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Abstract—We introduce Software DNA Shotgun Sequencing
(S3), a novel, biologically-inspired approach to combat OS Injec-
tion Attacks, the #2 most dangerous software error as identified
by MITRE. To thwart such attacks, researchers have advocated
various forms of taint-tracking techniques. Despite promising
results, e.g., few missed attacks and few false alarms, taint-
tracking has not seen widespread adoption. Impediments to
adoption include high overhead and difficulty of deployment.
S3 is based on a novel technique: positive taint inference which
dynamically reassembles string fragments from a binary to infer
blessed, i.e. trusted, parts of an OS command. S3 incurs negligible
performance overhead and is easy to deploy as it operates directly
on binary programs.
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I. INTRODUCTION

Software weaknesses that lead to Operating System (OS)
Command Injection Attacks are the #2 entry in MITRE’s
2011 CWE/SANS list of Top 25 Most Dangerous Software
Errors [1]. The high ranking makes intuitive sense: attackers
that compromise an application can issue arbitrary commands
to the underlying operating system, as if they were the
owner of the application. The potential damages are especially
catastrophic when the targeted applications are network-facing
servers running with high privileges, e.g., file servers, mail
servers, routers and even security appliances [2], [3], [4], [5].

In recent years, various taint-tracking techniques have been
developed to thwart command injection attacks [6], [7], [8],
[9], [10], [11], [12], [13], [14]. These techniques typically work
by tracking the flow of data from an external source as it
propagates through a program to a security-sensitive operation,
such as network input flowing to a database command. Prior
to issuing a security-sensitive operation, a command is first
checked against its taint markings to ensure that critical parts
of the command are not tainted. Modern taint trackers provide
fine-grained resolution and keep track of taint markings at the
level of individual characters. The resulting accuracy leads to
few false alarms (false positives) and few undetected attacks
(false negatives) [12], [11], [15], [16], [17], [18], [14].

Unfortunately, taint-tracking techniques are not practical
for software binaries as keeping track of taint markings in-
curs high run-time overhead. Even state-of-the-art optimized
taint trackers exhibit performance overhead between 50% and
200% [7]. In this paper, we focus on thwarting OS command
injection attacks for program binaries, and seek a solution with
the following characteristics1:

• Operates on binaries. The technique should operate
directly on binaries, without requiring access to source
code. In many deployment scenarios, source code will
not be available, e.g., due to intellectual property
protection measures, binary distribution, or use of
legacy code.

• Easy deployment. The technique should be easy to
apply and deploy. For example, it should not require
the installation of a custom interpreter or significant
changes in software development processes [12], [11],
[15].

• Low/no overhead. A protected binary should incur
very low overhead (< 1%) during normal operation
(i.e., while processing non-malicious commands).

• Low rates of missed attacks while preserving nor-
mal functionality. The technique should be effective
at stopping attacks but it should not modify the func-
tionality of protected binaries under normal operation.

The design landscape for run-time, taint-based defensive
techniques is summarized in the following table:

negative taint positive taint

taint
tracking

Haldar ’05 [13]
Newsome ’05 [20]

Nguyen-Tuong ’05 [12]
Pietraszek ’06 [11]
Futoransky ’07 [15]

Qin ’06 [8], Xu ’06 [16]
Chin ’09 [14]

Bosman ’11 [7]
Papagiannis ’11 [10]

Halfond ’06 [17]

Halfond ’08 [18]

taint
inference Sekar ’09 [21] S3

1These attributes were inspired by address space layout randomization,
a security technique widely deployed across major commodity operating
systems [19].



In one dimension, the focus is on keeping track of either
untrusted data (negative taint) or trusted data (positive taint).
In the other dimension, taint markings are derived either from
tracking the flow of data through a program (taint tracking), or
by inference (taint inference). S3 investigates a combination of
positive tainting and taint inference, the previously unexplored
quadrant in this design space.

To meet our design goals, S3 draws inspiration from taint
inference, a technique described by Sekar [21]. Instead of in-
strumenting programs to keep track of the propagation of taint
markings, Sekar’s technique simply infers taint marking by
correlating inputs to substrings in security-critical operations
using an approximate string matching algorithm. By obviating
the need to propagate taint, taint inference achieves low
overhead. Sekar’s taint inference technique relies on two main
assumptions: (1) the accurate identification of external input
data, and (2) that external data is mostly used verbatim when
used in a command. These assumptions hold true for most
web applications, but not for binary programs. For example,
consider a server that uses various forms of data encoding or
proprietary protocols to read input, and possibly uses shared
memory to communicate with other programs. In this case,
it is difficult and expensive to identify and monitor sources
of input. Furthermore, if the input is encrypted or encoded,
as is often the case with servers that use SSL, inferring taint
markings based on the program’s input becomes impractical.

S3 captures the primary benefit of taint inference, i.e., low
overhead, but uses positive tainting to obviate the needs of
identifying sources of external data or relying on a readily
observable correspondence between external input and critical
commands.

The primary contributions of this paper are:

• We identify positive taint inference, a previously un-
explored design point in the landscape of taint-based
dynamic techniques.

• We demonstrate a realization of positive taint infer-
ence that we call software DNA shotgun sequenc-
ing (S3). S3 forgoes in-depth and expensive program
monitoring to infer taint markings.

• We highlight weaknesses in taint-based detection of
OS command injection attacks, which motivates the
need for better program specifications.

