
1

Why Agile Development Teams Must Reinvent the
Software Testing Process

In today’s economy, businesses create a
competitive edge through software and every
company is essentially a software company.
Now that rapid delivery of differentiable software
has become a business imperative, software
development teams are scrambling to keep
up. In response to increased demand, they are
seeking new ways to accelerate their release
cycles—driving the adoption of agile or lean
development practices such as DevOps. Yet,
based on the number of software failures now
making headlines on a daily basis, it’s evident
that speeding up the SDLC opens the door to
severe repercussions.

Organizations are remiss to assume that
yesterday’s practices can meet today’s process
demands. There needs to be a cultural shift from
testing an application to understanding the risks
associated with a release candidate. Such a shift
requires moving beyond the traditional “bottom-
up” approach to testing, which focuses on
adding incremental tests for new functionality.
While this will always be required, it’s equally
important to adopt a top-down approach to
mitigating business risks. This means that
organizations must defend the user experience
with the most likely use cases in the context of
non-functional requirements—continuously.

Issue 1

In order for more advanced automation to occur, we
need to move beyond the test pass/fail percentage
into a much more granular understanding of the
impact of failure: a nuance that gets lost in the
traditional regression test suite. Continuous
Testing is key for bridging this gap. Continuous
Testing brings real-time assessments, objective go/
no-go quality gates, and continuous measurements
to refine the development process so that business
expectations are continuously met. Ultimately,
Continuous Testing resets the question from
“are you done testing?” to “is the level of risk
understood and accepted?”

DevOps Requires
“Continuous Quality”

1

3

10

19

Why Agile
Development Teams
Must Reinvent the
Software Testing
Process

What’s Needed for
Continuous Testing?

Research from Gartner:
Market Trends: DevOps
— Not a Market, but a
Tool-Centric Philosophy
That Supports a
Continuous Delivery
Value Chain

About Parasoft

2

How does this business-focused approach to
Continuous Testing work? At a high level, you
situate a broad set of automated defect prevention
and detection practices that serve as “sensors”
throughout the SDLC— continuously measuring
both the product and the process. If the product
falls short of expectations, you don’t just remove
the problems from the faulty product. You also
consider each problem found an opportunity to re-
examine and optimize the process itself—including
the effectiveness of your sensors. This establishes
a defect-prevention feedback loop that enables
you to incrementally improve the process.

In terms of DevOps, the benefits of Continuous
Testing include:

•	 Business stakeholders always have real-
time access to feedback on whether their
expectations are being met, enabling them to
make informed decisions.

•	 At the time of the critical “go/no go” decision,
there is an objective assessment of whether
the organization’s specific expectations are
satisfied—reducing the business risk of a fully-
automated Continuous Delivery process.

•	 Defects are eliminated at the point when they
are easiest, fastest, and least costly to fix—a
prime principle of being “lean.”

•	 Continuous measurement vs. key metrics
means continuous feedback, which can be
shared and used to refine the process.

This notion of “continuous quality” is central to
achieving the expected ROI from DevOps, agile,
and other lean initiatives. We hope that you find
this collection of resources helpful as you consider
how to transform your SDLC to achieve the optimal
balance of quality and speed in this new era of
“Continuous Everything.” 

Source: Parasoft

3

What’s Needed for Continuous Testing?

Risk Assessment—Are You Ready to
Release?
As we review the elements of Continuous Testing,
it’s hard to argue that one element is more important
than the rest. If we present our case well enough, it
should become obvious that each element is critical
for overall process success. However, we need a place
to start— and establishing a baseline to measure
risk is the perfect place to begin as well as end.

One overarching aspect to risk assessment associated
with software development is continuously
overlooked: If software is the
interface to your business, then developers writing
and testing code are making business decisions on
behalf of the business.

Consider this: if software quality has traditionally
been a “time-boxed” exercise, then we can’t
possibly expect that accelerating the SDLC will
yield better results from a testing perspective. If
organizations want to accelerate software releases,
they must reassess the current testing practices
in order to keep quality as status quo. However, in
order to improve software quality in conjunction
with SDLC acceleration, organizations will have to
truly consider re-engineering the software quality
process.

As you begin the transformation to Continuous
Testing, the following elements are necessary for
achieving a real-time assessment of business risks.

Source: Parasoft

FIGURE 1 Elements of Continuous Testing

4

Assessing the project risk upfront should be the
baseline by which we measure whether we are
done testing and allow the SDLC to continue
towards release. Furthermore, the risk assessment
will also play an important role in improvement
initiatives for subsequent development cycles.

The definition of risk cannot be generic. It must
be relative to the business, the project, and
potentially the iterations in scope for the release
candidate. For example, a non-critical internal
application would not face the same level of
scrutiny as a publically-exposed application
that manages financial or retail transactions. A
company baseline policy for expectations around
security, reliability, performance, maintainability,
availability, legal, etc. is recommended as the
minimum starting point for any development
effort. However, each specific project team should
augment the baseline requirement with additional
policies to prevent threats that could be unique to
the project team, application, or release.

SDLC acceleration requires automation.
Automation requires machine-readable instructions
which allow for the execution of prescribed actions
(at a specific point in time). The more metadata
that a team can provide around the application,
components, requirements, and tasks associated
with the release, the more rigorous downstream
activities can be performed for defect prevention,
test construction, test execution, and maintenance.

Technical Debt

Core to the management of SDLC risk is the
identification of technical debt. A Development
Testing Platform will help prevent and mitigate
types of technical debt such as poorly-written
code, overly-complex code, obsolete code,
unused code, duplicate code, code not covered
by automated tests, and incomplete code. The
uniform measurement of technical debt is a great
tool for project comparison and should be a core
element of a senior manager’s dashboard.

Risk Mitigation Tasks

All quality tasks requested of development should
be 100% correlated to a defect prevention policy
or an opportunity to minimize risk or technical
debt. A developer has two primary jobs: implement
business requirements and reduce the business
risk associated with application failure. From a
quality and testing perspective, it is crucial to
realize that quality initiatives generally fail when
the benefits associated with a testing task are not
clearly understood.

What is a Development Testing Platform?

This level of automation required for Continuous Testing requires a method
to federate quality information from multiple infrastructure sources (source
code management, build management, defect management, testing, etc.).
A Development Testing Platform is this central “system of decision” which
translates policies into prioritized tasks as well as delivers insight and
control over the process of creating quality software.

