigma Business Successes

- Cost reductions
 Productivity improvements
- Market share growth · Customer relations improvements
- Defect reductions
- Product and service improvements

Culture changes

Cycle - time reductions

(CSSBB Primer, 2001) / (Pande, 2000)

All these Successes have a common thread....

DATA!!!

- Data drives analysis.
- Analysis uses statistical models & tools of all kinds.
 - To extract meaningful information
 - To uncover signals in the presence of noise
 - To understand the past
 - To monitor the present
 - To forecast the future
- This understanding results in reduced cost and saving money.
- Deming: "Doesn't anyone care about Profit?"

Examples

- Product comparisons
- Survey analysis
- Distribution fitting
- Comparison of multiple samples
- Outlier detection
- Curve fitting
- Response surface modeling
- Time series forecasting
- Event rate modeling
- Interactive maps

Problem #1 – Product Comparisons

- Consumer Reports 2010: Sedans (Family, Upscale, Luxury)
- 7 variables
 - Price (dollars)
 - Road-test score (0 100)
 - Predicted reliability (1-5)
 - Owner satisfaction (1-5)
 - Owner cost (1 − 5)
 - Safety (1 − 5)
 - Fuel economy (overall mpg)

Data file: cars.sgd (n=30)

cars.sgd	🗰 cars.sgd 👝 🖻 🕱						83			
	Model	Class	Price	Road Test	Reliability	Owner Satisfaction	Owner Cost	Safety	MPG	
1	Nissan Altima	Family	28465	89	5	4	4	4	23	
2	Honda Accord	Family	28695	88	4	4	4	3	21	
3	Toyota Camry XLE	Family	29839	87	5	4	4	4	23	
4	Volk <i>sw</i> agen Passat	Family	27440	87	2	5	4	3	24	
5	Toyota Camry Hybrid	Family	29720	84	3	3	3	4	34	
6	Hyundai Sonata	Family	26435	83	4	4	4	4	22	
7	Chevrolet Malibu	Family	28045	83	5	4	4	3	20	
8	Ford Fusion	Family	28400	80	3	4	4	3	22	
9	Mercury Milan	Family	28025	80	3	4	4	3	22	
10	Nissan Altima	Family	28225	78	3	4	4	4	32	
11	Ford Taurus	Family	27510	75	5	5	4	3	18	
12	Kia Optima	Family	24640	73	3	2	4	4	22	
13	Chevrolet Impala	Family	26840	64	5	2	4	5	20	
14	Lexus ES	Upscale	38615	91	4	4	2	4	23	
15	Toyota Avalon	Upscale	33070	89	4	4	4	3	22	
16	Acura TL	Upscale	35715	85	4	4	5	3	23	
17	Hyundai Azera	Upscale	30075	83	5	4	5	4	19	
18	Lincoln MKZ	Upscale	32675	77	4	4	5	3	20	
19	Buick Lucerne	Upscale	38935	73	4	5	2	4	17	
20	Volvo S60	Upscale	34980	58	4	5	5	4	22	¥
$ H \leftrightarrow \rightarrow \rightarrow$										

Multivariate Visualization

- The data consist of 7 quantitative variables plus one categorical factor. Each car is thus a point in 7-dimensional space with one other feature. How can we visualize what's going on?
- 1. 2-D scatterplot
- 2. 3-D scatterplot
- 3. Scatterplot matrix
- 4. Bubble chart
- 5. Parallel coordinates plot
- 6. Star glyphs
- 7. Chernoff faces
- 8. Radar/spider plot

2-D Scatterplot

Useful for plotting 2 dimensions.

3-D Scatterplot

Useful for plotting 3 dimensions.

Bubble Chart

Uses size of bubble to illustrate a third dimension.

Scatterplot Matrix

Plots all pairs of variables.

Parallel Coordinates Plot

Each case is shown as a line connecting the values of the variables.

Star Glyphs

Each case is shown as a polygon with vertices scaled by the variables.

Star Glyphs

Variables are scaled so that larger area is better.