• We present and evaluate a working prototype of S3,
which effectively thwarts OS command injection at-
tacks. S3 has essentially no performance overhead and
operates on binary programs, making it a practical,
deployable solution to OS command injection attacks.

The remainder of the paper is organized as follows. Before
presenting the details of our technique, we first present a
threat model in Section II. Section III provides a high-level
overview of S3, using a simple, but realistic, working example.
In Section IV we provide more details about each component
of the S3 architecture. We present a performance and security
evaluation in Section V. We discuss security related issues
with tainting and different aspects of S3, including possible
improvements, in Section VI. We discuss related work in
Section VII and present concluding remarks in Section VIII.

II. THREAT MODEL

Before describing S3 in detail, it is necessary to understand
the threat model of OS command injections that positive taint
inference addresses.

The threat model assumes software is intended to be
benign, but also that it likely contains flaws. The program,
when run, reads untrusted user input possibly from many
sources such as files, environment variables, shared memory,
or network sockets. The input is used to create shell commands
that are issued to the underlying operating system. Most inputs
to the program are benign and cause the OS command to
behave as intended by the programmer, but malicious inputs
may exploit the program flaw to violate the security policy
intended for the OS command. An OS command injection oc-
curs when attacker-controlled inputs change the programmer-
intended syntactic structure of a command [22], [21]. Further,
the program may be performance sensitive, and cannot tolerate
high run-time overhead.

This threat model includes the common “remote attacker”
model where a server-type program receives malicious input
over the network. However, it also includes privilege escalation
attacks where a local user attempts to gain additional privileges
(such as root access), by providing a malicious command line,
environment variable, etc. to a program.

III. SOFTWARE DNA SHOTGUN SEQUENCING:
HIGH-LEVEL OVERVIEW

Software DNA Shotgun Sequencing (S3) is a technique
inspired by genetic research [23]. In genetics, DNA shotgun
sequencing breaks up very long DNA strands into short
snippets, operates on (e.g., sequences) the snippets, and then
recombines the results. Software DNA Shotgun Sequencing is
similar in that we extract string fragments from a program,
operate on them, and then later recombine them to validate
some aspect of the program. Based on this idea, we invented
the S3 technique described in this paper. S3 can thwart OS
command injection attacks by matching the program’s DNA
fragments to the commands it attempts to issue. If commands
cannot be matched, S3 assumes that the DNA that has been
injected into the program is potentionally dangerous.

S3 differs from traditional taint-based techniques in two
fundamental ways:

• S3 does not seek to propagate taint markings as a
program executes. Instead, it uses taint inference, a
concept introduced by Sekar [21].

• However, in contrast to Sekar, S3 infers taint markings
for trusted data instead of untrusted data. The empha-
sis on trusted data is referred to as positive tainting
and was developed by Halfond et al. [17], [18].

S3 combines taint inference and positive tainting. We use
the term positive taint inference to distinguish our work from
Sekar’s negative taint inference technique.

A. S3 Architecture

S3 consists of five major compoments. The goal of the
DNA Fragment Extraction component (shown in Figure 1)
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Fig. 1. DNA Fragment Extraction process.

is to extract string literals, i.e, DNA fragments, from the binary
and its associated libraries. This analysis is done once, prior
to program execution, and the analysis time is not counted
against the run-time overhead.

The run-time components of S3 are shown in Figure 2.

The Command Interception component intercepts
security-critical commands so that they can be vetted.

The Positive Taint Inference component determines which
characters in the intercepted command should be trusted by
matching the command against the extracted DNA string
fragments. Any unmatched character is deemed untrusted.
Combining DNA fragments native to the protected binary to
infer taint is a novel form of taint inference and one of the
key contributions of the S3 architecture.

The Command Parsing component parses the intercepted
command to identify critical tokens and keywords.

The Attack Detection component combines the output of
the Positive Taint Inference and Command Parsing component
to determine whether an attack has occurred. A command is
deemed an attack if a critical token or keyword is marked as
untrusted.

Upon attack detection, S3 either rejects the command out-
right and returns an error code, or it alters the command before
passing it on to the operating system. The current prototype
uses a simple form of error virtualization that simulates a failed
command invocation by substituting an error code in place of
the actual command [24], [25].

To illustrate how S3 works, we use the following vulnerable
program as a working example:

char *path = "/bin";
int main(int argc, char** argv) {
char cmd[100];
snprintf(cmd, 100,

"%s/cat %s", path, argv[1]);
system(cmd);

}

B. Example with Benign Input

When the program in the working example is passed a
benign input such as "README", the resulting command
is shown in the first line of Figure 3a. The Positive Taint
Inference component annotates each character in the command
(B denotes that the character is trusted or blessed, U denotes
untrusted), as denoted by the second line of the figure. In this
case, /bin/cat is trusted as it matches the composition of
the DNA fragments "/bin" and "/cat" extracted in the
offline DNA Fragment Extraction process (see Figure 1). The
Command Parsing component identifies critical tokens and

/bin/cat README
BBBBBBBBBUUUUUU
CCCCCCCC-------

(a)

/bin/cat README; rm -fr *
BBBBBBBBBUUUUUUUUUUUUUUUU
CCCCCCCC-------C-CC-CCC--

* ** ***
(b)

Fig. 3. Sample command, with S3’s “blessed” and “critical” markings for
safe and malicious inputs.

keywords (C denotes critical), as shown in the third line of
the figure. Lastly, the Attack Detection component takes as
input the intercepted commands along with all annotations, and
marks any critical command that is not blessed as untrusted.
In this case, all critical tokens are marked as blessed, so the
command is determined to be safe and is allowed to execute.

