Precision Medicine for Treatment of Cancer -Methods and Analyses from the Xalkori Experience for ALK-positive NSCLC

Nina Selaru, Pfizer Oncology

Cytel Seminar on Adaptive Statistical Designs, San Diego - June 19, 2014

On the opportunities and challenges associated with the rapid development of Xalkori

On the use of East for design/monitoring of Phase 3 trials

Opportunities and Challenges Associated with Development of Xalkori

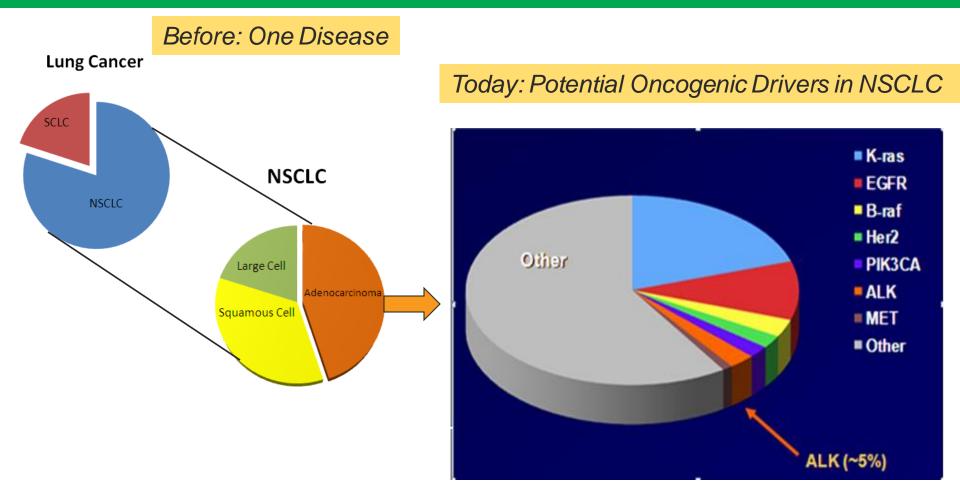
Yiyun Tang, Bo Huang and Anna Polli for significant contributions to data analysis and interpretation

Outline

Background

- Highlights of Xalkori Data
 - From single arm studies
 - Statistical Considerations for Data Interpretation and Approaches to Address
 - From a randomized trial

Summary



Background: Xalkori

- Generic Name: Crizotinib (PF-02341066)
- Class: Small-molecule, ATP-competitive inhibitor of ALK & c-MET/HGFR tyrosine kinases
- Dosing Regimen: 250 mg orally BID continuously
- Indication:
 - For treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors are ALK-positive as detected by an FDA-approved test (USPI, 05/2014)
- First treatment for advanced NSCLC developed based on knowledge of the underlying genetic drivers of the disease to identify patients most likely to benefit from treatment
- Approved in 5 years from first-in-human based on 2 single arm studies

Lung Cancer: from Histology to Biomarker Based Treatment in the Molecular Era

ALK = anaplastic lymphoma kinase; EGFR = epidermal growth factor receptor; Her2 = human epidermal growth factor receptor 2; PIK3CA = phosphoinositide-3-kinase, catalytic, alpha polypeptide

> Massachusetts General Hospital, data on file. [AT Shaw, personal communication]

Developing Targeted Therapies - Opportunities & Challenges

Smaller trials to detect larger treatment differences have greater chance for success

Before: Treat large numbers of patients unselected for relevant genetic events

New Model: Treat (targeted therapies) small numbers of pts all with relevant genetic events

2011 ASCO Blueprint

Even these smaller trials could be "too large" and challenging to conduct as molecular subsets get smaller

Typical Endpoints in Oncology

Objective Response Rate (ORR)

- % of "responders" relative to population evaluable for response

Progression-Free Survival (PFS)