Chernoff Faces

Each variable is assigned to a different feature of the faces.

Feature Assignments

Unfortunately, some features have a greater impact than others.

Multilevel Factorial Design Options						
Feature	Minimum	Maximum	Feature precedence (drag to change):		OK	
Radius to corner of face	0.2	0.8	Curvature of mouth	X1: Owner Satisfaction	Cancel	
Angle of corner from horizontal	0.2	0.8	Length of nose	X2: Price		
Vertical size of face	0.8	1.0	Eccentricity of upper face	X3: MPG		
Eccentricity of upper face	0.0	1.0	Vertical position of eyes	X4: Reliability		
Eccentricity of lower face	0.0	1.0	Size of eyebrows Separation of eyes	X5: Owner Cost		
Length of nose	0.0	1.0	Radius to corner of face	X6: Safety		
Vertical position of mouth	0.0	1.0	Vertical size of face	X7: Road Test		
Curvature of mouth	0.0	1.0	Vertical position of mouth Width of mouth	×8:		
Width of mouth	0.0	1.0	Slant of eyes	X9:		
Vertical position of eyes	0.2	0.8	Eccentricity of eyes Position of pupils	×10:		
Separation of eyes	0.3	0.7	Vertical position of eyebrows	X11:		
Slant of eyes	0.2	0.8	Siant of cycolows	X12:		
Eccentricity of eyes	0.0	1.0		X13:		
Size of eyes	0.0	1.0		×14:		
Position of pupils	0.0	1.0		X15:		
Vertical position of eyebrows	0.8	1.0		X16:		
Slant of eyebrows	0.0	0.5		X17:		
Size of eyebrows	0.0	0.6		×18:		

Radar/Spider Plot

Good for comparing a small number of cases.

Problem #2: Survey Analysis

- The most commonly used statistical procedure is the calculation of a two-way table (a tabulation of responses that can be classified in 2 ways).
- Such *crosstabulations* result in contingency tables that provide much useful information.
- Example: On January 18-19, 2010, Rasmussen Reports asked 1000 likely voters: "How would your rate the U.S. healthcare system?"

Data file: healthcare.sgd

healthca	🛗 healthcare.sgd 📃 🔳 🕱						
	Age group	Excellent	Good	Fair	Poor	No Opinion 🔺	
1	18-29	31	31	56	58	6	
2	30-39	33	43	66	112	0	
3	40-49	37	65	65	45	5	
4	50-64	10	17	16	16	4	
5	65+	41	95	72	70	9	
6							
7	I healthcare B	C/D/E/F/G	i/ <u>H/I/J/K</u> /	L/M/			

Mosaic Plot

Scales the area of each bar according to the counts in the table.

Chi-square Test

Tests for lack of independence between row and column classification.

🔚 Continge	🔚 Contingency Tables 📃 📼 💌							
Tests of Ind	Tests of Independence							
Test	Statistic	Df	P-Value					
Chi-Square	63.149	16	0.0000					
Warning: sor The StatAd This table sh independent. Therefore, th	Warning: some expected cell counts < 5. The StatAdvisor This table shows the results of a hypothesis test run to determine whether or not to reject the idea that the row and column classifications are independent. Since the P-value is less than 0.05, we can reject the hypothesis that rows and columns are independent at the 95.0% confidence level. Therefore, the observed row for a particular case is related to its column.							
I I I I I I I I I I				m	۱. Element of the second se			

Correspondence Analysis

Used to help visualize the important information in two-way tables.

Correspondence Map rows: principal, columns: principal

Problem #3: Distribution Fitting

- In many studies, determining the distribution of a quantitative variable is critical.
- Common examples covered in Six Sigma include capability studies.
- Distribution fitting is also quite critical in many design problems.

