Basic ICP-OES Troubleshooting

Manny Almeida
ICP-OES/DC Arc Product Line Manager
Teledyne Leeman Labs
Hudson, New Hampshire

Manuel.Almeida@Teledyne.com

Agenda

- Diagnostic Tests
- Common Issues/Problems
- Preventative Maintainence

Troubleshooting Tips

- Take a moment to review manuals
- Examine the facts and use valid reasoning
- Identify the "root cause" of the problem
- Avoid quick fixes and shotgun approach
- Be patient

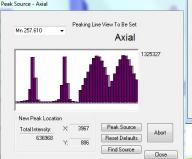
Teledyne Leeman Labs ICP-OES

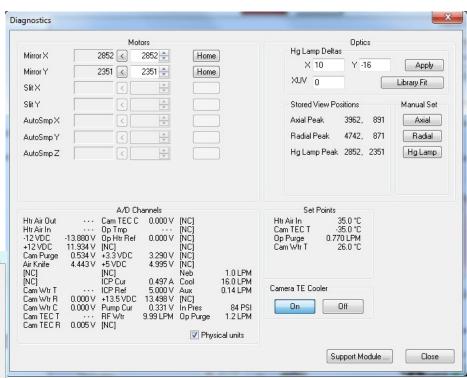


Prodigy7 Prodigy

Finding the Root Cause

- Isolate the where the problem is
 - Sample Introduction
 - Spectrometer (Optics)
 - RF system

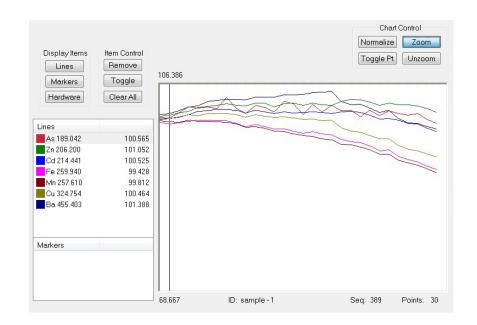



ICP Troubleshooting

- Keep a record of instrument data
 - Positions
 - Intensities

Establishes a baseline for

comparison



Finding the Root Cause

- Hg Lamp Stability Test
 - Optics
- RF Stability Test
 - RF/power supply
- Analytical QC Test
 - Sample Introduction

- Tests the optical system
- Eliminates
 - RF
 - Sample introduction system

- Create a method containing the following Hg lines
 - **–** 253.625
 - **-** 404.656
 - **–** 435.835
 - **–** 546.074
 - Select view to be "Hg Lamp"
 - Make sure the wavelengths are aligned
- Define a standard at a concentration of 100
 - Any drift will be in percent
- Use a 10s integration time with 5 replicates
- Calibrate using 3 replicates
- Run 5 samples
 - 25 individual readings

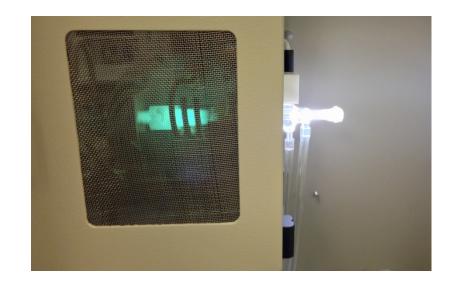
Hg	%RSD
253.652	<0.3%
404.656	<0.3%
435.835	<0.3%
546.074	<0.3%

Results Detailed OStatistics				Single	O All
Sample ID	Sym.	Wavelength	Mean	SD	RSD
Hg	Hg	253.652	99.889	0.007	0.007
	Hg	404.656	99.838	0.006	0.006
	Hg	435.833	99.974	0.018	0.018
	Hg	546.074	100.006	0.025	0.025

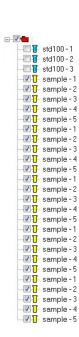


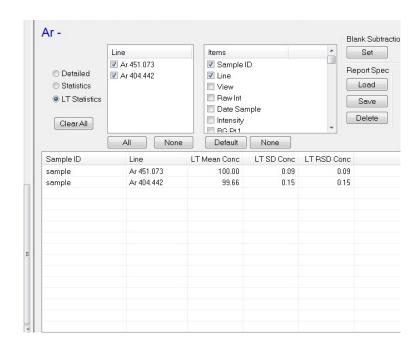
RF Stability Test

RF Stability Test (Argon test)