To truly optimize the SDLC, we need to move away from the old concept
of tool selection and into the concept of process enablement. One of the
biggest contributors to the lack of process consistency in the SDLC is the
ad-hoc nature in which tools are adopted and deployed. We’re not saying
that the organization must standardize on a single tool or brand—in fact,
we’re suggesting quite the opposite. The best tools must be adopted in
order to achieve the optimal business outcome. However, those tools
must be managed within the context of established business expectations
(policy) in order to provide uniform analysis, consistent reporting, and
measurable outcomes.

If speed is the primary definition for team success, quality will inevitable
suffer unless you have established expectations that are automatically
monitored for compliance. Making quality expectations non-negotiable
sets the boundaries for acceleration while reducing the risks associated
with application or project failure. In other words, a Development Testing
Platform assists the organization to work smarter—limiting the nature and
degree in which business-critical tasks can be discounted.

Source: Parasoft

FIGURE 2 Development Testing Platform

5

With this in mind, it is just as important to
assess the quality of the test itself as it is
to respond to a failing test. Automating the
assessment of the test is critical for Continuous
Testing. Tests lie at the core of software risk
assessment. If these risk monitors are not
reliable, then we must consider the process to
be out of control.

Policy Analysis—Keep up with Evolving
Business Demands
Policy analysis through a Development Testing
Platform is key for driving development and
testing process outcomes. The primary goal
of process analysis to ensure that policies are
meeting the organization’s evolving business
and compliance demands.

Most organizations have a development or
SDLC policy that is passive and reactive. This
policy might be referenced when a new hire is
brought onboard or when some drastic incident
compels management to consult, update, and
train on the policy. The reactive nature of how
management expectations are expressed and
measured poses a significant business risk. The
lack of a coordinated governance mechanism
also severely hampers IT productivity (since you
can’t improve what you can’t measure).

Policy analysis through a Development Testing
Platform is the solution to this pervasive issue.
With a central interface where a manager or
group lead defines and implements “how,”
“when,” and “why” quality practices are
implemented and enforced, management
can adapt the process to evolving market
conditions, changing regulatory environments,
or customer demands. The result: management
goals and expectations are translated into
executable and monitor-able actions.

The primary business objectives of policy
analysis are:

•	 Expose trends associated with the injection
of dangerous patterns in the code

•	 Target areas where risks can be isolated
within a stage

•	 Identify higher risk activities where defect
prevention practices need to be augmented
or applied

A risk mitigation task can range from executing a
peer code review to constructing or maintaining a
component test. Whether a risk mitigation task is
generated manually at the request of a manager or
automatically (as with static code analysis), it must
present a development or testing activity that is
clearly correlated with the reduction of risk.

Coverage Optimization

Coverage is always a contentious topic—and,
at times, a religious war. Different coverage
techniques are better-suited for different risk
mitigation goals. Fortunately, industry compliance
guidelines are available to help you determine
which coverage metric or technique to select and
standardize around.

Once a coverage technique (line, statement,
function, modified condition, decision, path, etc.)
is selected and correlated to a testing practice,
the Development Testing Platform will generate
reports as well as tasks that guide the developer
or tester to optimize coverage. The trick with this
analysis is to optimize versus two goals. First,
if there is a non-negotiable industry standard,
optimize based on what’s needed for compliance.
Second (and orthogonal to the first), optimize on
what’s needed to reduce business risks.

Coverage analysis is tricky because it is not
guaranteed to yield better quality. Yet, coverage
analysis can certainly help you make prioritization
decisions associated with test resource allocation.

Test Quality Assessment

Processes and test suites have one thing in
common: over time, they grow in size and
complexity until they reach a breaking point when
they are deemed “unmanageable.” Unfortunately,
test suite rationalization is traditionally managed
as a batch process between releases. Managing
in this manner yields to sub-optimal decisions
because the team is forced to wrangle with
requirements, functions, or code when the critical
details are no longer fresh in their minds.

Continuous Testing requires reliable, trustworthy
tests. When test suite results become
questionable, there is a rapid decline in how and
when team members react. This leads to the test
suite becoming out-of-sync with the code—and
ultimately out of control.

6

Advanced Analysis—Expose Application
Risks Early
Defect Prevention with Static Analysis

It’s well known that the later in the development
process a defect is found, the more difficult,
costly, and time-consuming it is to remove.
Mature static analysis technologies, managed
in context of defined business objectives,
will significantly improve software quality by
preventing defects early.

Writing code without static code analysis is
like writing a term paper or producing a report
without spell check or grammar check. A
surprising number of high-risk software defects
are 100% preventable via fully-automated static
code analysis.
By preventing defects from being introduced
in the first place, you minimize the number
of interruptions and delays caused by the
team having to diagnose and repair errors.
Moreover, the more defects you prevent, the
lower your risk of defects slipping through
your testing procedures and making their way
to the end-user—and requiring a significant
amount of resources for defect reproduction,
defect remediation, re-testing, and releasing
the updated application. Ultimately, automated
defect prevention practices increase velocity,
allowing the team to accomplish more within
an iteration.

At a more technical level, this automated
analysis for defect prevention can involve a
number of technologies, including multivariate
analysis that exposes malicious patterns in
the code, areas of high risk, and/or areas more
vulnerable to risk. All are driven by a policy
that defines how code should be written and
tested to satisfy the organization’s expectations
in terms of security, reliability, performance,
and compliance. The findings from this analysis
establish a baseline that can be used as a basis
for continuous improvement.

Pure “defect prevention” approaches can
eliminate defects that result in crashes,
deadlocks, erratic behavior, and performance
degradation. A security-focused approach can
apply the same preventative strategy to security
vulnerabilities, preventing input-based attacks,
backdoor vulnerabilities, weak security controls,
exposure of sensitive data, and more.

With effective policy analysis, “policy” is no
longer relegated to being a reactive measure that
documents what is assumed to occur; it is promoted
to being the primary driver for risk mitigation.

As IT deliverables increasingly serve as the “face”
of the business, the inherent risks associated with
application failure expose the organization to severe
financial repercussions. Furthermore, business
stakeholders are demanding increased visibility into
corporate governance mechanisms. This means that
merely documenting policies and processes is no
longer sufficient; we must also demonstrate that
policies are actually executed in practice.

This centralization of management expectations
not only establishes the reference point needed to
analyze risk, but also provides the control required
to continuously improve the process of delivering
software.