Data file: waves.sgd (n=26,304)

Source: www.iahr.net

waves.se	jd	
	Height	Co1_2 🔺
4	meters	
1	5.09	
2	4.51	
3	3.93	
4	3.73	
5	3.52	
6	3.37	
7	3.22	
8	3.17	
9	3.12	
10	3.02	
11	2.92	
12	2.68	
13	2.43	
14	2.24	
15	2.05	
16	1.87	
17	1.69	
18	1.56	
	waves B C	

Frequency Histogram

Shows the number of observations in non-overlapping intervals.

Normal Distribution

The normal distribution is a poor model for this data.

Comparison of Distributions

Fits many distributions and sorts them by goodness of fit.

🖺 Uncensored Data - Height 📃 🗖 💌							
Comparison of Alternative Distributions							
Distribution	Est. Parameters	Log Likelihood	KSD	A^2			
Lognormal (3-Parameter)	3	-44492.3	0.0158875	8.90066			
Largest Extreme Value	2	-45244.7	0.0493346	129.004			
Logistic	2	-48435.3	0.0917526	459.214			
Laplace	2	-48657.4	0.112977	590.784			
Normal	2	-49533.0	0.111481	712.055	=		
Exponential	1	-52321.9	0.238928		-		
Uniform	2	-66457.8	0.518133				
Lognormal	2	-1.E9	0.202882				
Weibull	2	-1.E9	0.442693				
Gamma	2	-1.E9	0.28725				
Pareto	1	-1.E9	0.435193				
Loglogistic	2	-1.E9	0.343987				
Inverse Gaussian	2	-2.6304E13	0.999962				
Birnbaum-Saunders	<no fit=""></no>						
Smallest Extreme Value	<no fit=""></no>						
•					•		

Lognormal Distribution

The 3-parameter lognormal distribution is much better.

Problem #4: Multiple Samples

- Data are frequently obtained from more than one sample.
- Asserting a significant difference between the samples (or lack thereof) is an important application of data analysis.

Data file: thickness.sgd (n=480)

🛗 thickness.sgd 📃 🗉 🔀				
	Location	Thickness 🔺		
1	TOP	2.4		
2	TOP	2.5		
3	TOP	2.4		
4	TOP	2.4		
5	TOP	2.5		
6	TOP	2.2		
7	TOP	2.7		
8	TOP	2.3		
9	MIDDLE	2.4		
10	MIDDLE	2.1		
11	MIDDLE	2.5		
12	MIDDLE	2.2		
13	MIDDLE	2.4		
14	MIDDLE	2.4		
15	MIDDLE	2.6		
16	MIDDLE	2.3		
17	BOTTOM	2.7		
18	BOTTOM	2.2		
19	BOTTOM	2.8		
20	BOTTOM	2.3		
HAP	I) thickness / C /	DÎ I		

Box-and-Whisker Plots

A very useful plot for comparing samples (from John Tukey).

Notched Box-and-Whisker Plots

Non-overlapping notches indicate significantly different medians.

HSD Intervals

Allow pairwise comparison of all level means.

Means and 95.0 Percent Tukey HSD Intervals

Problem #5: Outlier Detection

- Many data sets contain aberrant observations that don't come from the same distribution as the others.
- Identifying outliers and treating them separately often results in better models.

Data file: bodytemp.sgd (n=130)

🛗 bodytemp.sgd 📃 🖶 🔀					
	Temperature	Gender	Heart Rate 🔺		
	degrees		beats per minute		
1	98.4	Male	84		
2	98.4	Male	82		
3	98.2	Female	65		
4	97.8	Female	71		
5	98	Male	78		
6	97.9	Male	72		
7	99	Female	79		
8	98.5	Male	68		
9	98.8	Female	64		
10	98	Male	67		
11	97.4	Male	78		
12	98.8	Male	78		
13	99.5	Male	75		
14	98	Female	73		
15	100.8	Female	77		
16	97.1	Male	75		
17	98	Male	71		
18	98.7	Female	72		
19	98.9	Male	80		
20	99	Male	75		
21	98.6	Male	77		
H + + H bodytemp / B / C / D / E / +					

Outlier Plot

Shows each data value with lines at 1, 2, 3 and 4-sigma.