- Time from 1st dose to tumor progression or death

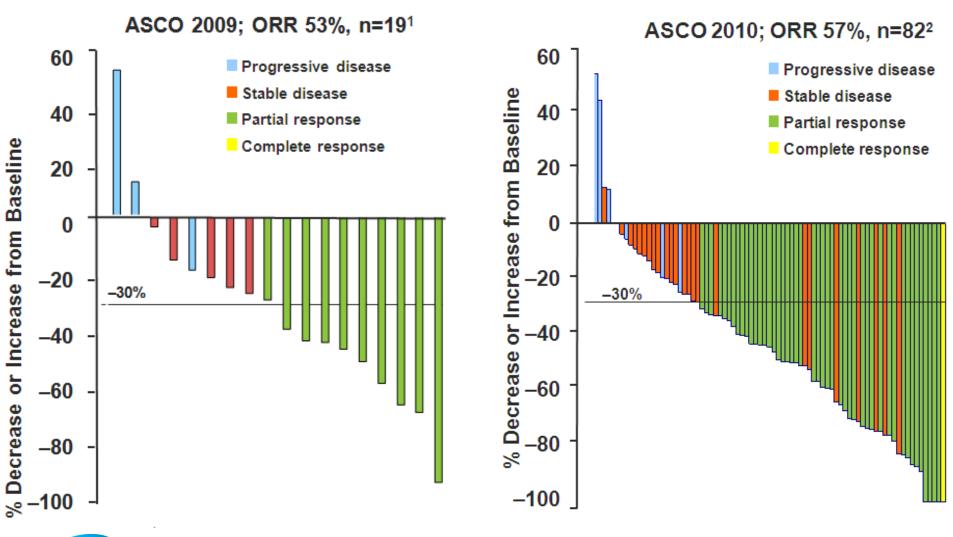
Overall Survival (OS)

– Time from 1st dose to death

Note: definitions provided for single arm trials

Clinical Development in ALK-Positive Advanced NSCLC

Protocol (A808)	Setting	Trial Design	Primary Endpoints
1001	All Lines	Xalkori, Single-Arm, OL	Safety, PK, ORR
(Phase 1)	Solid Tumors ALK + NSCLC		
1005	≥2 nd -Line	Xalkori, Single-Arm, OL	ORR, Safety
(Phase 2)	ALK + NSCLC		
	A 2 1 1		
1007	2 nd -Line	Xalkori vs. (Pemetrexed or Docetaxel),	PFS
(confirmatory Phase 3)	ALK + NSCLC	Randomized, OL	
1014	1 st -Line	Xalkori vs. (Pemtrexed/Carboplatin	PFS
(confirmatory Phase 3)	ALK + NSCLC	or Pemetrexed/Cisplatin), Randomized, OL	


NSCLC = Non-small cell lung cancer; OL= Open Label; PK=Pharmacokinetic; ORR= Objective Response Rate; PFS= Progression Free Survival

HIGHLIGHTS OF SINGLE-ARM XALKORI DATA

ALK-Positive NSCLC Signs of Anti-Tumor Activity Over Time Study 1001

Robust and Durable Anti-Tumor Activity

	Study 1001 N=119*	Study 1005 N=136 [*]
Best overall response		
Complete response	2	1
Partial response	69	67
ORR	61% (95% CI: 52%, 70%)	50% (95% CI: 42%, 59%)
Duration of response Median** (range) weeks	48.1 weeks (4.1+, 76.6+)	41.9 (6.1+, 42.1+)

Assessed by the investigators

USPI 08/2011

*Three patients were not evaluable for response in Study 1001 and 1 patient was not evaluable for response in Study 1005 ** Preliminary estimates using the Kaplan-Meier method

• Impressive ORR even when compared to chemotherapeutic agents approved for 1st line treatment of metastatic NSCLC (ORR: 15-35%)