C. Example with Attack Input

Consider the malicious input README; rm -fr * that
seeks to recursively delete user files. The resulting command is
shown in Figure 3b. Like the other example, the Positive Taint
Inference component annotates each character in the command.
Again, only /bin/cat matches the extracted fragments. The
Command Parsing component identifies critical tokens and
keywords, like before, except that this time the semicolon,
rm command, and the -fr flags are also detected, as shown
on line 3. Lastly, the Attack Detection component is invoked.
It detects that there are critical command characters that are
untrusted (shown with asterisks on line 4 of Figure 3b).
Since S3 has detected the attack, an appropriate remediation
technique can be applied. The program can be shut down or
the command can be blocked or sanitized before allowing it
to be passed to the operating system.

IV. SOFTWARE DNA SHOTGUN SEQUENCING:
DETAILED OVERVIEW

While the S3 architecture is generic, e.g., it could be
applied to web applications, we present details and discuss
challenges encountered as we map S3 into a practical instan-
tiation to defeat OS command injection attacks for binary
programs.

A. DNA Fragment Extraction

The accuracy of the fragment extraction process is crucial.
If fragments are missed, valid commands might be flagged
as injections. If spurious fragments are extracted, malicious
command injections might not be flagged (See Section VI-B
for further discussion).

1) String extraction: Extracting string fragments from bi-
nary programs is more difficult than it first appears. Our first
attempt used the Linux program strings, which linearly
scans a binary program and extracts null-terminated sequences
of ASCII characters that have a length larger than a given
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Fig. 2. Software DNA Shotgun Sequencing (S3) Architecture.

threshold. Unfortunately, short strings are sometimes impor-
tant. Consider this C++ snippet:

string q = "rm ";
q += "-f ";
q += filename;
system(q.c_str());

which creates and executes an OS command.

Using strings, the threshold needs to be sufficiently low
to find short strings. Unfortunately, low thresholds tend to yield
lots of garbage strings, which affects accuracy. Furthermore,
compilers use many optimizations that can make strings harder
to detect. For example, to initialize a string on the stack, a
compiler might use a sequence of store instructions:

mov [esp+28], 0x2d206d72 # "rm -"
mov [esp+32], 0x00002066 # "f \0\0"

Each move stores four bytes onto the stack, ultimately creat-
ing the proper null-terminated string. Other compiler idioms
may complicate accurately finding all strings, as well. We
have seen examples of the compiler inlining some stan-
dard library functions that have constant operands, such as
memcpy(dst,"rm -f ", 6). This optimization yields in-
lined constants much like the previous string initialization
example. Lastly, strings reports all strings in the executable
file, which can include debug information, shared library
names, compiler-version identifiers, etc. As these types of
strings cannot be used to form OS commands, they should
be excluded from consideration.

To deal with these issues, we use static analysis of the
program to derive the string fragments. The static analysis
starts by fully disassembling the program into a database which
holds each instruction in the program, indexable by address,
function, and control flow information. We use a hybrid linear-
scan disassembler and recursive-descent disassembler to ensure
we get good coverage of all instructions, as described by Hiser,
et al. [26], [27].

After disassembly is complete, the instructions are scanned
for accesses or creation of string values. We analyze each
instruction’s immediate operands and apply three heuristics to
identify string fragments:

• Check if the immediate value holds the address of
a program location and the location is the beginning
of a sequence of printable characters or one printable
character terminated by a null byte.

• Check immediate values to see if they contain a string
fragment. Attempt to combine immediate values of
sequential instructions to form one string fragment.
This heuristic handles the case of strings constructed
via sequential store instructions, as described in the
previous example.

• For position-idependent code (PIC), check immediate
values for PIC-relative addressing that might point to
a string.

Finally, we check for other string fragments or string
pointers in data sections.

2) Post-processing of DNA Fragments: Programs compiled
from C or C++ often contain statements that use format
specifiers, e.g. %d, %f, %s, %x. We split such fragments
into their constituent sub-fragments using the format specifiers
as delimiters. A fragment such as

"/bin/rm -f \%s; /bin/touch \%s"

would be split into the sub-fragments "/bin/rm -f ", and
"; /bin/touch". As the analysis cannot be sure that such
fragments are used as format strings, the original fragment as
well as the sub-fragments are retained in the list of signatures.

Figure 4 shows a representative sampling of the DNA
fragments from the Spam Assassin program. The length of
the fragments range from 1-111 characters. Because of the
%s specifier, Fragment 11 expands into sub-fragments 34 and
173. Likewise, fragment 46 expands into fragment 57 and 314.
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3: Usage: spamass-milter -p socket
[-b|-B bucket] [-d xx[,yy...]]
[-D host]

11: popen failed(%s). Will not send
a copy to spambucket

33: recipients; spamc gets
default username

34: ). Will not send a copy
to spambucket

46: Could not extract score from <%s>
56: error. could not replace body.
57: Could not extract score from <
173: popen failed(
273: hX
274: hx
279: h8
281: h@
282: h(
287: ><
286: @+
288: Z
304: 0
305: 8
306: @
307: (
308: "
309: .
310: /
311: :
312: ’
313: _
314: >
315: ‘

Fig. 4. Sample fragments manually extracted from SpamAssassin Milter
Plugin [4] (28 shown out of 315 fragments total).