Grubbs' Test

Small P-value indicates that the extreme Studentized deviate (ESD) is highly unusual.

📔 Ou	tlier Ident	ification - Temperatur	e		
Sorted	Values				
		Studentized Values	Studentized Values	Modified	
Row	Value	Without Deletion	With Deletion	MAD Z-Score	
95	96.3	-2.65859	-2.74567	-2.698	1
55	96.4	-2.52219	-2.59723	-2.5631	1
23	96.7	-2.11302	-2.15912	-2.1584	1
30	96.7	-2.11302	-2.15912	-2.1584	
73	96.8	-1.97663	-2.01521	-2.0235	1
99	99.4	1.56955	1.59096	1.4839]
13	99.5	1.70594	1.7323	1.6188	
97	99.9	2.25151	2.30628	2.1584	1
120	100.0	2.3879	2.45231	2.2933	
15	100.8	3.47903	3.67021	3.3725	1

Grubbs' Test (assumes normality)

Test statistic = 3.47903

P-Value = 0.0484379

Problem #6: Curve Fitting

- A common data analysis problem involves determining the relationship between a response variable Y and a predictor variable X.
- If we can estimate a model where Y = f(X), then we can use that model to make predictions.

Data file: chlorine.sgd (n=44)

C:\Data\	Six Sigma\chlorine.	sgd 🗖 🗖	83
	weeks	chlorine	
	weeks since	percent	
	production	available	
1	8	0.49	
2	8	0.49	
3	10	0.48	
4	10	0.47	
5	10	0.48	
6	10	0.47	
7	12	0.46	
8	12	0.46	
9	12	0.45	
10	12	0.43	
11	14	0.45	
12	14	0.43	
13	14	0.43	
14	16	0.44	
15	16	0.43	
16	16	0.43	
17	18	0.46	
18	18	0.45	
19	20	0.42	
20	20	0.42	
21	20	0.43	
22	22	0.41	-
	chlorine B C		

Simple Linear Regression

Fits a linear model of the form Y = mX + b.

Comparison of Alternative Models

Fits many transformable nonlinear models and sorts by R-Squared.

omparison of Alternative Mo	dels	
sodel	Correlation	R-Squared
quared-Y reciprocal-X	0.9367	87.75%
leciprocal-X	0.9333	87.11%
quare root-Y reciprocal-X	0.9312	86.71%
-curve model	0.9288	86.27%
Double reciprocal	-0.9233	85.25%
leciprocal-Y logarithmic-X	0.9219	84.99%
Aultiplicative	-0.9218	84.98%
.ogarithmic-X	-0.9207	84.77%
quared-Y logarithmic-X	-0.9185	84.36%
leciprocal-Y square root-X	0.9038	81.69%
.ogarithmic-Y square root-X	-0.9012	81.21%
quare root-X	-0.8974	80.54%
quared-Y square root-X	-0.8926	79.68%
leciprocal-Y	0.8759	76.73%
xponential	-0.8710	75.87%
quare root-Y	-0.8682	75.37%
ogistic	-0.8665	75.08%
.og probit	-0.8662	75.03%
inear	-0.8651	74.83%
quared-Y	-0.8581	73.63%
leciprocal-Y squared-X	0.8023	64.37%
.ogarithmic-Y squared-X	-0.7941	63.05%
quare root-Y squared-X	-0.7896	62.34%
quared-X	-0.7849	61.60%
)ouble squared	-0.7748	60.04%
)ouble square root	<no fit=""></no>	
quare root-Y logarithmic-X	<no fit=""></no>	

Reciprocal X Model

A nonlinear model of the form Y = m/X + b is much better.

Problem #7: Response Surfaces

- The MISSION: air dominance at the lowest possible price.
- Use optimization models, built from performance data, to design the best aircraft engine.
- Note: the data have been altered and are for demonstration purposes only.