Requirements Traceability—Defending the
Business Objective
All tests should be correlated with a business
requirement. This provides an objective
assessment of which requirements are working
as expected, which require validation, and which
are at risk. This is tricky because the articulation of
a requirement, the generation or validation of code,
and the generation of a test that validates its proper
implementation all require human interaction.
We must have ways to ensure that the artifacts
are aligned with the true business objective—and
this requires human review and endorsement.
Continuous Testing must promote the validation of
testing artifacts via peer review.

A Development Testing Platform helps the
organization keep business expectations in check
by ensuring that there are effective tests aligned
to the business requirement. By allowing extended
metadata to be associated with a requirement,
an application, a component, or iteration, the
Development Testing Platform will also optimize the
prioritization of tasks.

During “change time,” continuous tests are what
trigger alerts to the project team about changes
that impact business requirements, test suites, and
peripheral application components. In addition to
satisfying compliance mandates, such as safety-
critical, automotive, or medical device standards,
real-time visibility into the quality status of each
requirement helps to prevent late-cycle surprises
that threaten to derail schedules and/or place
approval in jeopardy.

7

Scope and Prioritization

Given a software project’s scope, iteration, or
release, some tests are certainly more valuable and
timely than others. Advanced analysis techniques
can help teams identify untested requirements,
tasks, and code. Advanced analysis should also
deliver a prioritized list of regression tests that
need review or maintenance.

Leveraging this type of analysis and acting on the
prioritized test creation or maintenance tasks can
effectively prevent defects from propagating to
downstream processes, where defect detection
is more difficult and expensive. There are two
main drivers for the delivery of tasks here: the
boundaries for scope and the policy that defines
the business risks associated with the application.

For example, the team might be working on a
composite application in which one component
is designed to collect and process payment
cards for online transactions. The cost of quality
associated with this component can be colossal
if the organization has a security breach or fails a
PCI DSS2 audit. Although code within the online
transaction component might not be changing,
test metadata associated with the component
could place it in scope for testing. Furthermore, a
policy defined for the PCI DSS standard (as well
as the organization’s internal data privacy and
security) will drive the scope of testing practices
associated with this release or iteration.

Test Optimization—Ensure Findings are
Accurate and Actionable
To truly accelerate the SDLC, we have to look
at testing much differently. In most industries,
modern quality processes are focused on
optimizing the process with the goal of preventing
defects or containing defects within a specific
stage. With software development, we have
shied away from this approach, declaring that it
would impede engineering creativity or that the
benefits associated with the activity are low, given
the value of the engineering resources. With a
reassessment of the true cost of software quality,
many organizations will have to make major
cultural changes to combat the higher penalties
for faulty software. Older, more established
organizations will also need to keep up with the
new breed of businesses that were conceived
with software as their core competency. These
businesses are free from older cultural paradigms
that might preclude more modern software quality
processes and testing practices.

Change Impact Analysis

It is well known that defects are more likely to
be introduced when modifying code associated
with older, more complex code bases. In fact,
a recent FDA study of medical device recalls
found that an astonishing “192 (or 79%) [of
software-related recalls] were caused by
software defects that were introduced when
changes were made to the software after its
initial production and distribution.”1

From a risk perspective, changed code equates
to risky code. We know that when code
changes, there are distinct impacts from a
testing perspective:

•	 Do I need to modify or eliminate the
old test?

•	 Do I need a new test?

•	 How have changes impacted other aspects
of the application?

The goal is to have a single view of the change
impacts from the perspective of the project
as well as the perspective of the individual
contributor. Optimally, change impact analysis
is performed as close to the time of change
as possible—when the code and associated
requirements are still fresh in the developer’s
or tester’s mind.

If test assets are not aligned with the actual
business requirements, then Continuous
Testing will quickly become unmanageable.
Teams will need to spend considerable time
sorting through reported failures—or worse,
overlook defects that would have been
exposed by a more accurate test construction.

Now that development processes are
increasingly iterative (more agile), keeping
automated tests and associated test
environments in sync with continuously-
evolving system dependencies can consume
considerable resources. To mitigate this
challenge, it’s helpful to have a fast, easy,
and accurate way of updating test assets.
This requires methods to assess how change
impacts existing artifacts as well as a means
to quickly update those artifacts to reflect the
current business requirements.

8

•	 Incremental: Tests can be built upon each
other, without impacting the integrity of the
original or new test case.

•	 Repeatable: Tests can be executed over
and over again with each incremental build,
integration, or release process.

•	 Deterministic and meaningful: Tests must
be clean and deterministic. Pass and fail have
unambiguous meanings. Each test should do
exactly what you want it to do—no more and
no less. Tests should fail only when an actual
problem you care about has been detected.
Moreover, the failure should be obvious and
clearly communicate what went wrong.

•	 Maintainable within a process: A test that’s
out of sync with the code will either generate
incorrect failures (false positives) or overlook
real problems (false negatives). An automated
process for evolving test artifacts is just as
important as the construction of new tests.

•	 Prescriptive workflow based on results:
When a test does fail, it should trigger a
process-driven workflow that lets team
members know what’s expected and how to
proceed. This typically includes a prioritized
task list.

Test Data Management

Access to realistic test data can significantly
increase the effectiveness of a test suite. Good
test data and test data management practices
will increase coverage as well as drive more
accurate results. However, developing or accessing
test data can be a considerable challenge—in
terms of time, effort, and compliance. Copying
production data can be risky (and potentially
illegal). Asking database administrators to provide
the necessary data is typically fraught with delays.
Moreover, delegating this task to dev/QA moves
team members beyond their core competencies,
potentially delaying other aspects of the project for
what might be imprecise or incomplete results.

Thus, fast and easy access to realistic test data
removes a significant roadblock. The primary
methods to derive test data are:

•	 Sub-set or copy data from a production
database into a staged environment and
employ cleansing techniques to eliminate data
privacy or security risks.

No matter what methodology is the best fit for your
business objectives and desired development culture,
a process to drive consistency is required for long-
term success.

Test optimization algorithms help you determine
what tests you absolutely must run versus what
tests are of lower priority given the scope of change.
Ideally, you want intelligent guidance on the most
efficient way to mitigate the greatest risks associated
with your application. Test optimization not only
ensures that the test suite is validating the correct
application behavior, but also assesses each test
itself for effectiveness and maintainability.