Fragments 273–282 are likely spurious and result from the
inherent imprecision of static analysis on binaries.

Astute readers will notice the short fragments that contain
potentially dangerous shell metacharacters (fragments 306-
315), or short fragments that could be composed in an attack
(fragments 273-288). In Sections IV-E and VI, we discuss
how the S3 policies deal with short and potentially dangerous
fragments.

B. Command Interception

For binaries derived from C/C++ programs, commands
are typically encapsulated in an Application Programming
Interface (API) and accessed via dynamically-linked shared
libraries.

The S3 prototype leverages standard library interposition
facilities (LD_PRELOAD) to transparently intercept and wrap
function calls to the underlying operating system. S3 intercepts
the system, popen, rcmd, and exec family of functions.
Other functions could obviously be intercepted as well, but
we have identified these as the primary candidates for OS
command injection.

C. Command Parsing

This component is responsible for identifying the security-
critical parts of a command. For OS commands, the critical
parts consist of command names, options, delimiters, and the
setting of environment variables.

The S3 prototype uses a simple, combined lexical analyzer
and parser. The parser is careful to identify special characters
which could indicate the start of a new command (such as the
semicolon character), match quotation marks and parentheses,
etc. Ideally, one would use a full, formally-verified lexical
analyzer and distinct parser to detect keywords, etc. However,
it is impossible due to the nature of the shell language (bash
in our case). Consider this command:

echo Touching ${file}; touch ‘foobar‘

What are the “correct” lexical analysis and parse for this com-
mand? The answer depends on the value of the file variable
and the output of the foobar executable. If file is set to
a single quote character and foobar returns the same thing,
then there is exactly one command, echo. Since variables are
expanded and sub-processes are executed before the command
is parsed, the correct parse cannot be determined a priori.
Under most circumstances, though, such odd substitutions are
not the case.

For the purposes of detecting OS command injections, we
need to know the possible places where a command could
be invoked. Our simple parser assumes that the structure of
the command is not changed by the results of executing sub-
commands. In the case of our simple example, the parser marks
the command like so:

echo Touching ${file}; touch ‘foobar‘
CCCC CCCCCCCC CCCCC CCCCCCCC

where C indicates that a critical command character exists at
the given location.

D. Positive Taint Inference

Conceptually, the Positive Taint Inference component in-
fers which portions of the command come from within the
program, and which ones come from external sources. To ac-
complish this step, it checks each substring in the command to
determine if that location is within the set of DNA fragments.
This pseudocode illustrates the process:

for each DNA fragment, f
for each position, i, in the command
l=len(f)
if f==command[i .. i+l-1]

mark_blessed(command[i .. i+l-1]);

Conceptually, this algorithm could be quite expensive,
O(n3) where n = max(len(sig),#sigs, len(command)). In
practice, though, we use a move-to-front heuristic to organize
the DNA fragments required to trust commands and exit the
outermost loop when all critical parts of the command are
marked as blessed. Further, each command and each DNA
fragment is typically short, on the orders of tens or hundreds
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<commandName>
;[\s]<commandName>
$(<commandName>
||[\s]<commandName>
&&[\s]<commandName>
‘<commandName>
<environmentVar>[\s]=
-<optionFlags>
--<optionFlags>

Fig. 5. Attack detection policies using the same fragment origin policy ([\s]
denotes an optional whitespace).

/bin/cat README; rm –fr * 
BBBBBBBBBUUUUUUUUUUUUUUUU 
CCCCCCCCC      C CC CCC 

Fig. 6. Overlapping policies to detect attacks.

of characters. These simple observations and adjustments dra-
matically reduce the time necessary to make the inference.
Section V-D empirically evaluates the overhead associated with
inferring trust markings.

E. Attack Detection

Attack detection consists of scanning the command for any
character that has been marked as untrusted by the Positive
Taint Inference component and critical by the Command Pars-
ing component. In addition, we impose the constraints shown
in Figure 5 that command names, shell metacharacters used for
starting subcommands and their associated command names,
option flags, and environment variable names must come from
a single DNA fragment (same fragment origin policy).

This policy helps to compensate for the case when a short,
critical token, such as a semi-colon or a quotation mark, is
present in the set of DNA fragments. Such fragments allow
attackers great latitude to create strings that append new
commands, as in “; rm -rf”. Unfortunately, these DNA
fragments cannot simply be discarded, because many programs
do use such fragments to terminate their commands. However,
it appears uncommon for a program to use such fragments
to introduce a new command, so we disallow this behavior
entirely.

Figure 6 illustrates how these policies provide overlapping
means to detect attacks. The core policy of checking for un-
trusted critical characters (shown in boldface red) is augmented
with the same fragment origin policy (shown with rectangles).
Note that rm is covered by three separate policies. Thus, even
if ; and rm were somehow both extracted as fragments, the
attack would still be detected.

When no attack is detected, S3 passes the command to the
operating system to execute. However, if an attack is detected,
S3 does not pass through the command, but can enact any one
of a variety of remediation responses, such as shutting down
the program, warning the user and asking for permission to
continue, or logging the attack. For the prototype described in
this paper, we chose to return an error code as if the library

call had failed. This policy makes sense in many cases, as
well-written programs are designed to gracefully handle error
conditions.

Section VI discusses potential sources of false negatives
and false positives, and their implications in further detail.