- Create a method using the following Ar lines
 - 451.073
 - 404.442
 - Make sure the wavelengths are aligned
- With the plasma off, remove spray chamber and plug torch
 - Parafilm, Teflon tape, etc.
 - Done to remove all traces of water vapor
- Define a standard at a concentration of 100
 - Any drift will be in percent
- Use a 20s integration time with 5 replicates
- Calibrate using 3 replicates
- Run 5 samples
 - 25 individual readings

RF Stability Test


- Spray chamber removed
- Torch Plugged
- Use auxiliary flow to push plasma away from torch
- Wet spray chamber will usually result in a failing test



RF Stability Test (Argon Test)

Ar	%RSD
451.073	<0.3%
404.442	<0.3%

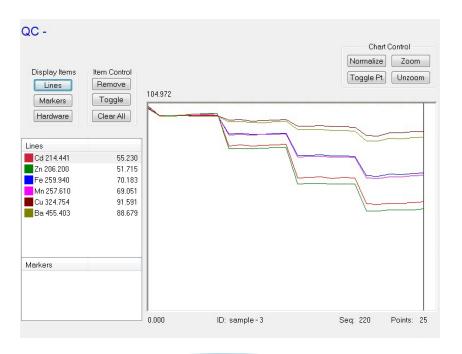
- Designed primarily to test the performance of the sample introduction system
 - Though it can yield information to help isolate problems in other areas
- Uses a specific set of elements/wavelengths based on their spectrochemical characteristics
- Similar to tests used during manufacturing and installation

Hard and Soft Emission Lines

Hard line

- Atomic and ionic lines of elements with an ionization potential (IP) > than 8eV
 - o Cd 214.441 and Zn 206.200

Soft Line


- Atomic lines of elements with an IP of < 8eV
 - o Cu 324.754
- Ionic lines of elements with a low 2nd IP
 - o Ba 455.403

Element	λ, nm	State	1 st IP, eV	2 nd IP, eV
Cu	324.754	Ĭ	7.73	20.29
Ba	455.403	II	5.21	10.0
Fe	259.940	II	7.87	16.18
Mn	257.610	II	7.43	15.64
Zn	206.200	II	9.39	17.96
Cd	214.441	II	8.99	16.91

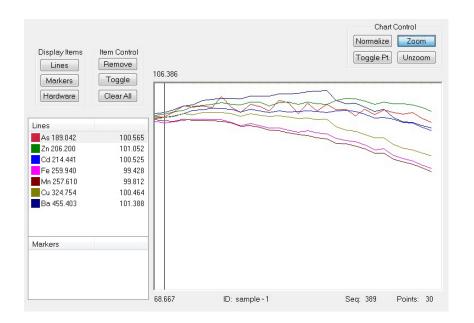
Increasing Nebulizer Pressure

Decreasing RF Power

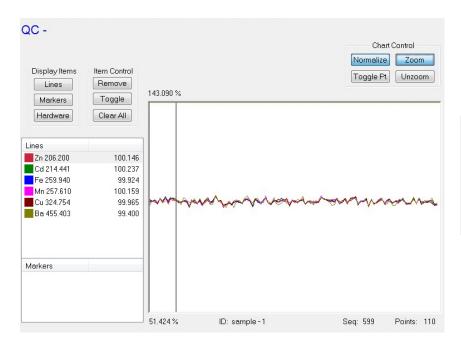
- Create method with the following lines:
 - Cu 324.754 and Ba 455.403
 - Fe 259.940 and Mn 257.610
 - Zn 206.200 and Cd 214.441
 - Make sure they are all aligned
- Define a standard using the concentrations listed on the right
- Position the plasma view on Mn
- Use a 30 second integration
- 20 replicates

Element	Radial, ppm	Axial, ppm
Cu, Fe, Mn, Zn, Cd	10	1
Ва	1	0.1

Element	Wavelength	% RSD
Cu	324.754	<0.6
Ba	455.403	<1.0
Fe	259.940	<0.6
Mn	257.610	<0.6
Zn	206.200	<0.6
Cd	214.441	<0.6