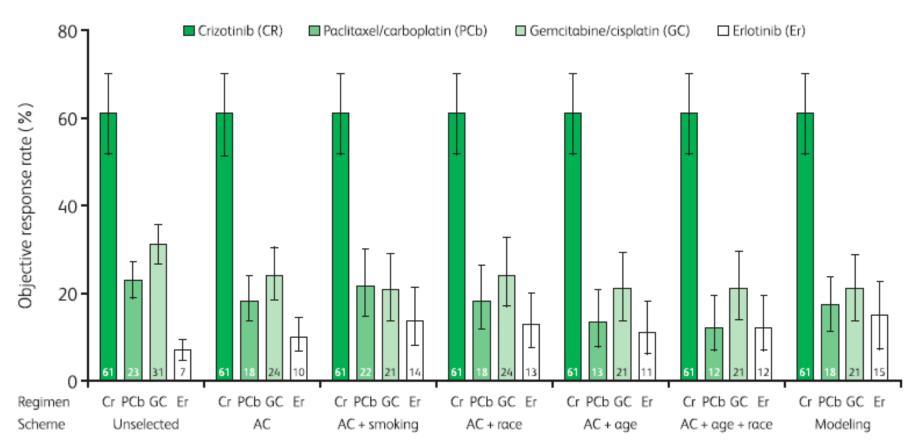
STATISTICAL CONSIDERATIONS FOR DATA INTERPRETATION AND APPROACHES TO ADDRESS

- Efficacy data not based on "typical" endpoints for regulatory approval:
 - ORR
 - Duration of Response
 - Time from first response to disease progression or death
- Single arm data
- No historical data available in the population of interest

Are characteristics of ALK+ patients (e.g. younger, never/former smoker, adenocarcinoma histology) contributing to observed anti-tumor data?

Xalkori Efficacy in Context of Historical Data

Comparisons against unselected patients' data are confounded as ALK+ NSCLC patients have distinct characteristics

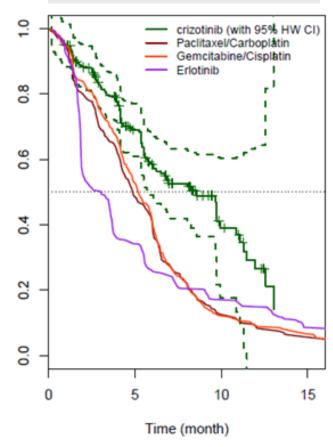

Use data from control* arm of 3 adequate and well controlled Pfizer-sponsored advanced NSCLC studies

- Covariate-matched analyses for ORR/PFS/OS with resampling to compare Xalkori with matched data from control arms
- Covariate-adjusted analyses to retrospectively predict efficacy of ALK+ NSCLC patients as if they were treated with one of the control agents:
 - Logistic regression model for ORR
 - Covariate-adjusted expected PFS/OS curves with Cox-PH regression model

* Control arms included: 1^{st} Line Carboplatin/Paclitaxel or Gemcitabine/Cisplatin and $\geq 2^{nd}$ Line Erlotinib

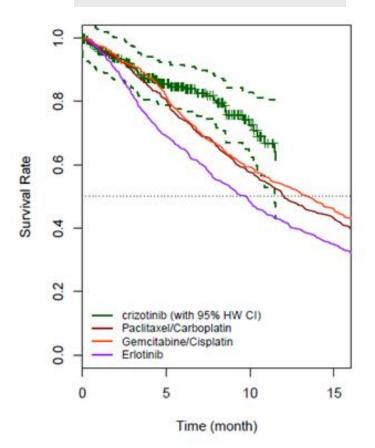
ORR by Treatment and Matching Schema Covariate-Matched and Adjusted Analyses, Study 1001

Error bars: 95% exact CI for unselected and AC schemes; average of 95% exact CI from bootstrap samples for AC + smoking, AC + race, AC + age, AC + age + race schemes; estimated 95% CI based on delta method in covariate-adjusted modeling analysis.



Tang Y, Poster at WCLC 2011; Abstract 1349

Observed and Expected PFS and OS Direct Adjustment Method


Xalkori in Study 1005* (N=439) and 3 Control Regimens

PFS

Oncology

OS

19

■Using data from ALK+ advanced NSCLC patients in Studies 1001 and 1005, and from unselected advanced NSCLC patients treated with 3 control regimens in ≥1st-line treatment setting, Xalkori was associated with:

- Higher ORR than that of covariate-matched and covariateadjusted controls
- Hazard Ratios against covariate-adjusted controls for PFS and OS between 0.37 and 0.77