Management

Test optimization management requires that a
uniform workflow is established and maintained
associated with the policies defined at the beginning
of a project or iteration. A Development Testing
Platform must provide the granular management
of queues combined with task workflow and
measurement of compliance. To achieve this:

•	 The scope of prescribed tasks should be
measurable at different levels of granularity,
including individual, team, iteration, and project.

•	 The test execution queues should allow for the
prioritization of test runs based on the severity
and business risk associated with requirements.

•	 Task queues should be visible and prioritized with
the option to manually alter or prioritize (this
should be the exception, not the norm).

•	 Reports on aged tasks should be available for
managers to help them determine whether the
process is under control or out of control.

Construction

With a fragile test suite, Continuous Testing just isn’t
feasible. If you truly want to automate the execution
of a broad test suite—embracing unit, component,
integration, functional, performance, and security
testing—you need to ensure that your test suite is
up to the task. How do you achieve this? Ensure that
your tests are…

•	 Logically-componentized: Tests need to be
logically-componentized so you can assess the
impact at change time. When tests fail and
they’re logically correlated to components, it is
much easier to establish priority and associate
tasks to the correct resource.

9

Service Virtualization—Eliminate Test
Environment Access Issues
With the convergent trends of parallel
development and increasing system
complexity/interdependency, it has become
extremely rare for a team to have ubiquitous
access to all of the dependent applications
required to execute a complete test. By
leveraging Service Virtualization to remove
these constraints, an organization can gain
full access to (and control over) the test
environment—enabling Continuous Testing to
occur as early and often as needed.

Want to start testing the component you just
built even though not much else is completed?
Don’t have 24/7 access to all the dependencies
involved in your testing efforts—with all the
configurations you need to feel confident that
your test results are truly predictive of real-
world behavior? Tired of delaying performance
testing because access to a realistic
environment is too limited (or too expensive)?
Service Virtualization can remove all these
constraints.

With Service Virtualization, organizations
can access simulated test environments that
allow developers, QA, and performance testers
to test earlier, faster, and more completely.
Organizations that rely on interconnected
systems must be able to validate system
changes more effectively—not only for
performance and reliability, but also to reduce
risks associated with security, privacy, and
business interruption. Service Virtualization
is the missing link that allows organizations
to continuously test and validate business
requirements. Ultimately, Service Virtualization
brings higher quality functionality to the market
faster and at a lower cost.

Source: Parasoft

•	 Leverage Service Virtualization (discussed
later in this resource) to capture request and
response traffic and reuse the data for subsequent
scenarios. Depending on the origin and condition
of the data, cleansing techniques might be
required.

•	 Generate test data synthetically for various
scenarios that are required for testing.

In all cases, it’s critical to ensure that the data can
be reused and shared across multiple teams, projects,
versions, and releases. Reuse of “safe” test data can
significantly increase the speed of test construction,
management, and maintenance.

Maintenance

All too often, we find development teams carving
out time between releases in order to “clean-
up” the test suites. This ad-hoc task is usually a
low priority and gets deferred by high-urgency
customer feature requests, field defects, and other
business imperatives. The resulting lack of ongoing
maintenance typically ends up eroding the team’s
confidence in the test suite and spawning a backlog
of increasingly-complex maintenance decisions.

Test maintenance should be performed as soon
as possible after a new business requirement
is implemented (or, in the case of TDD-like
methodologies, prior to a requirement being
implemented). The challenge is to achieve the
optimal balance between creating and maintaining
test suites versus the scope of change.

Out-of-sync test suites enter into a vicious
downward spiral that accelerates with time. Unit,
component, and integration tests that are
maintained by developers are traditionally the
artifacts at greatest risk of deterioration. Advanced
analysis of the test artifact itself should guide
developers to maintain the test suite. There are
five primary activities for maintenance—all of
which are driven by the business requirement:

•	 Delete the test

•	 Update the test

•	 Update the assertions

•	 Update the test data

•	 Update the test metadata

1 http://www.fda.gov/medicaldevices/deviceregulationandguidance/
2 PCI DSS is the Payment Card Industry Data Security Standard

http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm085281.htm#_Toc517237928

10

Research from Gartner

Market Trends: DevOps — Not a Market, but a
Tool-Centric Philosophy That Supports a Continuous
Delivery Value Chain

•	 Implement a try-before-you-buy strategy for
new tool offerings; OSS solutions have been
successful with this strategy when upgrades to
commercial offerings are seamless.

Strategic Planning Assumption

By 2016, DevOps will evolve from a niche strategy
employed by large cloud providers to a mainstream
strategy employed by 25% of Global 2000
organizations.

Introduction

This document was revised on 25 February 2015.
The document you are viewing is the corrected
version. For more information, see the Corrections
page on gartner.com.

Gartner believes that DevOps is a philosophy (not
a market). There are no rules or manuals, only
guidelines; therefore, adoption and implementation
will vary greatly. Its foundation remains focused on
the adoption of agile and lean methodologies and
a collaborative relationship between development
(Dev) and operations (Ops), with a singular goal of
a timely, successful application production rollout.

The DevOps philosophy finds traction among
three significantly different groups of adopters.
Each of these groups is seeking to overcome time
constraints and resource requirements, while
ensuring the quality and stability of their releases.

•	 The original group of agile practitioners seeks
to match the delivery and deployment pace
to that of development teams using agile
methods. The release pace ranges from daily to
monthly.

•	 In the second group are Web-scale
practitioners, who adapt DevOps notions but
also have restructured the runtime architectures
and deployment mechanisms, managing
deployment and risk in novel ways to achieve
many microreleases in a day.

Bimodal and digital business strategies stimulate
demand for improved speed and effectiveness of
software delivery. Product management should
focus on tool functionality that supports agile
methodologies, automation and collaborative
relationships to assist customers in achieving a
DevOps goal.

Key Findings

•	 DevOps is a cultural shift that merges
operations with development and demands a
linked toolchain of technologies to facilitate
collaborative change

•	 Interchangeability is key to the success of the
DevOps toolchain since each deployment is
different and can require a unique combination
of tools to support key functions — loosely
coupled via APIs rather than the heavily
integrated/hardwired, difficult-to-maintain
tools available today.

•	 Lack of needed functionality will result in the
swapping of one solution (tool) for another,
forcing vendors to be constantly vigilant.
However, such flexibility can add to solution
fragility and support costs.

•	 OSS tool adoption and appetite remain strong;
however, large-enterprise clients prefer
commercially supported OSS distributions.

