
Static analysis for security
has a hot topic lately, and I
fear we’re starting to think
of it as a silver bullet. The
quest for application secu-
rity has breathed new life
into static analysis tech-
nologies, which until
recently were primarily per-
ceived as either frivolous
beautification tools or bur-
densome big brother mon-
itoring systems. Surpris-
ingly, the underlying technology was not
substantially modified to accommodate
the issue of security. Rather, the changes
were more like a face lift. As a result,
organizations using static analysis still
encounter the same challenges in mak-
ing it sustainable over time.

The secret to making static analysis
tools productive is to use them in the
proper context. The adoption of this
technology should be driven by a policy-
based approach. This means establish-
ing a policy that defines requirements,
then enforcing that policy consistently.
Automation helps ensure that the
required practices are sustained, and
workflow, task management, and met-
rics enable you to measure how well the
policy is being implemented. In the
context of policy, static analysis is elevat-
ed from a “nice-to-have” checker to a
critical tool for ensuring that code
meets the organization’s expectations.

How Policy Provides Context
The most likely culprit for the reputation
static analysis has as a nonessential tech-
nology is its lack of context. Products
provide “out-of-the box” support for
hundreds of rules which could be impor-
tant in many different contexts.
However, most organizations don’t take
the time to determine which rules are
most important in the context of their

own organization, team,
and project. Then they
require compliance to those
carefully-selected rules. As a
result, rule violations are
perceived as suggestions for
general code improvements
—not critical coding issues
that need to be addressed
immediately.

The key to providing
the necessary context to
static analysis is to take a

policy-based approach: use static analy-
sis to monitor a non-negotiable set of
expectations around code security, reli-
ability, performance, and maintainabil-
ity. With this approach, a violation of a
particular guideline is not just another
suggestion for people building soft-
ware in an ivory tower—it’s notification
that the code failed to meet the orga-
nization’s expectations.

Effective policy management allows an
organization to bridge the gap between
management expectations and developer
performance. Essentially, if a static analy-
sis rule enforces something that is part of
the policy, fixing a violation of that rule is
non-negotiable. If a developer fails to sat-
isfy the defined policy, he is not executing
his job as expected by management.

What’s Needed to Make it Work
The rising risk and impact of application-
level security attacks has brought static
analysis and its challenges into new light.
Static analysis has great potential for
ensuring that code is written in ways that
prevent security vulnerabilities. However,
to ensure that static analysis delivers as
promised here, it’s essential to address
the challenges that have traditionally
stymied its success. This is where consid-
erations such as policy management,
workflow management, and workflow
optimization come into play.

For example, using static analysis as
an audit that occurs at later stages of the
SDLC only exacerbates its tendency to
drain development resources. Having
an inline process makes the analysis
more valuable and more effective. Since
the code is still fresh in developers’
minds when violations are reported,
developers are more likely to learn from
their mistakes and remediate problems
faster and more easily.

Policy management lies at the core
of such an inline process. You should be
able to easily configure policies for spe-
cific projects without compromising the
integrity of the corporate objectives,
easily deploy and update both project-
specific and organization-wide policies,
and automate their application for
rapid scanning and reporting. A care-
fully defined and implemented set of
policies establishes a knowledge base
that allows developers to increase their
relative security IQs.

Putting the policy into practice
involves workflow management—defin-
ing, automating, and monitoring securi-
ty verification and remediation tasks,
which are ingrained into the team’s
workflow. These tasks must be optimized
to ensure that the static analysis process
is both sustainable and scalable. The lack
of automation, repeatability, or consis-
tency will degrade any quality initiative
that the organization intends to deploy.

Second Time’s a Charm?
Static analysis has a history of impacting
productivity to the point where devel-
opers start ignoring it and achieve little
or no code improvement. Now that hav-
ing secure code is non-negotiable, more
people than ever are taking advantage
of the many benefits that static analysis
can deliver. This is a great opportunity
for the industry to reacquaint itself with
the technique. With a concerted effort
to focus on policy and workflow man-
agement and workflow optimization, we
can start off on the right foot with static
analysis for security—and then contin-
ue to build on this new stable founda-
tion to improve quality as well. ý

Future
Test

38 • Software Test & Performance OCTOBER 2008

Static Analysis,
Security Failure

Wayne Ariola

Future Test

Wayne Ariola is vice president of strategy at
Parasoft, which recently extended dataflow
capabilities in its flagship code analysis tools.