V. EVALUATION

To evaluate the security and performance of S3, we have
built a prototype and applied it to a variety of engineered and
real-world benchmarks. The following sections describe the
Experimental Setup, Benchmarks, Performance Evaluation and
Security Evaluation in more detail.

A. Experimental Setup

For our evaluation, we used a 32-bit VirtualBox virtual
machine running Ubuntu 12.04 with 4 GB of RAM and a
2GHz Xeon E5-2620 processor.

B. Benchmarks

To evaluate the performance and security of S3, we have
collected a variety of benchmarks. For real-world benchmarks
with CVE reports, we used the SpamAssassin Milter Plug-
in [28], an email filter interface for detecting spam, and
cbrPager [29] version 0.9.16, a program to decompress and
view high-resolution images. We configured SpamAssassin
Milter version 0.3.1 with SpamAssassin version 3.3.2 and
Postfix version 2.9.6. Both of these programs have real-world
OS command injection vulnerabilities.

We also used a set of vulnerable programs independently
developed by MITRE Corporation from real-world, open-
source software. Each program was seeded with a command
injection vulnerability. This process was repeated to create
many variants with the vulnerability at many locations. Each
variant has inputs that represent normal program input, as well
as exploit inputs.

Finally, we used a set of small exploitable programs, most
less than 100 lines, that were developed by Raytheon. Like the
MITRE programs, normal and exploit inputs are provided.

Lastly, to help evaluate performance, we developed a
series of microbenchmarks. These benchmarks create an OS
command from command line input, and use a tight loop to
execute that command as frequently as possible, doing no
other work. There are two dimensions of variation in the
micro benchmarks: 1) the command to be executed and 2) the
primitive used to invoke the command. There are two possible
commands to be executed. The command to be executed in
one case is echo hello, and in the second case is bzip2
dickens.txt [30], [31]. The two cases represent a fast
command and a somewhat more reasonable workload that
compresses a 775 KB file. Each microbenchmark uses one
of the following primitives to invoke the command: execv,
popen, or system.

C. Security Evaluation

We used a combination of programs with reported real-
world vulnerabilities, synthetic test programs, and real-world
programs seeded with vulnerabilities by an independent testing
team to evaluate the strength of the S3 approach.

6



Benchmark Type Benchmark Native (ms ± 95%CI) S3 (ms ± 95%CI) Absolute Diff. (ms) % difference

MITRE Seeded C-C078-NGIN-04-DT03-02 10.6 ± 1.5 10.8 ± 1.8 0.2* 2.1%*
MITRE Seeded C-C078-CHER-04-DF09-02 11.7 ± 3.3 11.5 ± 1.4 −0.2* −1.5%*

Real world spamass-milter 0.3.1 87 ± 70 82 ± 43 −4.4* −5%*
Real world cbrPager 0.9.16 121.3 ± 11.6 121.2 ± 9.0 −0.1* −0.1%*

Micro echo (system) 1, 126 ± 18 1, 222 ± 5 96 8.4%
Micro echo (popen) 1, 236 ± 12 1, 240 ± 6 4 0.32%
Micro echo (execv) 1, 243 ± 4 1, 514 ± 11 271 22%

Micro bzip2 (system) 1, 377 ± 13 1, 380 ± 14 2.8 0.2%
Micro bzip2 (popen) 1, 379 ± 12 1, 381 ± 12 3.0 0.2%
Micro bzip2 (execv) 1, 366 ± 14 1, 373 ± 13 7.2 0.5%

TABLE I. PERFORMANCE OVERHEAD IN MILLISECONDS. ASTERISKS INDICATE THE DIFFERENCES ARE NOT STATISTICALLY SIGNIFICANT FOR THE 50
TRIAL RUNS PERFORMED.

1) Real-World Attacks: We evaluated S3 against two re-
ported command-injection vulnerabilities that we were able to
reproduce in open-source binaries.

The first attack, based on CVE-2008-2575, is a command
injection in cbrPager [32]. To extract images, cbrPager
invokes the system library call to execute unzip or unrar on
the archive, without sanitizing the filename. By crafting an
input such as ";rm -rf *;".cbr and providing it where
a filename is expected, cbrPager is tricked into executing a
malicious command when it attempts to open the putative file.
S3 is able to detect attempts to open a malicious filename and
return an error from the system library call. These actions
result in the program displaying a message that the file cannot
be opened, and exiting harmlessly.

The second attack, based on CVE-2010-1132, is a remote
exploit in the SpamAssassin Milter Plugin [4] (spamass-
milter), which integrates the SpamAssassin spam filter with
either sendmail or Postfix. The vulnerability occurs when the
milter is invoked with the -x “expand” option, to pass the
email address through alias and virtusertable expansion to
allow emails to be redirected to other accounts. In this case, the
popen function is invoked on sendmail with the email address
provided from SMTP as an argument, without properly sanitiz-
ing the email address, which can contain a pipe character. With
an SMTP command such as RCPT TO:<username+:"|rm
/var/spool/mail">, arbitrary commands can be exe-
cuted; with careful crafting, these may be sufficient to open a
remote shell. Our technology was able to harmlessly block any
command injections. The signatures extracted from spamass-
milter do not include the vertical bar (pipe) character, foiling
any attempt to exploit this weakness. Moreover, the Milter
plugin properly error-checks the popen function call, so it
continues to function without loss of service in the face of an
attempted exploit.