Recommendations

•	 Develop and link tools that address multiple
facets of the DevOps philosophy together in a
toolchain to provide the overall benefits.

•	 Prepare and execute varied strategies to
address the needs of a variety of buyers,
including development, test, operations, cloud
and application organizations.

•	 Match evolution of each offering to the
changing requirements of the DevOps
movement, either through development
or acquisition.

http://www.gartner.com/technology/about/policies/current_corrections.jsp

11

•	 Finally, organizations that have well-
established structured release practices (often
regulated entities, such as financial institutions)
are embracing aspects of DevOps. In this last
group, the release pace may currently be much
slower than in the other two, but there are still
demands for more frequent release or more
efficient release at the appropriate level of
quality.

To provide enhanced guidance to both technology
suppliers as well as end-user consumers, Gartner
has elected to discuss DevOps as a virtual (and
likely temporal) market. Because the potential
definition is very broad, Gartner has focused the
scope of this virtual market definition on the tools
that support DevOps and practices associated with
it in the context of continuous delivery, continuous
improvement, infrastructure and configuration
as code, and so on. This methodology focuses on
building a toolchain of loosely coupled tools to
address continuous integration and delivery.

This toolchain includes not only the tools that
support a continuous movement into production,
but also the tools that provide information on the
health and performance of the latest release as a
continuation of the agile feedback loop. DevOps
tools considered for this virtual market must
support the characteristics and functionality traits
listed in Table 1.

Characteristics and Traits

Agile Customizable

Automated Extensible

Collaborative Modern

Composiable —
command line

Specifiable

Contextual Web user interface —
scriptable

Continuous Workflows

Source: Gartner (February 2015)

Although DevOps emphasizes people (and culture)
over tools and processes, implementations
utilize technology, especially automation tools
that can leverage an increasingly programmable
and dynamic infrastructure from a life cycle
perspective. Gartner categorizes these tools as
DevOps-ready, -enabled, and -capable tools. Table
1 details the tool qualifications necessary for
inclusion as a DevOps support tool, while Figure 1
provides a description of each category.

Table 1. DevOps Tool Characteristics and Traits

dev/test/QA/prod = development, test, quality assurance and production
Source: Gartner (February 2015)

FIGURE 1 DevOps Tool Categorization

12

In the response to the desire to deliver IT
services by leveraging lean and agile practices,
the tools required to aid the necessary cultural
shift are rapidly becoming the increased focus
for traditional IT operations and development
tool vendors, in addition to startups and open-
source projects designed specifically for DevOps
support. As a result, Gartner expects strong growth
opportunities for the three DevOps toolsets (ready,
enabled and capable), as described in Figure 1.

Figure 2 provides a composite market view in
terms of size and projected growth of the DevOps
toolchain in terms of total software revenue. This
composite view was estimated based on revenue
accounted for in Gartner Market Share and
Forecast reports for application development (AD)
and IT operations management (ITOM) tools that
fit the criteria defined and outlined in this
document. See the DevOps Tools and Vendors
to Watch section for an outline of the product
types that make up each of the three DevOps
tool categories. Not all products in corresponding
sections of the reported AD and ITOM market
subcategories fit into the DevOps tool definitions;
therefore, only a percentage of each apply to the
view provided in Figure 2.

Predictably, DevOps-ready tools have seen and will
continue to see the largest growth potential. These
tools are specifically designed and built with out-
of-the-box functionality to support the described
DevOps characteristics and traits. Most DevOps-
enabled and-capable tools currently exist as part of
the larger IT operation and development toolbox;
however, with time to value as a critical demand
factor from clients, emphasis in support of DevOps
has transformed how these tools are positioned
and perceived in the marketplace.

Market Trend

Digital Business Makes Adoption of
DevOps Practices Essential
In response to the rapid change in business today,
DevOps can help organizations that are pushing
to implement a bimodal strategy to support their
digitalization efforts. Digital business is software —
this means that organizations that expect to thrive
in a digital business environment must have an
improved competence in software delivery.

A leaner and increasingly mobile workforce
requires a different approach to development,
testing, management and deployment of

CAGR = compound annual growth rate
Note: DevOps is a composite market, comprising software tools that are part of other
major markets within Gartner Market Share and Forecast documents.
Source: Gartner (February 2015)

FIGURE 2 Estimated DevOps Market Size and Growth for DevOps-Ready, DevOps-Enabled and DevOps-Capable Tools

13

applications; however, automated practices
and a “team effort method” for agile IT are
necessary to maintain some level of cross-
corporate consistency.

As end-user buying power shifts away from central
IT to line-of-business and other organizational
managers, demand for speed, tool intuitiveness
and software effectiveness from nontechnical
users will increase significantly. In addition, the
expanding use cases for mobile devices and
Web services with an ever increasing number of
innovative applications and even higher customer
(consumerlike) expectations add to DevOps
growth in support of consistent deployment and
updating of applications. This trend goes beyond
implementation and technology management and
instead necessitates a deeper focus on how to
effect positive organizational change.

DevOps Philosophy Shapes a Culture

The DevOps philosophy was born primarily from
the activities of cloud service (and Web 2.0)
providers as they addressed scale-out problems
due to increasing online service adoption. Constant
change and complexity necessitated developing
improved effectiveness through collaboration
between operations and development. Rethinking
organizational structure of the IT department
has become paramount: especially rethinking
the value of people who understand multiple
functional perspectives, such as development,
test and operations, rather than just development.
Likewise, as operations teams leverage new tools
to codify the infrastructure programmatically,
operations teams are viewed in the mode of
“system developers” and adopt some practices
of professional programming organizations. This
shift brings credibility with operations peer group
(developers), which helps bring these teams
together more collaboratively.

As a result of these changes, vendors with tools
that support and enable organizational change
become more relevant. Both closed-source and
commercial open-source software (OSS) vendors
are now shifting focus to offerings that support this
movement. As the philosophy continues to evolve,
it will be introduced to traditional enterprises that
struggle to manage increasing business demand
and rapid change brought about by digital business
and by bimodal strategies. Similarly, as developers
and operations staff build DevOps teams, tools
can be acquired and leveraged across both teams

(the unified team); therefore, it is critical for
vendors to build solutions that can be leveraged
in development, test and/or production. This
positioning will enable vendors to find multiple
buyers and extend sales opportunities as DevOps
projects grow.

