
White Paper April 2014

Eliminating Vulnerabilities in

Third-Party Code with Binary Analysis

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 1

Background

Over the last few years, third-party code has moved from a
minor factor in software development to a dominant force
in the industry. It is now used throughout software develop-
ment in all applications, from highly sensitive government
and military applications to security-intensive consumer
commerce and communications.

According to the latest report from VDC Research, the
majority of software that runs on embedded devices is
now developed by external sources, not in-house develop-
ment teams. Some of this is open-source, but in embedded
applications, nearly 30% of code is third-party commercial
software – so the source is often unavailable. Such compo-
nents include graphics and windowing toolkits, cryptography
libraries, middleware, databases, and others.

As a result of this outsourcing, the behaviors of significant
parts of applications are actually hidden from most of today’s
popular code analysis tools. Because third-party software is
commonly delivered only in binary form, it cannot be exam-

ined with commercially available static source code analysis
tools. Without access to the source code, these tools cannot
fully account for the security consequences of executing the
third-party code in the application.

Based on over 10 years of research, through collaboration
with the University of Wisconsin and with support from the
United States Navy, Air Force Research Labs (AFRL), and
Defense Advanced Research Projects Agency (DARPA),
GrammaTech has developed an advanced new capability
that uses binary analysis to examine third-party code without
requiring access to source code.

GrammaTech has integrated this binary analysis capability
into their proven static analysis tool, CodeSonar, to create
the first commercially-available binary analysis product.
CodeSonar’s binary analysis technology provides developers
with the ability to evaluate, check, and inspect third-party
code, all while reaping the benefits of advanced workflow
options and management tools.

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 2

The Dangers of Third Party Code

Development teams commonly turn to third-party software
to incorporate particular functionality, such as communica-
tions or graphics, into their applications.

Cost, lack of local expertise, and unwillingness to “reinvent
the wheel” are among the many sound reasons that orga-
nizations use third-party software, whether as components
in their own products or as tools to support organization-
al activities. By outsourcing this development task, teams
can focus more on the core functional capabilities of their
software and dramatically accelerate time-to-market for their
products.

When an organization releases software that includes
third-party code, it becomes responsible for every line of
code inside the application – including all of the third-party
code.

A failure in a deployed product can result in significant loss-
es. Producers who ship buggy code that subsequently fails
can expect to lose reputation along with time and money.
And even if bugs do not cause failures during normal use of
the product, they may constitute exploitable security vulnera-
bilities. Fixing these defects can entail costly remediation.

Changes in development practices, ever-widening supply
chains, and the rapid growth of code bases means it is now,
more than ever, dangerous to assume that third-party code

vendors have maintained and doc-
umented best-practices during their
development processes. It is increasingly
clear that blind trust in a producer is by
no means sufficient to guarantee an
acceptable level of risk.

Malicious entities can distribute counter-
feit products, for example, to exploit the
reputations of trusted producers. And
genuine products themselves are not
guaranteed to be risk-free: they can be
tampered with in transit or sabotaged
by malicious insiders within a trusted
organization. Even if a genuine product

is created by entirely trustworthy staff and delivered through
a secure channel, vulnerabilities may still flow through from
further up the supply chain.

It is worth noting, also, that exploitable software vulnerabil-
ities are not always caused by malicious interference. Errors
that introduce zero-day exploitable buffer overruns, for
instance, can arise from outdated design documents, misun-
derstandings about arcane language details, even typograph-
ical errors.

So what can development teams do to ensure greater safety
in products that use third-party code?

Binary Analysis: An Innovation to Ensure
Third-Party Code Safety

Instead of attempting to formulate and enforce code reli-
ability requirements over the entire upstream portion of the
supply chain, organizations can now employ a more practical
approach. By leveraging binary analysis, organizations can
focus on establishing trust in incoming software at the point
of use, and in outgoing software at the point of dispatch.

This approach also permits organizations to consider a much
broader range of software: products from new companies
without established reputations, software obtained over un-
secured networks, and even components whose provenance
is completely unknown.

Common Third-Party Code Components
The use of third-party code has grown in popularity as more developers have
started to build applications with a component-based architecture.

Some of the most common uses of third-party code include the following:

Communications — Enabling an application to communicate via the
Internet or wirelessly with other applications.

Databases — Third-party software is used extensively to manage, opti-
mize, monitor, and backup databases.

Standard Libraries — These typically include definitions for com-
monly used algorithms, data structures, and mechanisms for input and
output. Developers have become so accustomed to some of them that
they forget the libraries are not part of the language itself.

GrammaTech White Paper

GrammaTech White Paper

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 3

CodeSonar can do static analysis on both binary libraries and
binary executables. Binary executables can either include the
symbol-table/debugging information (“unstripped”) or not
(“stripped”). Software producers may strip their binaries for
a range of reasons, from benign (saving space), to propri-
etary (protecting trade secrets against reverse engineering),
to hostile (obfuscating the code to hide malicious code).