Investigate hypotheses from small (8-19 patients), retrospective reports suggesting that pemetrexed as a single-agent or in combination with chemotherapy may be effective in ALK+ NSCLC (Altavilla et al, 2010; Camidge et al, 2011; Lee et al, 2011)

 Evaluate Xalkori vs. pemetrexed/docetaxel (chemotherapy choice in randomized Phase 3 Study1007)

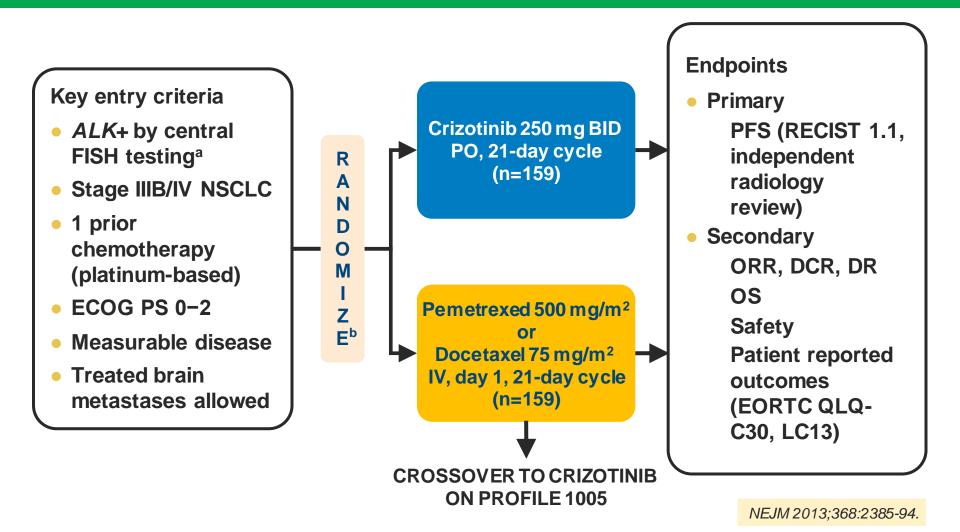
Xalkori vs. Pemetrexed (P) or Docetaxel (D) in ALK+ NSCLC Study 1005

Within and between-patient time to tumor progression (TTP) and PFS analyses

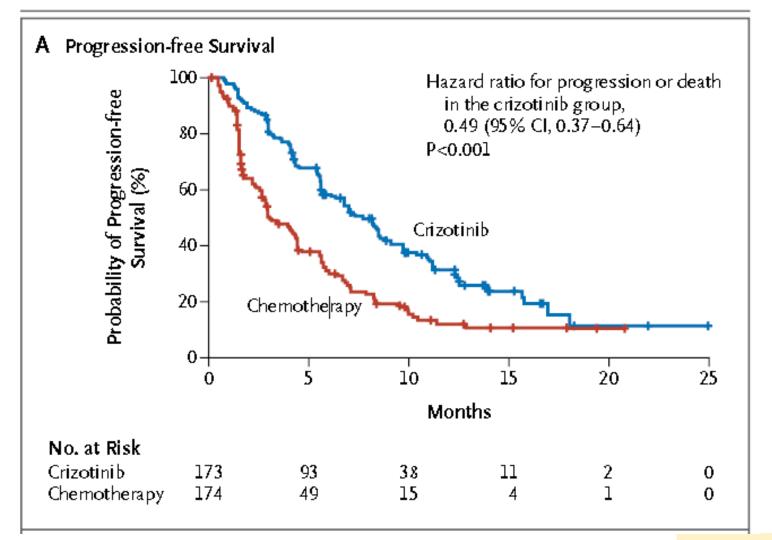
 117 pts who received prior, 2nd line single P/D, were analyzed for Xalkori outcome (within) or compared with 62 patients who received 2nd line Xalkori (between)

PFS	P or D (N=117)	Xalkori (N=117)	Xalkori (N=62)
Median (mo) (95% CI)	3.5 (2.8, 5.3)	5.7 (5.3, 12.0)	NR (9.7, NR)
HR (Xalkori:P/D)		Within	Between
Unadjusted [95% CI]		0.63 (0.44, 0.90)	0.31 (0.16, 0.62)
Adjusted* [95% CI]		0.59 (0.41, 0.85)	0.37 (0.19, 0.74)