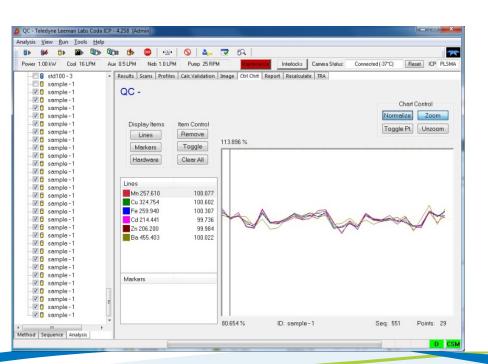
Sample ID	Line	LT Mean Conc	LT SD Conc	LT RSD Conc
sample	As 193.759	101.500	0.499	0.491
sample	Zn 206.200	100.915	0.257	0.254
sample	Cd 214.441	101.222	0.304	0.300
sample	Fe 259.940	100.712	0.244	0.243
sample	Mn 257.610	101.269	0.470	0.464
sample	Cu 324.754	100.886	0.387	0.384
sample	Ba. 455.403	101.361	0.559	0.552


Analytical QC Test – What we're looking for

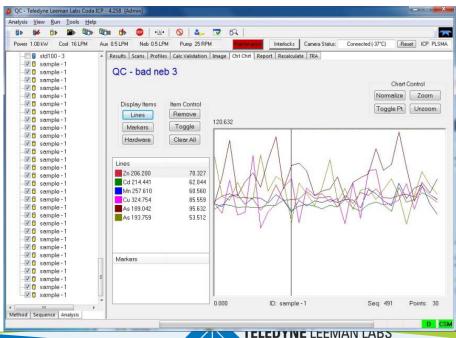
- Trends
 - All elements moving together
 - Like elements moving
- Random

Analytical QC Test – short (1s) integration

Sample ID	Line	LT Mean Conc	LT SD Conc	LT RSD Conc
sample	Zn 206.200	99.299	1.114	1.122
sample	Cd 214.441	99.100	1.044	1.054
sample	Fe 259.940	99.177	0.987	0.995
sample	Mn 257.610	99.599	0.957	0.960
sample	Cu 324.754	99.378	0.963	0.969
sample	Ba 455,403	99.472	1.157	1.163

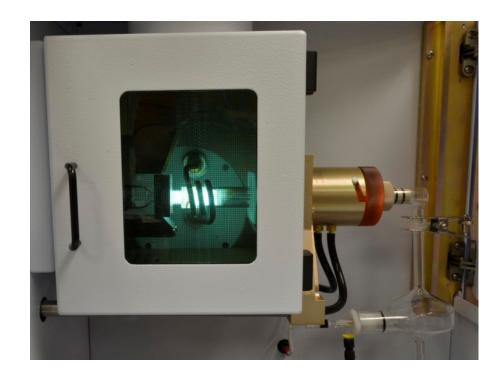


- Can use shorter integration times
- Longer test to look for intermittent problems
- Hg 312 nm and Ar 404 lines can be added
 - Hg tests spectrometer
 - Ar tests the gas control



Example QC Test Results

Pump Problem


Nebulizer Problem

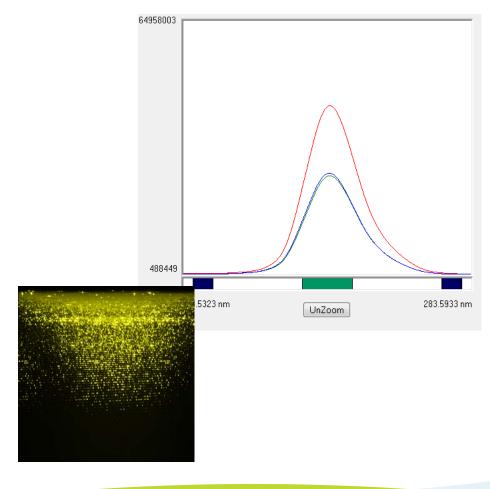
Everywhere youlook"

Finding the Root Cause

- Majority of problems will be related to the sample introduction system
 - Peristaltic Pump
 - Pump tubing
 - Spray chamber
 - Torch
 - Nebulizer
- Important to understand operation and set-up of sample introduction system