Influencers of Change

The DevOps philosophy centers on people, process,
technology and information. With respect to
culture, DevOps seeks to change the dynamics in
which operations and development teams interact.
Key to this change are the issues of trust, honesty
and responsibility. In essence, the goal is to enable
each organization to see the perspective of the
other and to modify behavior accordingly, while
motivating autonomy without the “hero attitude.”
However, people are only a portion of the equation;
continual improvement of the right processes and
accurate information at the right time are also
necessary to optimize value.

Technology providers need to focus on developing
tools to accommodate the business need for
change and collaboration. This demand creates
an opportunity for vendors to provide tools that
enable toolchains with open programmatic APIs.
Even if a vendor does not provide the framework
for a toolchain, all tools “earmarked” for DevOps
must be developed with the foresight that they are
part of a bigger toolchain ecosystem.

 The DevOps movement is influenced by the
following:

•	 Faster and more effective application changes
to meet growing bimodal delivery options in
support of digitalization requires IT to find a
new way of doing things.

•	 Differences in scope and granularity and/
or accuracy of information lead to conflicting
definitions and acceptable tolerance of risk
(meaning things are built to break — and
recover).

•	 Many existing tools are not designed to span
both development and production requirements
in a single toolchain to meet the needs of
engineering and operations and DevOps teams.

•	 Process improvement initiatives are forcing
coordination among competing processes, with
emphasis on both efficiency and effectiveness.

14

Foremost, DevOps is about changing culture, which
necessitates a different set of measurements and
incentives to be effective. There is no one single
way to achieve this change. Instead, Gartner
encourages IT organizations to develop shared
metrics for engineering and operations or designed
for a DevOps team to ensure that everyone is
focused on the same goal. Senior management
needs to look for methods that foster innovative
thinking and responsibility. Most importantly
with respect to DevOps, CIOs and other IT
leaders need to sanction risk taking that does
not result in damage to one’s career. To support
such change, these organizations will require an
effective toolchain to guide them on a journey of
transformation.

DevOps Trends

The overall DevOps message is compelling,
because many enterprise IT organizations want
to achieve the scale-out and economies of
scale achieved by world-class cloud providers.
However, there are still several gaps that
prevent implementation of DevOps as a
comprehensive methodology.

The first area needing more definition is IT
operations processes. While DevOps focuses
intensively on release and configuration
management and, to a lesser extent, on
monitoring, it has limited focus on other key
operations process areas. There is also little to
say with regard to organizational issues beyond
the notion for improved collaboration between
development and operations. For example,
there are no new roles or organizational styles
suggested, even though improvisations abound.

Enterprises have acknowledged the gaps and have
begun assessing how the DevOps mindset might
apply to their own environments. However, culture
is not easily or quickly changed. And key to the
culture within DevOps is the notion of becoming
more agile and changing behavior to support
it — a perspective that has not been widely
pursued within classical IT operations. IT cultures
are characteristically centrally controlled and
independently siloed, leading little in the way of
responsibility (in fact, today’s cultures are heavily
focused on blame). In addition, IT leadership
needs to change as well to create an environment
that incubates a behavior of respect and
disciplined freedom.

One of the biggest issues with DevOps is that
each implementation is unique. No two are the
same because there is no prescribed method
to implement. This fact makes it difficult for
organizational success and harder for vendor
positioning since it is not a predictable market.
Supporting the DevOps toolchain opens a wide
opportunity for a vendor with the sales savvy
to target a variety of buyers from multiple
organizations, including development, test,
operations, cloud and applications.

DevOps Tools

DevOps philosophies emerged as organizations
tried to address speed and scaling limitations that
slowed the deployment of systems of innovation
into production. Lean and agile principles pointed
to simplification or standardization to remove
sources of variation, provide quick feedback and
corrective response to failures or errors, and
provide higher levels of automation and use of
configuration as code in support of both these
ends. Open-source projects developed much of the
early tooling in applying these principles.

Subsequently, OSS vendors began introducing
commercial tools that focused on infrastructure
as code. Over time, these tools have evolved
and they will continue to do so. For example,
application release automation (ARA) tools started
out moving only application code, and then
environment context was added to the products,
and most recently process design and collaborative
workflow (such as release coordination). Although
many OSS configuration automation tools are
not new, the timing of DevOps projects, the push
from developers to have operations be more
engineering-focused and the recognition of the
credibility of OSS tools for production management
(not just for developers) have all helped raise the
visibility of and shift to commercial versions.

One way to look at tooling within DevOps is
as a component within a DevOps toolchain.
New sets of tools are emerging that address
management functions (such as monitoring and
continuous build, integration and testing) specific
to the DevOps philosophy. However, toolchains
are not about these individual categories of
tools; their importance resides in the ability of
tools (development, testing, management and
deployment) to plug together and the ease of
which new ones can be substituted for old ones

15

(swapped out and plugged in). This plug-and-play
concept is radically different from traditional
management tools that require more of an “all
(of one vendor) or nothing” model. Even so,
traditional AD and ITOM tool vendors are
joining a growing number of providers (OSS
and startups) that are addressing and extending
solutions beyond the initial orientation in
support of DevOps.

An organization cannot simply buy one tool
or even multiple tools to gain the advantages
of a DevOps approach. Changes in philosophy,
practice and tooling are all necessary to navigate
the transformation.

The Future of DevOps

Innovations in DevOps continue to emerge
in the Web-scale and agile development
communities. Some form of DevOps is implicit
in all Web-scale deployments, but not all the
implementations can extend generally to all
situations. Organizations seeking to reach
Web-scale must re-engineer their runtime,
deployment, monitoring and risk management to
incorporate DevOps ideas and practices. Current
efforts often require custom implementation.
We expect open-source and commercial tools to
increasingly address these needs.

Organizations with agile development will be
slower to embrace DevOps across the entire
application life cycle. Cultural resistance and low
levels of process discipline will create significant
failure rates for DevOps initiatives, particularly
when waterfall processes are still a dominant
portion of the development portfolio. We expect
a majority of enterprises attempting to scale
agile over the next five years to recognize the
need for DevOps initiatives.

Organizations with structured release practices
will more slowly adopt some DevOps tooling but
not always acknowledge the philosophy. Among
these buyers, DevOps offers the most advantage
when both engineering and operations are
working together (instead of one or the other
driving the entire project).

Multiple paces and targets have to be reconciled
during release. An example would be a coordinated
release of Web front-end code, custom Java
application server code, and back-end package
or mainframe code. Long term, five years or more
out, we expect audit and compliance standards to
embrace and require at least DevOps approaches
for regulated or material applications.