Many tools are unable to extract useful information from
stripped executables. CodeSonar, however, can analyze both
stripped and unstripped executables.

Through this evolution in static code analysis, developers
can inspect and evaluate all externally-produced code used
in their applications. Binary analysis results can also be used
to compare and contrast the relative safety of different
third-party components, so teams can make the best possi-
ble decision when choosing components to include in their
applications.

Integrated Analyses

For software developed entirely in-house, full source code is
usually available for analysis. If third-party binary libraries are
being used however, then the analysis must be able to ana-
lyze both source and binary simultaneously in an integrated
fashion.

CodeSonar can analyze such code, so results take into
account the flow of control and information between the
source parts and the binary parts.

Figure 1. Here, CodeSonar has detected a null pointer dereference in
an analyzed binary. Some associated build information was available, so
CodeSonar was also able to determine the source location at which the
dereference occurs.

Recent Third-Party Code Failures

NETWORKING PROTOCOLS

In January 2013, the U.S. Department of Homeland Se-
curity issued a warning that third-party code embedded
in approximately 50 million networked devices worldwide
was vulnerable to infiltration by malicious hackers. UPnP
enables networked devices to discover each other with
Simple Service Discovery Protocol and establish network
connections with a number of protocols, such as the Web’s
HTTP and Simple Object Access Protocol (SOAP).

This vulnerability impacted over 1,500 vendors and 6,900
products were identified as vulnerable, including products
from trusted vendors such as Belkin, D-Link, Linksys, and
Netgear. These vendors and millions of customers were
exposed to remote attackers who could execute arbitrary
code on their devices or execute a denial of service attack.

CONTROL SYSTEMS

Vulnerabilities in control systems (e.g., SCADA) can allow
attackers to cause physical damage to equipment attached
to those devices. Several presentations at the 2013 Black
Hat conference reported on such instances. Scans revealed
at least 90,000 vulnerable control systems connected to
the Internet. For more information, read the article from
technologyreview.com.

NETWORK SWITCHES

In 2012, the U.S. Industrial Cyber Emergency Response
Team (ICS-CERT) reported a buffer overflow in a Siemens
Ethernet switch. Remote attackers could exploit this by
requesting a malformed URL, with possible consequences
including device rebooting, denial of service, and purported
“possible arbitrary code execution.” As a result, Siemens
was obligated to contact all customers that own the vul-
nerable product and ask them to patch the firmware on
the switch.

GrammaTech White Paper

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 4

The analysis first creates a model of the entire program by
first parsing the parts that are in source code, and disas-
sembling the parts that are in machine code, then creating
a single unified representation that captures the semantics
of both parts in a consistent way. The analysis finds defects
by traversing the model in an interprocedural path-sensitive
manner, and looking for anomalies in the program state.
When a warning is shown to a user, the path through the
code to the point of error is shown, with important points
along the path highlighted. When paths cross the machine
code/source code boundary, the user can choose to drill
down into the machine-code component, or can alterna-
tively treat it as a black box with the relevant information
projected onto the call site.

An additional advantage of analyzing binary code is that
it represents exactly the software that will be executed by
the hardware. Source code, by contrast, does not provide

the whole story: the influence of the compiler must also be
taken into account. Source code language definitions are
full of ambiguities and inconsistencies. In such cases, the
compiler is free to resolve these as it generates the machine
code. Compiler optimizers frequently take advantage of
these ambiguities. Thus, the semantics of the source code
may even be different depending on the level of optimiza-
tion used. Additionally, the compiler itself may contain flaws
and generate incorrect code.

The example to
the right shows
a compil-
er-introduced
error found
during a 2002
security review at Microsoft. The compiler concluded that
the memory was never accessed post-memset(), and so

the memset() call could be removed,
meaning that the cleartext password
remained on the stack.

When analyzing binary executables, on
the other hand, all of these compiler
effects have already manifested, so the
analysis has much higher fidelity.

Figure 2. This is the CodeSonar warning report for the source manifestation of the bug from Figure 1.
CodeSonar can handle projects where both machine and source code are available for some compo-
nent, but only source code is available for other components.

When Source Code Analysis Looks Comparatively Ordinary

Analyzing machine code requires different techniques than those used for analyzing source code. Specifically, analyzing source
code requires the availability of certain information:

{
 char password[MAXLEN];
 ...
 memset(password,’\0’,len);
}

» A control-flow graph (CFG), or interprocedural CFG (ICFG)
» A call-graph
» A set of variables, split into disjoint sets of local and global

variables

» A set of non-overlapping procedures
» Type information
» Points-to information or alias information

When analyzing machine code, however, much of this information cannot be easily extracted, so developing an automated
binary analysis tool requires an entirely different set of analysis techniques.