* Adjusted for age and ECOG performance status in a backward selected model for "Within" and "Between", respectively


As of June 2011

HIGHLIGHTS OF XALKORI DATA FROM 2ND LINE RANDOMIZED PHASE 3 STUDY


Study Design

Oncoloav

^a*ALK* status determined using standard *ALK* break-apart FISH assay ^bStratification factors: ECOG PS (0/1 vs 2), brain metastases (present/absent), and prior EGFR TKI (yes/no)

PFS by Independent Radiologic Review (ITT Population)

NEJM 2013;368:2385-94.

Oncology

Summary

In the absence of randomized data, innovative statistical approaches were used to quantify clinical benefit with Xalkori in a quasi-randomized manner

Results from the randomized trial "validate" outcomes of retrospective analyses

Present: While single arm trials may be accepted for accelerated approval of drugs for rare conditions, randomized Phase 3 trials likely required as post-marketing requirement

Future: Single arm trials may be sufficient for full approval of precision medicine agents for rare tumors.

Example for Using East to Design/Monitor a Phase 3 trial

Outline

Examples for using East (v. 6.2) for a Phase 3 Study:

- Trial Design
- Event monitoring

Example for using East (v. 6.2) for a Phase 3 Study Trial Design

■56% improvement in PFS (Hazard Ratio=0.64)

- e.g. median PFS 7.0 months vs 4.5 months
- Alpha =0.025 (1-sided)
- ■Power = 90%

Non-uniform accrual

NEJM 2013;368:2385-94.

Using East for Event and Sample Size Calculation

Select "Two-Sample Survival Endpoint Given Accrual Duration & Rates"

Enter the "Design Parameters" as noted on previous slide

Design: S	urvival Endpoint: Two-Sam	ple Test - Parallel Desigr	ı - Logrank Given Ac	crual Duration	and Accrual Rates	•0. •0. ⊽ .
Design Type: Sup	periority v Num	ber of Looks: 1 🗸				
Design Parameters	Accrual/Dropout Info					
Test Type:	1-Sided v	# of Hazard Pieces:	1 ¥	nput Method:	Median Survival Times 👻	^
Type I Error (α):	0.025	Hazard Ratio (Op	tional)		Alternative	
Power:	0.9	Hazard Ratio	(λ_t/λ_c)		0.643	
No. of Events:	Computed	Ratio of Medians	(m_t/m_c)		1.556	
Allocation Ratio: (nt/nc)	1	Period # At	Med. Surv. Time (Control)	Med. Surv. (Treatment		
τ, ε.		1	4.5	7.000		
		Variance of Log Haz	ard Ratio			
		⊙ Null	○ Alternative			
						~
						Compute

Using East for Event and Sample Size Calculation (2)

Enter "Accrual/Dropout Info"

De	sign: Survival	Endpoint: Two-Sa	ample Test - Paralle	l Design	- Logrank Giv	en Accrual Dur	ation and Accrual R	ates	•.0 .00	0.4 0 0	¥
Design T Design P		ty v N	Number of Looks:	1 ~							
- Accrual Info)				Piecewise	Constant Dro	pout Rates				^
# of Accrua	l Periods: 4	~			# of Pieces	5: 0 v	Input Method:	Hazard Rates		~	
Period #	Starting At	Accrual Rate		^	Period #	Starting At	Hazard Rate	Hazard Rate			
1	0.000	2.000			r chou #	Starting Ac	(Control)	(Treatment)			
2	3.000	4.000									
3	6.000	6.000									
4	8.000	12.000		~							
Accrual											
	Min.	Comtd. Su	gg. Max.								
Ouration	23.5	27.333	31.167								
O Subjects	216	262	308								~
<										>	