Why DevOps strategies and tools will continue to
be adopted:

•	 The DevOps principles of reducing sources
of variation and increasing automation
are strongly embraced by many existing
operational philosophies.

•	 DevOps can be driven as either a top-down
or bottom-up strategy; however, a bottom-up
strategy is often more easily accepted by IT
operations teams that had a hand in strategy
development.

•	 Enterprise IT is increasingly mindful of the
efficiencies and agility obtained by large cloud
providers and their use of DevOps.

•	 IT organizations are seeking to ways to improve
where ITIL and other best-practice framework
initiatives have not delivered on their goals.

•	 The growing interest in continuous
configuration automation tools by both
developers and operations will help stimulate
demand for OSS-based management.

•	 Development of Web and mobile applications
that require continuous improvements and
enhancements will drive the need for tools that
address those specific needs.

The next five years will see increased demand
from organizations for tools that support toolchains
designed to ease the facilitation of DevOps without
bogging down change with volumes of processes.
References and case studies that detail avenues
for change will be most useful for promoting
DevOps solutions.

16

Contrarian View

Sales for DevOps support tools could lose traction
if the DevOps initiatives become tooling exercises
that neglect process discipline and transformation.
Changes in behavior are difficult to cultivate
and usually take longer than expected. The
fact that DevOps adoption varies so greatly by
organization (and most projects are small) creates
a big challenge for vendors to find the right buyer
and to acquire revenue (at least initially) — also,
toolchains imply that no vendor can rest on its
laurels. Interchangeability implies any tool can
be pulled out for a different one (albeit this is
unproved thus far). In light of these identified
difficulties, Gartner has included a few scenarios
that could occur to stagnate or inhibit projected
growth of this virtual market.

Will DevOps Become a Fizzled Overhyped
Word Rather Than an Opportunity for
Change?
Influencers that could inhibit DevOps adoption:

•	 DevOps requires acceptance of significant
changes in IT operations organization,
practices and culture by both IT workers and
management.

•	 Current investments in infrastructure,
applications and people are insufficient to
successfully implement this approach.

•	 Organizations ignore changing needs and cling
to the large body of work with respect to ITIL
and other best-practice frameworks that are
already accepted within the industry.

•	 The lack of prescriptive routes to DevOps
implementation creates the perception that it
is radical, unreliable or high-risk.

•	 Without a definitive “framework, template,
formula” to guide implementation, adoption
(and subsequently success) may be difficult to
demonstrate widely.

•	 OSS management tools, which are more
aligned with this approach, fail to gain
significant enterprise market share traction.

•	 Operations staff are unable to develop or
acquire either the skills necessary to adopt
philosophy or tools that support it.

Vendors to Watch
Sample Vendors
This research does not constitute an exhaustive list
of vendors in any given technology area, but rather
it is designed to highlight interesting, new and/or
innovative vendors, products and services. Gartner
disclaims all warranties, express or implied, with
respect to this research, including any warranties of
merchantability or fitness for a particular purpose.

DevOps-Ready Tools

DevOps-ready tools are out-of-the-box solutions
designed to support at least one of the workflow steps
in DevOps. Tools included in this category are ARA
and continuous configuration automation software.

ARA tools offer automation to enable best practices in
moving related artifacts, applications, configurations
and even data together across the application life
cycle. To do so, ARA tools provide a combination of
automation, environment modeling and workflow
management capabilities to simultaneously improve
the quality and velocity of application releases. These
tools are a key part of enabling the DevOps goal of
achieving continuous delivery with large numbers of
rapid small releases.
Continuous configuration automation tools provide
a programmatic platform to codify various activities
predominantly focused on configuring systems. The
platform leverages a proprietary coding language (but
leverages content from open-source communities).
Both traditional vendors as well as startups and
commercial OSS projects are focused on developing
(or acquiring) functionality to support these tools.
Table 2 lists vendors that offer DevOps-ready tools (it
is a sampling and not an exhaustive list).

Table 2. Sample List of Vendors With DevOps-
Ready Tools

Application Release
Automation

Continuous Configuration
Automation

BMC Ansible

CA Technologies CFEngine

Electric Cloud Chef

IBM Puppet Labs

MidVision SaltStack

Serena Software

VMware

XebiaLabs

Source: Gartner (February 2015)

17

DevOps-Enabled Tools

DevOps-enabled tools are designed to work in
a pipeline environment and enable activities
for development, testing, quality assurance and
production for the application and infrastructure,
focusing on integrity and fidelity of the application
and infrastructure. These may not be new
technologies, but they have direct extensibility for
DevOps projects. Tools included in this category
include continuous integration, continuous quality,
code review and static analysis (static application
security testing [SAST]), testing automation, and
environment (pipeline) management tools.

Contitnuous integration tools monitor source
repositories and then carry out preconfigured
sequences of action whenever new code is
checked in. These actions include ensuring pre-
check-in conditions are met, calling the compiler
and executing quality functions, such as static
analysis and build verification testing.

Continuous quality tools include service/
data/network virtualization — lab provisioning/
management, code review, static analysis, unit
test/smoke testing — automated test tools. The
extension from agile and continuous integration
to continuous delivery and utilization of DevOps
concepts relies on the ability to drive continuous
quality. The goal is to shift quality left and drive
faster delivery of functionality. This requires
a higher degree of automation and a more

productionlike test environment. In addition, agile
has driven in a number of additional practices that
push quality through the process, such as test-
driven development, peer code reviews and static
analysis on every build.

SAST is a set of technologies designed to analyze
application source code, bytecode and binaries for
coding and design conditions that are indicative of
security vulnerabilities. SAST solutions analyze an
application from the “inside out” in a nonrunning
state.

Testing automation tools enables the definition,
construction, automation, cataloging and
execution of suites of test cases. Tools may
highlight new or changed outcomes and provide
rapid feedback of test results to designated
developers or other staff.

Environment management tools enable
modeling, provisioning and configuration of
environments. These tools can provide one, two
or all three functions. Environments can include
but are not limited to infrastructure as a service
(IaaS), private platform as a service and application
environments. These tools are usually focused on
private on-premises environments, but they can
also manage environments in the public cloud,
as well.

Table 3 lists vendors that offer DevOps-enabled
tools (it is a sampling and not an exhaustive list).