Problem Statement

- Optimize 3 response variables: Minimize total fleet acquisition cost (Y1) Maximize climb rate (Y2) Maximize launch rate (Y3)
- Input factors:

X1: Fan Pressure Ratio: 3.9 to 4.7X2: Overall Pressure Ratio : 34 to 40X3: Inlet airflow : 240 to 270 pps

Data file: engines.sgx (n=584)

engines.	🛄 engines.sgx						83	
	BLOCK	FPR	OPR	Air Flow	Y1 Cost	Y2 Ps	Y3 Launch	
1	1	4.46	34.6	241.0	5943.8	150.4	2071.42	
2	1	4.46	34.8	242.0	5954.3	151.3	2085.9	
3	1	4.46	35.0	243.0	5964.6	152.1	2100.39	
4	1	4.3	37.0	260.0	6164.3	162.7	2275.9	
5	1	4.3	37.0	260.0	6164.3	162.7	2275.9	
6	1	4.48	35.0	242.0	5948.9	151.6	2092.56	
7	1	4.48	34.8	241.0	5937.6	150.7	2078.14	
8	1	4.5	34.8	240.0	5921.3	150.1	2069.9	
9	1	4.5	35.0	241.0	5932.0	151.0	2084.42	
10	1	4.34	34.2	246.0	6040.4	152.3	2100.5	
11	1	4.34	34.2	246.0	6040.4	152.3	2100.5	
12	1	4.38	35.4	250.0	6080.4	156.6	2173.03	
13	1	4.38	35.4	250.0	6080.4	156.6	2173.03	
14	1	4.5	35.2	242.0	5974.9	151.9	2099.51	
15	1	4.48	35.2	243.0	5991.7	152.5	2107.57	
16	1	3.9	36.0	270.0	6350.8	154.9	2169.72	
17	1	3.9	36.0	270.0	6350.8	154.9	2169.72	
18	1	4.48	35.4	243.0	5992.1	152.3	2105.71	
19	1	4.5	35.4	242.0	5975.3	151.7	2097.43	
20	1	4.5	35.4	242.0	5975.3	151.7	2097.43	
21	1	4.5	35.4	242.0	5975.3	151.7	2097.43	-
$ \bullet \bullet \rightarrow \bullet$	engines	BC						

Design Plot

Shows the location of the historical data within the factor space.

Standardized Pareto Charts

Show the significant factors affecting each response.

Desirability Function

Quantifies the desirability of a joint response (Y1, Y2, Y3).

For responses to be minimized:

$$d = \begin{cases} 1 & \hat{y} < low \\ \left(\frac{\hat{y} - high}{low - high}\right)^{s} &, low \leq \hat{y} \leq high \\ 0 & \hat{y} > high \end{cases}$$

For responses to be maximized:

$$d = \begin{cases} 0 & \hat{y} < low \\ \left(\frac{\hat{y} - low}{high - low}\right)^{s} &, \qquad low \le \hat{y} \le high \\ 1 & \hat{y} > high \end{cases}$$

Combined desirability:

D=d(Y1)*d(Y2)*d(Y3)

Optimal Conditions

Found at the levels shown below:

Experimen	🧱 Experimental Design Wizard 📃 🗉 💌								
Step 1	:Define respon	ises Step	3:Select design	Step 5:Select runs	Step 7:Save experiment	Step 9:Optimize responses	Step 11:Augment design		
Step 2:	Define exp. fac	ctors Step	4:Specify model	Step 6:Evaluate design	Step 8:Analyze data	Step 10: Save results	Step 12:Extrapolate		
Step 8: Analyz	e the experime	ntal results					•		
Model	YI Cost	Y2 Ps	Y3 Launch						
Transformatio	n none	none	none						
Model d.f.	9	9	9						
P-value	0.0000	0.0000	0.0000						
Error d.f.	574	574	574						
Stnd. error	29.7747	0.447015	7.47643						
R-squared	93.60	98.68	98.73						
Adj. R-square	d 93.50	98.66	98.71						
Store Or Orationi							-		
Response Value	<u>ze me respons</u> es et Ontimum	<u>es</u>							
Response	Ontimized	Prediction	Lower 95 0% Lin	nit Unner 95 0% Limit	Desirability				
Y1 Cost	ves	6121.18	6108.08	6134.29	0.541166		=		
Y2 Ps	ves	160.0	159.803	160.197	0.999998		-		
Y3 Launch	ves	2243.17	2239.88	2246.46	0.886339				
Optimized desi	irability = 0.7	82786							
Factor Settings	at Optimum								
Factor S	letting								
FPR 4	.49812								
OPR 4	0.0								
Ar Flow 2	54.697						-		
						STATP	OINT		