2) Synthetic Attacks: We evaluated S3 against engineered
test suites developed by Raytheon and independently by
MITRE. The Raytheon engineered suite consists of 18 mi-
crotests demonstrating command injections with 22 good
inputs and 35 bad inputs, using 9 different function calls
([f]exec[l,le,lp,v,ve,vp], system and popen)
and a variety of input-processing techniques. S3 mitigates all
of the bad inputs while breaking none of the good inputs in
this test suite.

The MITRE test suite includes 477 OS command in-
jection (based on CWE-78) and 516 OS argument injec-
tion (based on CWE-88) test cases [33]. These test cases

are based on inserting vulnerabilities into seven base pro-
grams: Cherokee, grep, nginx, tcpdump, wget,
w3c (from libwww), and zsh. Each test case involves
inserting a vulnerable call to popen at various locations
in the base program. For the CWE-78 test cases, this call
invokes nslookup with an unsanitized argument specified
from an environment variable or untrusted file. For the CWE-
88, the program builds the command using the format string
“find / -iname %s.” Semicolon characters are properly
sanitized when constructing the command, but the user can
still include input that has a -exec argument that is ultimately
passed to find. Consequently, they could use an input such
as “* -exec rm {} \;” to remove files or execute other
commands. For each test case, ten good inputs and two bad
inputs are provided. In each case, S3 was able to intercept the
bad inputs without altering behavior on the good inputs.

D. Performance Evaluation

Table I shows the performance overhead of S3. The
columns show the type of benchmark, benchmark name, per-
formance timing without and with S3 and finally an absolute
and percentage difference, indicating the slowdown S3 intro-
duces. A 95% confidence interval is shown where appropriate.

We selected two of the benchmarks from the MITRE
suite where the seeded vulnerability was in the main loop
of a server; most vulnerabilities were injected into startup
or shutdown code, and there was no significant performance
difference. The seeded vulnerability was set to execute only
once, but for timing purposes we modified the code slightly so
that it executed on every request to the server. The benchmarks
are based on Cherokee (C-C078-CHER-04-DF09-02) and
nginx (C-C078-NGIN-04-DT03-02), two production-quality
web servers. We performed 50 timings, each consisting of
downloading a small HTML file (574 bytes). Even with the
seeded vulnerability in the main loop and the small download
size, no statistically significant difference in timing was ob-
served with S3.

For SpamAssassin Milter, we wrote a simple client that
uses gettimeofday to measure the time spent in processing
an email transaction. We also modified cbrPager to measure
the time to render the first page of a 49 MB input file. Like the
MITRE benchmarks, these benchmarks show no statistically
significant overhead.

Unfortunately, the server applications have relatively high
variance due to network latencies, disk caching, etc. To deal
with this issue and benchmark worst-case overhead, we use the
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Fig. 8. Average time for email transaction versus number of milter signatures.

microbenchmarks described in Section V-C2. For these bench-
marks, we perform 50 timings, where each timing invokes 10
or 1,000 OS commands for the bzip2 or echo microbench-
mark, respectively. The microbenchmarks that invoke bzip2
to compress a file show that S3 causes practically no overhead,
only 0.2%. The true worst-case performance overhead is when
the program does nothing but issue OS commands, and each
OS command invocation completes extremely quickly. This
case is represented by the microbenchmark that issues the
echo hello command. These benchmarks show that the ab-
solute worst case overhead might be as high as 22%. However,
in practice the actual work performed by the program and by
executing the OS command clearly dominates the overall run-
time. Only our worst-case microbenchmarks demonstrate that
S3 generates any measurable overhead.

To verify the move-to-front heuristic was working properly,
we measured the overhead of the echo microbenchmark that
uses the system function to invoke OS commands as we
vary the number of DNA fragments. We automatically added
randomly generated strings to the program’s DNA fragments.
Figure 7 shows the average time in microseconds for the
microbenchmark to execute the system call over 100 trials,

Benchmark Size (KiB) Total (s) Extraction (s)

spamass-milter 0.3.1 142 17.3 0.60
cbrPager 0.9.16 198 25.8 0.69

C-C078-NGIN-04-DT03-02 708 238.6 8.3
C-C078-CHER-04-DF09-02 548 224.2 4.8

TABLE II. ANALYSIS TIME IN SECONDS.

using from 300 to 10,000 signatures (timing starts after steady
state has been reached). There is a very slight positive corre-
lation as shown by the line of best fit y = 0.002x + 1194.
Our investigation indicates that the command processing and
matching time after initialization was fixed across the differing
number of signatures, but that as there are more signatures in
the process’s address space, the fork system call (used to
implement system) takes longer. We suspect this behavior is
a result of taking slightly longer to copy additional page table
entries for the new process.

In practice, this additional overhead is negligible since most
programs have few signatures. For example, SpamAssassin
Milter has 316 signatures and nginx has 2,017. Figure 8
shows the average time in milliseconds to process an email
transaction over 50 trials applying S3 with from 320 to 10,000
signatures to SpamAssassin Milter, which shows no trend.
We would not have expected to see any correlation, given
an expected increase of only 20 microseconds based on our
microbenchmark and the higher time variance of the email
benchmark.

Based on these microbenchmark and real-world benchmark
performance results, we believe that in practice the S3 system
would introduce no measurable overhead, and is the fastest OS
command injection detector to date.