Table 3. Sample List of Vendors With DevOps-Enabled Tools

Continuous
Integration

Continuous Quality Code Review
and Static Analysis

Test Automation Environment Management

Atlassian Jenkins CA
Technologies

Kubysis Atlassian Optimyth Borland QASymphony Actifio Delphix

CircleCI JetBrains Mockito Cast Parasoft Concordion SmartBear
Software

Atlassian Docker

Codenvy Microsoft Delphix Parasoft Checkstyle SonarQube Cucumber BMC IBM

Electric Cloud OpenMake
Software

HP Toptal Coverity Sonatype FitNesse TestPlant CloudBees Jenkins

Hudson IBM Tricentis FindBugs Veracode IBM TestRail CoreOS (Rocket) OpenMake Software

IncrediBuild Travis CI Gerrit Virtual Forge Microsoft Zephyr ElasticBox Red Hat

Microsoft WhiteHat
Security

Sauce Labs Electric Cloud VMware

Omnext DBmaestro Cloud management
platform vendors
(that do more than
IaaS)

Source: Gartner (February 2015)

18

DevOps-Capable Tools

DevOps capable tools have (typically) been around
for years, but they usually fall into another ITOM
category. However, these stand-alone tools can
work in a DevOps pipeline when configured
correctly. Monitoring, security testing (dynamic
application security testing [DAST]) and lab
management tools fall into this category. Some
newer monitoring tools include characteristics
and traits of DevOps tools and are therefore more
easily adopted specifically for DevOps projects.

Monitoring tools live above the operating
system layer, focusing on the application metrics
and being able to ingest and analyze custom
metrics often generated by the application code.
They do include information supplied by other
infrastructure components for additional context.
The focus of these tools is to collect, analyze and
alert on end-user experience, release quality and
custom business metrics.

DAST technologies are designed to detect
conditions indicative of a security vulnerability
in an application in its running state. Most DAST
solutions test only the exposed HTTP and HTML
interfaces of Web-enabled applications; however,
some solutions are designed specifically for non-
Web protocol and data malformation (for example,
remote procedure call, SIP and so on).

Lab management tools manage the provisioning,
operation, archiving and retirement of virtual test
facilities in support of multiple teams, projects and
organizations.

Evidence

This report required the collection of data and
the preparation of market statistics. We have
taken into account the following when doing
our analysis: prevailing market conditions and
political and economic events that affect vendor
performance (such as regulations, mergers and
acquisitions, a slow worldwide economic recovery,
and migration to new versions of software).

Gartner uses public sources of information and
works with software vendors to establish estimates
for market sizing. Information from Gartner’s
secondary research and internal community
meetings has also been used to arrive at certain
conclusions. The data in this research report is
published as Gartner estimates/opinion, and not as
facts that vendors report.

Source: Gartner Research, G00274555,
Laurie Wurster, Ronni Colville, Jim Duggan,

18 February 2015

Table 4. Sample List of Vendors With DevOps-Capable Tools

Monitoring Security Testing Lab Management

AppDynamics Ganglia Acunetix Amazon

AppFirst Graphite HP Citrix

AppNeta Graylog2 IBM CloudBees

Caliper Librato N-Stalker Codenvy

Circonus New Boundary Technologies NT OBJECTives CollabNet

collectd New Relic PortSwigger Dell (Quest Software)

Compuware Reconnoiter Qualys HP

Datadog SAP (OpTier) Trend Micro IBM

Elasticsearch/
Logstash/
Kibana

Splunk Trustwave Microsoft

Sumo Logic Veracode Ravello Systems

WhiteHat Security Skytap

VMware

Source: Gartner (February 2015)

19

About Parasoft

DevOps Requires “Continuous Quality” is published by Parasoft. Editorial content supplied by Parasoft is independent of Gartner analysis. All Gartner research is used with
Gartner’s permission, and was originally published as part of Gartner’s syndicated research service available to all entitled Gartner clients. © 2015 Gartner, Inc. and/or its
affiliates. All rights reserved. The use of Gartner research in this publication does not indicate Gartner’s endorsement of Parasoft’s products and/or strategies. Reproduction or
distribution of this publication in any form without Gartner’s prior written permission is forbidden. The information contained herein has been obtained from sources believed
to be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. The opinions expressed herein are subject to change without
notice. Although Gartner research may include a discussion of related legal issues, Gartner does not provide legal advice or services and its research should not be construed or
used as such. Gartner is a public company, and its shareholders may include firms and funds that have financial interests in entities covered in Gartner research. Gartner’s Board
of Directors may include senior managers of these firms or funds. Gartner research is produced independently by its research organization without input or influence from these
firms, funds or their managers. For further information on the independence and integrity of Gartner research, see “Guiding Principles on Independence and Objectivity” on its
website, http://www.gartner.com/technology/about/ombudsman/omb_guide2.jsp.

Parasoft researches and develops software solutions that
help organizations deliver defect-free software efficiently.
By integrating development testing, API testing, and
service virtualization, we reduce the time, effort, and cost
of delivering secure, reliable, and compliant software. Parasoft’s enterprise and embedded development
solutions are the industry’s most comprehensive—including static analysis, unit testing, requirements
traceability, coverage analysis, functional and load testing, dev/test environment management,
and more. The majority of Fortune 500 companies rely on Parasoft in order to produce top-quality
software consistently and efficiently as they pursue agile, lean, DevOps, compliance, and safety-critical
development initiatives.

Development Testing Platform
Parasoft Development Testing Platform (DTP) eliminates the business risk of faulty software by
consistently applying software quality practices throughout the SDLC. Parasoft DTP enables your software
quality efforts to shift left, delivering a platform for automated defect prevention and the uniform
measurement of risk across project teams. With seamless integration into any SDLC infrastructure system,
including open source and third-party testing tools, Parasoft DTP allows you to aggregate disparate data
and apply statistical analysis techniques—transforming traditional reporting into a central system of
decision.

API/Integration Testing
As the risks associated with application failure have broader business impacts, the integrity of the APIs
you produce and consume is now more important than ever. Parasoft’s API Testing solution provides
centralized visibility and control of services and APIs—ensuring security, reliability, and performance.

Service Virtualization
With Parasoft’s Service Virtualization solution, organizations bring higher quality software to the market
faster and at a lower cost. Parasoft’s industry-leading test environment simulation and management
technologies enable developers, QA, and performance testers to test earlier, faster, and more completely.

http://www.gartner.com/technology/about/ombudsman/omb_guide2.jsp