On the other hand, valuable information can be understood at the machine-code level that is not available for source code
analysis. For example, source code analysis tools usually assume that the area of memory beyond the top-of-stack is not part
of the execution state. With this assumption, the tool will be unaware of a malicious program’s use of that part of memory to
store information. With the addition of binary analysis, it is possible to track the state of the area beyond the top-of-stack, for
enhanced protection.

GrammaTech White Paper

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 5

The following diagram demonstrates how binary analysis expands the code analysis footprint of an application.

Analyzing binaries with automated static analysis – in which
run-time properties of programs are computed without actu-
ally executing the programs – has some important advantag-
es over other methods for security assessment.

Unlike manual inspection, it scales readily to the size and
complexity of modern software. Unlike testing, which can
only ever cover a tiny portion of the possible execution cases,
static analysis approaches coverage of all possible executions.
Unlike dynamic analysis, which examines software as it runs,
static analysis does not involve executing software. Inspec-
tion, testing, and other dynamic analyses can be helpful
adjuncts to static analysis, but they cannot replace it.

Best Practices for Securing Third-Party Code

Used early in the development lifecycle, an automated binary
analysis tool will help development teams select the safest
components to include in their completed applications. Addi-
tionally, when using third-party code to build an application,
development teams should follow other third-party code
best practices, as described below.

Legal requirements: When contracting with a third-party
software vendor, specify in the contract itself the security
limitations your development team is willing to accept, as
well as what constitutes a transference of liability to the
third-party vendor.

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 6

Reporting transparency: Require that third-party vendors,
in lieu of sharing their source code, share reports from their
own use of automated software analysis tools and manual
testing evaluations.

Coding standards: Discuss compliance of coding standards
with third-party software vendors to understand what incon-
sistencies in their code may generate potential exploits, and
to gain better knowledge of your vendor’s coding process.

Communication: After analyzing your final application
with binary analysis, work with your third-party vendors to
improve the overall security of their code, and, by extension,
your application as well.

Conclusion

Leveraging binary analysis to test and inspect the executables
of third-party code will help developers build safer applica-
tions and instill greater confidence in the companies or gov-
ernment agencies that rely on the dependability and security
of their software.

CodeSonar’s binary analysis capability empowers developers
with a new depth of understanding about how safe and
secure applications truly are. Although acceptance testing of
third-party components such as libraries remains important,
developers are now able to build even safer applications by
analyzing these components in the context in which they are
being used.

Further, extending safety and security efforts into third-
party code has important business benefits. It can accelerate
development cycles, improve the security of software, and
ultimately increase customer satisfaction.

Adding binary analysis to the development process allows
developers to test a more holistic representation of their final
application, which helps organizations deliver more trusted
applications to customers and eliminate potential liabilities
due to vulnerable third-party code.

The first model checkers for machine
code and self-modifying code.

The first property checker that can be
applied to a stripped device driver to
check that it conforms to an API-usage
rule.

The first tool for understanding the
flow of values through an executable’s
variables and dynamically allocated
memory objects.

GrammaTech’s Binary Analysis
Research

GrammaTech began researching and developing
machine-code analysis and vulnerability detection
tools in 2001.

GrammaTech’s world-class binary research team
is led by Dr. Alexey Loginov, Associate Vice Presi-
dent of Binary Analysis Technologies. The team’s
extensive experience includes over 60 person-years
of research on machine-code analysis, and these
scientists are responsible for many firsts in the field
of machine-code analysis:

References:

The Global Market for Automated Test and Verification Tools, VDC Research,
2013

WYSINWYX: What You See Is Not What You eXecute, IFIP Working Con-
ference on Verified Software: Theories, Tools, Experiments (VSTTE),
Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T., 2005. Zurich,
Switzerland: Springer.

Investigative Report on the U.S. National Security Issues Posed by Chinese
Telecommunications Companies Huawei and ZTE, House Permanent
Select Committee on Intelligence 112th Congress 2nd Sess., . 2012,
USGPO.

GrammaTech White Paper

GrammaTech White Paper

Eliminating Vulnerabilities in Third-Party Code with Binary Analysis | 7

About GrammaTech

GrammaTech’s tools are used by software developers worldwide, spanning a myriad of embedded software industries in-
cluding avionics, government, medical, military, industrial control, and other applications where reliability and security are
paramount. Originally spun out of Cornell’s computer science labs, GrammaTech is now both a leading research center for
software security and a commercial vendor of software-assurance tools and advanced cyber-security solutions. With both
static and dynamic analysis tools that analyze source code as well as binary executables, GrammaTech continues to advance
the science of superior software analysis, providing technology for developers to produce safer software. To learn more about
GrammaTech, visit www.grammatech.com.

For more information:

www.grammatech.com

Email: info@grammatech.com

GrammaTech, Inc. Headquarters

531 Esty Street

Ithaca, NY 14850

U.S. sales: (888)695-2668

International Sales: +1-607-273-7340

Email: sales@grammatech.com

© 2014 GrammaTech, Inc. All rights reserved. GrammaTech and CodeSonar are registered trademarks of GrammaTech, Inc.