E. Analysis Time

We measured the time for offline analysis (i.e., DNA Frag-
ment Extraction) of the real-world benchmarks. The results are
shown in Table II. This table shows the size of the analyzed
executables and libraries, the entire static analysis time, and
the portion of that time spent in fragment extraction and
processing. This analysis needs to be performed only once.
Our results show the analysis taking up to four minutes for
nginx. The time is dominated by the disassembly and IR
recovery steps that can be shared by other binary analyses
and protections. The actual time devoted to string extraction
and post-processing amounts to about 2% of the analysis,
completing in between 0.5 to 8 seconds on our benchmarks.

VI. SECURITY DISCUSSION

A. Spurious Attack Detection (False Positives)

The current S3 prototype makes the assumption that com-
mand words originate from static strings in the binary or
dependent libraries. If this assumption is violated, e.g., com-
mands are stored in configuration files, S3 may incorrectly flag
a benign command as an attack, thereby breaking programs.
As observed by Halfond et al., these situations can often be
detected easily during a pre-deployment testing phase [18].
Since the S3 architecture cleanly separates the specification of
fragments from their use at run-time, additional fragments can
be incorporated simply by appending to the DNA fragment list
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(Figure 1). This step could be done manually or automatically
through further tool support.

Another possibility is that the strings in the program that
form commands cannot be detected via static analysis of the
binary program. Such a situation might occur if the program is
encrypted or highly obfuscated. Such situations are expected
to be uncommon. However, we do not have experimental
evaluation of the prevalence of obfuscated binaries and our
evaluation suite may not be representative in this respect.

B. Missed Attack Detection (False Negatives)

The extraction heuristic introduced in Section IV-A may
lead to spurious fragments, i.e., string fragments that do not
actually exist in the binary’s source code. Spurious fragments
may also be introduced as a result of separating fragments
containing format string specifiers into sub-fragments (Sec-
tion IV-A2). For example, the fragment "echo ’%s’" would
be sub-divided into the fragments "echo ’" and "’". These
spurious fragments may inadvertently match special shell
operators or command words that might be useful in an attack,
e.g., ’, ‘, <, >, $(, |, ;, &.

Another issue is that a binary may truly contain dangerous
string fragments. Consider the following code snippet used for
filtering out dangerous characters:

if (strstr(s, "’") ||
strstr(s, "‘") ||
strstr(s, ">")) ...

Or code that uses concatenation to assemble strings:
string s = "echo ’";
s += name;
s += "’";

Such strings may thwart the ability of S3 to detect all
attacks. The current S3 system handles this situation by using
the policies described in Section IV-E. These policies enforce
the constraints that critical command names, along with shell
characters that start sub-command, must come from a single
signature. These policies also handle the case where there
may be fragments for each character in the alphabet, which
could be reassembled to form any command name. Such a
situation might be common for some programs that utilize
many different command line options: programs often contain
each command line option as a single character string! Despite
this, S3 has been able to detect all command injections in
practice using the policies described previously.

1) Future Work: Reducing the Attack Surface: We plan on
investigating simple data flow analyses methods to prune the
fragments to just the set which might reach an OS command
site. We would omit a fragment if we could prove that it never
flowed into a critical command, as is the case with the strstr
example above. Furthermore, we plan on refining our fragment
matching algorithm to allow for regular expressions. Instead
of breaking up fragments when they contain a format string
specifier, we would instead substitute the corresponding regular
expression pattern specifier, e.g., [0-9]+ for %d.

C. Subtle Injections

Some “command injections” are particularly difficult to de-
tect using tainting information. Consider this program snippet:

system("make");

The parameter to the command execution library is con-
stant. However, if the program has root privileges and the user
has the ability to control the executable search path, they can
modify the make command to do as they wish, and avoid the
programmer’s intended security policies. Likewise, consider
this program snippet:

sprintf(buf,"cat %s", argv[1]);
system(buf);

The user is presumably allowed to specify a file to be
displayed by the program. However, if the user specifies a file
with a relative or absolute pathname, a security policy may be
violated. Perhaps even trickier is if the user specifies no file at
all, and the command becomes simply cat with no parameter.
Terminal input is then used instead of a file on the file system.
Again, no command is “injected” into the program.

Lastly, if the program specifies that an external intepreter
should be used to interpret commands, detection may be
challenging. Consider this program snippet:

sprintf(buf,"echo %s | bc", argv[1]);
system(buf);

The program snippet indicates that the user should be able
to specify input to the bc program. However, bc accepts
a large variety of commands, which may have effects that
were not anticipated by the programmer. Many programs in
a standard Linux install have this characteristic, e.g. bash
-c, zsh, find -exec, psql -c, printf, etc., all
have flags that allow them to interpret arbitrary commands.
Furthermore, there are many non-standard interpreters. There
is no a priori way to establish whether a program is an
interpreter or not, which language it might accept, and which
parts of the language are intended by the programmer.

While each of these cases is hard to detect with S3, they
also represent the most challenging command injections to
handle automatically. They represent the fundamental problem
that programmer intent is not typically available. Without clear,
correct, and formally represented programmer intent, no tool
can detect all OS command injections. Even expensive taint
propagation systems, which are considered largely effective,
would be ineffective against the attacks shown.

VII. RELATED WORK

We focus our discussion on software-based, run-time de-
fensive techniques.