TECHNOLOGIES, INC.

Response Surface

Show the estimated desirability throughout the experimental region.

Problem #8: Time Series Data

- Data recorded at equally spaced points in time is called a *time series*.
- Time series models are used for various purposes:
 - Analysis of trends and seasonal effects
 - Forecasting
 - Control
- Autocorrelation between adjacent observations requires special models.

Data file: customers.sgd (n=168)

ustome	ers.sgd				83
	Month	Customers	Col_3	Col_4	-
1	1/96	73637			
2	2/96	77136			
3	3/96	81481			
4	4/96	84127			
5	5/96	84562			
6	6/96	91959			
7	7/96	94174			
8	8/96	96087			
9	9/96	88952			
10	10/96	83479			
11	11/96	80814			
12	12/96	77466			
13	1/97	75225			
14	2/97	79418			
15	3/97	84813			
16	4/97	85691			
17	5/97	87490			-
HAPP	customers B	C/D/E/F/G/H	714		

Time Sequence Plot

Plots the data versus time.

Autocorrelation Function

Estimates the correlation between observations at different lags.

Estimated Autocorrelations for Customers

Seasonal Decomposition

Shows the average value during each season (scaled to 100).

Seasonal Subseries Plot

Shows the seasonal averages and trend within each season.

Annual Subseries Plot

Shows the seasonal effect separately for each cycle.

Seasonally Adjusted Data

Removes the seasonal effects from the data.

Automatic Forecasting

Fits many models and automatically selects the best.

Automatic Forecasting Options		
Models to Include		ОК
🔽 Random Walk		Cancel
🔽 Random Walk with Drift	Optimize Parameters	
🔽 Mean	Optimize Parameters	Help
Linear Trend	Optimize Parameters	- Method Selection Criterian
🔽 Quadratic Trend	🔽 Optimize Parameters	
🔽 Exponential Trend	🔽 Optimize Parameters	 Akaike Information Criterion (AIC)
✓ S-Curve	🔽 Optimize Parameters	C Hannan-Quinn Criterion (HQC)
🔽 Moving Average	🔽 Optimize Parameters	C Schwarz Bayesian Inf. Criterion (SBIC)
🔽 Simple Exp. Smoothing	🔽 Optimize Parameters	Mean Squared Error (MSE)
🔽 Brown's Linear Exp. Smoothing	🔽 Optimize Parameters	C Mean Absolute Error (MAE)
🔽 Holt's Linear Exp. Smoothing	🔽 Optimize Parameters	C Mean Abs. Percentage Error (MAPE)
🔽 Quadratic Exp. Smoothing	🔽 Optimize Parameters	
🔽 Winter's Exp. Smoothing	🔽 Optimize Parameters	Adjustments
ARIMA: 🔽 Optimize Model Order	Optimize Parameters	
AR Terms (p) MA Terms (q)	Differencing (d)	Parameters
Nonseasonal: 2 Nonseasonal: 2	Nonseasonal: 2	Estimation
Seasonal: 2 Seasonal: 2	Seasonal: 2	Input series
Fix q at p-1	Include constant	

ARIMA Model

Selected model is a rather complicated seasonal ARIMA model.

Problem #9: Event Rate Modeling

- When the data to be analyzed consist of the time at which events occur, the process by which those events are generated is called a *point process*.
- The most common type of point process is a *Poisson process*, in which the times between events are independent and follow a negative exponential distribution.
- If the event rate is constant, the process is called *homogeneous*. If the event rate changes over time, then the process is called *nonhomogeneous*.