ICP Trouble Shooting

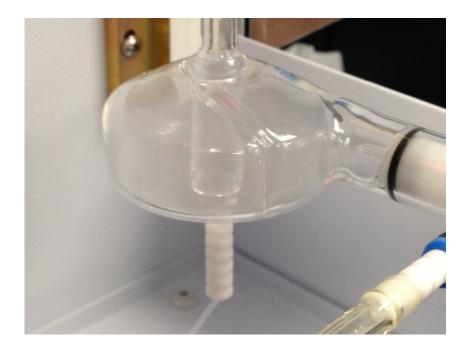
Common Problems

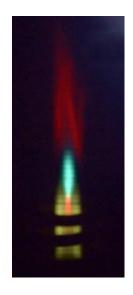

ICP-OES Troubling Shooting

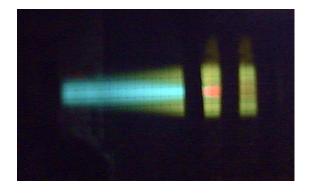
- No Sensitivity
- Low Sensitivity
- Poor Precision
- Drift
- Plasma Won't Light
- Melting Torches
- Check Standards Failing

ICP Trouble Shooting

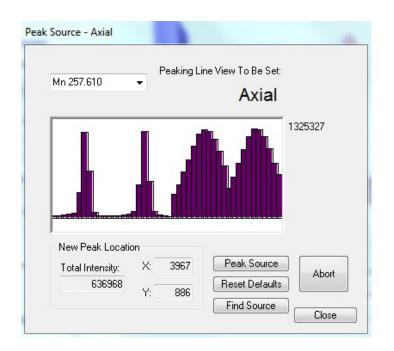
- Use wavelength scans and full frame images
- They show you what the instrument is actually seeing.



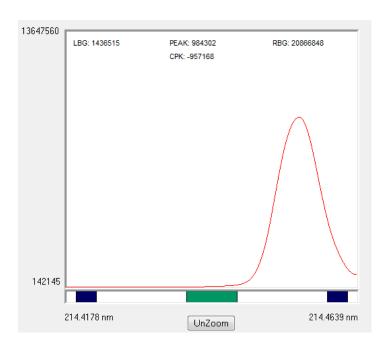



No Sensitivity or Signal - Is aerosol being generated?

- Quick visual inspection
 - Is nebulizer aspirating?
 - Check Pump tubing
 - Drain hooked up?

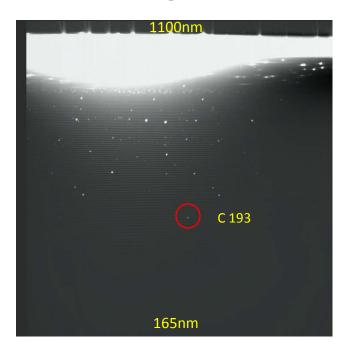


- Is aerosol getting to the torch?
 - Yttrium
 - Sodium



- Source Mirror correctly aligned?
- Aligned on a blank solution?

- Optics aligned?
- Wavelengths Aligned?

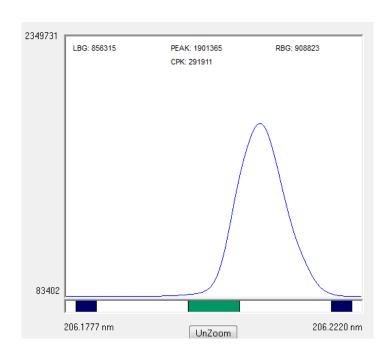

No Sensitivity or Signal (especially <190nm)

- Purged Optical Path (POP)
- Windows clean?
- Optics Purge Gas
 - On?
 - Leaks
 - Right Gas?

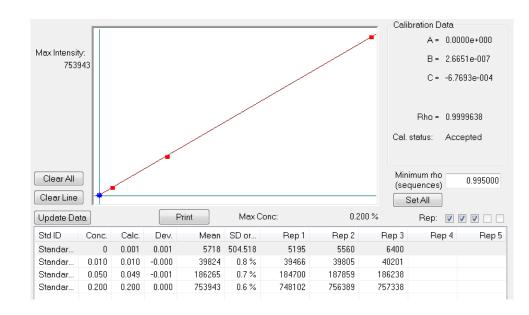
No Sensitivity or Signal (<190nm)

Purge Off

Purge On



- Nebulizer operating pressure/flow correct?
 - Look at the yttrium, sodium
 - Green finger on organics
- Viewing Position Correct?
 - Correct element used?
 - Especially on radial system
- Torch positioned correctly in RF Coil?