A. Taint Tracking

1) Taint Tracking in Managed Runtimes: Livshits provides
an extensive review of dynamic taint tracking projects [6].
Most projects use a form of negative taint tracking, i.e., these
projects keep track of external (untrusted) data as it flows
through a program, and check whether such data is used in
a security-sensitive operation [13], [12], [11], [16], [17], [18],
[14]. The notable exception is the WASP project by Halfond et
al. which uses positive taint tracking to keep track of internal
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(trusted) data [18]. The primary trade-off is that positive taint
tracking favors false positives (breaking application function-
ality) whereas negative taint tracking favors false negatives
(missing attacks). Halfond advocates the use of positive taint
tracking as it provides a more conservative security posture.

Unfortunately, both positive and negative taint tracking are
seldom used in practice. Perl and Ruby are the only two
major languages that we are aware of that provide support
for dynamic taint tracking out of the box [34], [35]. Several
projects modified the PHP run-time engine to support taint
tracking at the level of individual characters [12], [11], [15]. To
avoid modifying the PHP run-time engine, PHP Aspis applies
source code transformations selectively to only parts of a web
application. This scheme maps well to extensible applications
whose core is well-maintained but where the quality of third-
party plugins is unknown [10], [36]. Despite the selective
application of taint markings, Aspis incurs high overhead of
2.2X on Wordpress. Haldar et al. provided coarse-grained taint
tracking for Java strings [13]. Chin and Wagner implemented
taint tracking at the level of characters for Java [14]. In
general, fine-grained approaches to taint tracking result in
higher precision and fewer false positives.

2) Taint Tracking for Binaries: The overhead numbers
reported for the systems highlighted below are illustrative of
the rapid rate of progress in reducing the overhead of taint-
tracking techniques on binaries. However, they should not
be directly compared to one another as the benchmarks and
hardware used vary across these projects.

TaintCheck, one of the early pioneering projects for us-
ing taint tracking to detect memory-overwriting attacks on
binaries incurred overhead as high as 37X for CPU-bound
applications, and from 2.5X to 25X for I/O bound workloads
for a typical web server [20]. TaintCheck was built on top
of Valgrind, a flexible but relatively slow dynamic binary
rewriter [37]. The LIFT project achieved overhead of 3.6X
on several SPEC INT2000 benchmarks and 6.2% on server
applications [8]. The order of magnitude improvement resulted
from several optimizations, including using a more efficient
binary rewriter, eliminating instrumentation on provably safe
code paths, coalescing checks and reducing the overhead of
context switching between the application code and the dy-
namic binary rewriter. Bosman et al. reported overhead of 2.4X
for SPEC INT2006 and 1.5X-3X for real-world applications
using an emulator custom-built for taint analysis [7]. Unlike the
previous approaches, Saxena et al. use static rewriting as the
mechanism for instrumenting binary code [38]. They reported
average overhead of 1.95X on several CPU-intensive SPEC95
INT benchmarks. Dytan [39] and libdft [9] incorporate years of
experiences with taint tracking to provide easily customizable
and generic taint analysis frameworks.

Despite steady and impressive progress in improving the
performance of taint-tracking techniques, our stringent over-
head requirements (< 1% on binaries [40]) led us to bypass
taint-tracking techniques altogether.

B. Taint Inference

S3 was heavily influenced by Sekar’s taint inference tech-
nique for protecting web applications against command injec-
tion attacks [21]. Sekar’s insight of establishing taint markings

by correlating inputs to observable commands obviated the
need for taint tracking and was the key to enabling practical
performance. Instead of inferring taint markings for untrusted
data, S3 seeks to infer trusted data used in OS commands.
To highlight this fundamental difference, we view S3 as an
embodiment of positive taint inference, in contrast to Sekar’s
use of negative taint inference.

C. Model-based Approaches

Christensen et al. perform static analysis to model possible
string values at any point in a Java program [41]. The model
extracted represents an over-approximation of the program-
mers’ intended specification for benign commands. The AM-
NESIA project leverages these models to detect and prevent
SQL injection attacks [42]. We believe that AMNESIA can
be extended to cover OS command injections. The overhead
reported on a set of Java web applications was negligible.

String analysis for binaries is much more challenging as
binary code does not retain as much type information as
Java byte code. Christodorescu et al. modeled strings for
x86 binaries, though the precision of the analysis is limited
by the lack of interprocedural analysis [43]. Sophisticated
memory-analysis techniques such as Value-Set Analysis (VSA)
could also be applied to string extraction [44]. However, it
seems likely that string extraction requires abstract domains
that are designed for reasoning about strings. VSA uses an
abstract domain based on reduced interval congruences which
is excellent for reasoning about (strided increments of) pointer
values, but likely to lead to imprecise representation of string
values.

By extracting and allowing for the arbitrary combination
of string fragments, S3 makes a conscious trade-off between
model complexity and model accuracy. S3 combines a very
simple (but over-approximated) string model with additional
policies based on the origin of string fragments for its attack
detection policies.

VIII. CONCLUSION

This paper has described Software DNA Shotgun Sequenc-
ing (S3), the first look at a new, efficient, approach for detecting
taint markings based on positive taint inference. Our findings
indicate that S3 can be effectively used to detect OS command
injection attacks on binary programs. Furthermore, S3 has
demonstrated that it can be used in many real-world situations
because it has negligible performance overhead and can be
applied directly to binary programs without need for source
code or compiler support. Future work consists of refining the
string DNA extraction process, expanding the attack classes
covered to include SQL injections, LDAP injections, XML
injections and cross-site scripting attacks (XSS), and adapting
S3 to mobile and web applications.
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