Data file: earthquakes.sgd (n=52)

C:\Data\	Six Sigma∖earthquak	es.sgd		• ×
	Date	Location	Magnitude	C(
36	3/19/09	Tonga	7.6	
37	4/6/09	Italy	6.3	
38	4/7/09	Kuril Islands	6.9	
39	4/16/09	Afganistan	5.4	
40	5/28/09	Honduras	7.3	
41	7/9/09	China	5.7	
42	7/15/09	New Zealand	7.8	
43	8/9/09	Japan	7.1	
44	8/10/09	Indian Ocean	7.5	
45	9/2/09	Indonesia	7.0	
46	9/29/09	Samoa.	8.0	
47	9/30/09	Indonesia	7.6	
48	10/7/09	Vanuatu	7.8	
49	12/19/09	Taiwan	6.4	
50	1/3/10	Solomon Islands	7.2	
51	1/10/10	California	6.5	
52	1/12/10	Haiti	7.0	
	earthquakes B	C III	T	

Plot of Magnitude Versus Date

Shows an apparent increase in magnitude over the sampling period.

Point Process Plot

Shows the dates of occurrence only.

Event Rate

- The critical parameter in a point process is the rate of events per unit time (such as earthquakes per year). This parameter is usually called λ .
- The rate parameter is also related to the mean time between events, with MTBE = 1 / λ .
- λ may be constant (a homogeneous process) or vary over time (a nonhomogenous process).

Cumulative Events Plot

The slope of the line is related to the event rate.

Trend Test

A small P-value would indicate a significant trend.

🔡 One Dimensional Point Processes 📃 💷 💌
Trend Test
Laplace Centroid Test
Test statistic P-Value
Date -0.962298 0.335899
The StatAdvisor The above table displays a test for trend. The Laplace Centroid Test tests whether the event times are uniformly distributed over the sampling interval. A small P-value indicates the presence of a trend. For example, since the P-value calculated when testing Date is greater than or equal to 0.05, there is not a statistically significant trend at the 5.0% significance level.

Other Uses

Point process models are also very useful for estimating failure rates.

Between Group Comparisons

Tests can be made to determine whether there are significant differences.

Problem #10: Interactive Maps

- Graphics that allow the user to interact with the data are extremely useful.
- Maps are one important example.

Data file: census2000.sgd (n=51)

🛗 C:\DocData16\census2000.sgd						
	State	Population	Median Age	Percent Female	Per Capita Income	
1	Alabama	4447100	35.8	51.7	18819	
2	Alaska	626932	32.4	48.3	22660	
3	Arizona	5130632	34.2	50.1	20275	
4	Arkansas	2673400	36	51.2	16904	
5	California	33871648	33.3	50.2	22711	
6	Colorado	4301261	34.3	49.6	24049	
7	Connecticut	3405565	37.4	51.6	28766	
8	Delaware	783600	36	51.4	23305	
9	D.C.	572059	34.6	52.9	28659	
10	Florida	15982378	38.7	51.2	21557	
11	Georgia	8186453	33.4	50.8	21154	
12	Hawaii	1211537	36.2	49.8	21525	
13	Idaho	1293953	33.2	49.9	17841	
14	Illinois	12419293	34.7	51	23104	
15	Indiana	6080485	35.2	51	20397	
16	Iowa	2926324	36.6	50.9	19674	
17	Kansas	2688418	35.2	50.6	20506	
18	Kentucky	4041769	35.9	51.1	18093	
19	Louisiana	4468976	34	51.6	16912	
20	Maine	1274923	38.6	51.3	19533	
21	Maryland	5296486	36	51.7	25614	
22	Massachusetts	6349097	36.5	51.8	25952	
	census2000 B	C/				

U.S. Map Statlet

The slider changes the cutoff between the red and blue states.

Number of blue states (Median Age <= 36.0): 33 Number of red states (Median Age > 36.0) : 18