- Optics not aligned
- Wavelengths misaligned

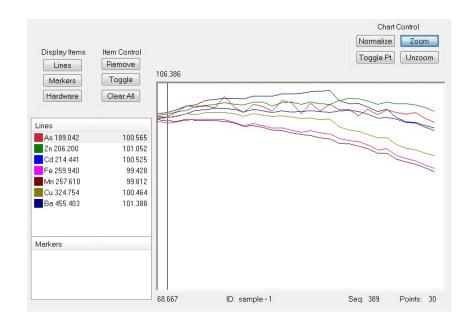
- Correct standard concentrations?
 - The 10ppm is really 1ppm
- Old standards?

- Purged Optical Path (POP)
- Windows clean?
- Optics Purge Gas
 - Leaks
 - Stable purge established

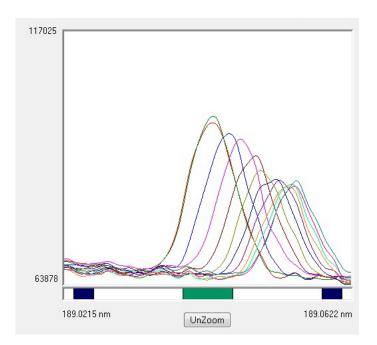
Poor Precision

Poor Precision

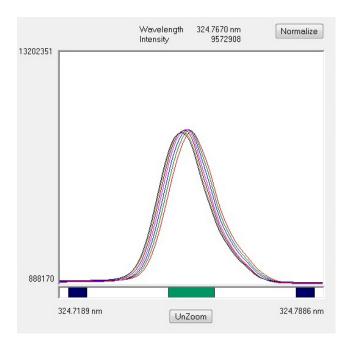
- Uptake time too short
- Intermittent spray from nebulizer
 - Remove from spray chamber and observe spray with <u>deionized</u> water
- Stuck/dragging roller on peristaltic pump
- Poor drainage from spray chamber
- Solution beading up in spray chamber



Drift

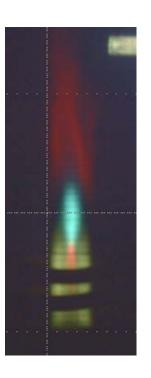

- Sample Intro sufficiently warmed up?
- Pump tubing broken in?
- Nebulizer clogging

Drift


Optical drift due to optics coming up to temperature

Drift

- Optical drift due to temperature change
 - Optics heater not at equilibrium; still changing
 - Torch exhaust flow too low



Plasma Won't Light

Plasma Won't Light (assuming no interlocks)

- Sample introduction leaks
 - Air getting in
- Gas lines reversed
- Igniter lead not attached
- Old or damaged torch
- Defective torch
- Bad gas

Torch Melts

Torch Melts

- Gas lines reversed
- Torch too deep in load coil
- Torch not centered in load coil
- Coolant flow not high enough for application
- Not enough auxiliary flow

Check Standards Fail

Check Standards Fail - Immediately After Calibration

- Inaccurate/Incorrect standards
- Inaccurate/Incorrect Check Standards
- Sample Introduction system not set up well
- Carry Over from High Standard
- Poor calibrations accepted
- Instrument not stable during calibration

Check Standards Fail — During analysis

- Drift
- Nebulizer clogging
- Sample carry over
- Rinse not long enough
- Check Standards not stable
- Poor calibrations accepted

Preventative Maintenance

Preventative Maintenance

- Clean/replace air filters
- Clean purge/POP tube windows
- Change water in chillers and recirculators
- Replace any o-rings in sample introduction system
- Change Pump Tubing
- Thoroughly rinse sample introduction at end of analytical runs

Summary

- Diagnostic Tests
 - Isolate Problem's Location
 - Hg Test for optics
 - RF Test for power
 - QC Test for sample introduction
- Common Issues/Problems
- Preventative Mountainous
 - Reduce the likelihood of problems

Questions?

Thank you!