Note: Accrual Rate is an example not based on actual assumptions

East Output Summary

Nu - 📰 - 🍬 📥

	Des 3
Mnemonic	SU-2S-LRAR
Test Parameters	
Design Type	Superiority
No. of Looks	1
Test Type	1–Sided
Specified α	0.025
Power	0.9
Model Parameters	
Hazard Ratio (Alt.)	0.643
Var (Log HR)	Null
Allocation Ratio (nt/nc)	1
Accrual & Dropout Parameters	
Accrual Rate	Multiple
Subjects are Followed	Until End of Study
No. of Accrual Periods	4
No. of Dropout Pieces	0
Sample Size	
Maximum	262
Expected Under H0	262
Expected Under H1	262
Events	
Maximum	216
Expected Under H0	216
Expected Under H1	216

Output Summary

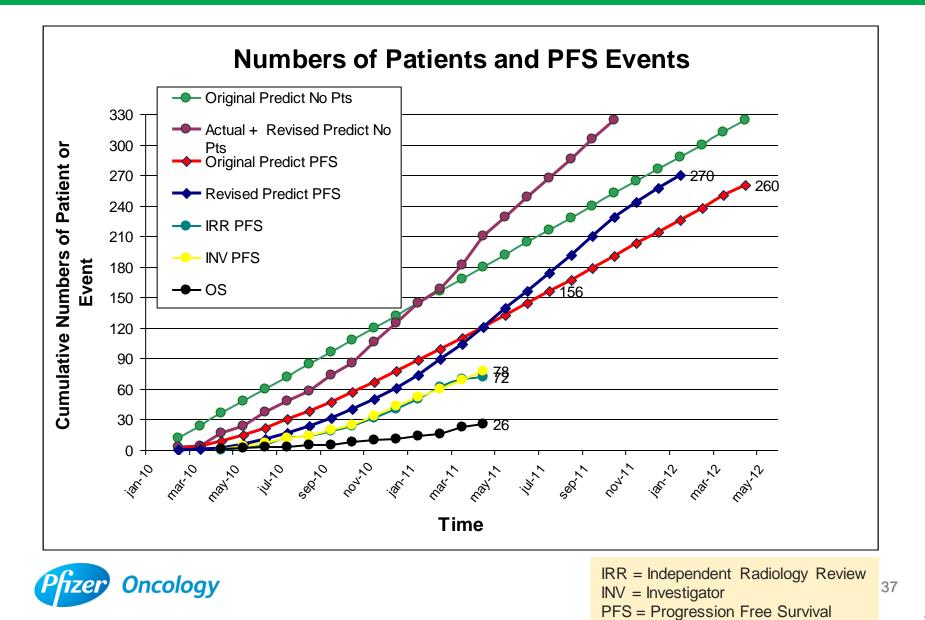
Actual Planned Sample Size:

- 217 Events
- 318 Patients

Example for using East (v. 6.2) for a Phase 3 Event Monitoring

At Design and During Study Plot Sample Size/Events vs Time to Determine Event Occurrence

🔽 - 🖽 - 🍬 🚔		Output Summary
	Des 3	
Stopping Boundaries		
Power vs. Treatment Effect (δ) γpe		
Sample Size / Events vs. Time oks		
Study Duration vs. Accrual	1–Sided	
specified o	0.025	
Power		
Model Parameters		
Hazard Ratio (Alt.	0.643	
Var (Log HR)		
Allocation Ratio (nt/nc)		
Accrual & Dropout Parameters		
Accrual Rate		
Subjects are Followed	Until End of Study	
No. of Accrual Periods	4	
No. of Dropout Pieces	0	
Sample Size	1	
Maximum	262	
Expected Under H0	262	
Expected Under H1	262	
Events		
Maximum	216	
Expected Under H0	216	
Expected Under H1	216	



Sample Size/Events vs Time At Design

Enrollment and Event Tracking During Study

Using EAST for Event Prediction

Under "Show Table" Select "Sample Size/Events vs Time" then "Save as Case Data"

Na - 💷 🐐 🚔
Stopping Boundaries
🗾 🌈 Power vs. Treatment Effect (δ) 🤤 J-
Sample Size / Events vs. Time
Study Durationue Account
Test Type 1

Range for Time

From	То	Step Size	
0	33.014	0.674	Tabulate

Time	Des2:Events (Cont.)	Des2:Events (Treat.)	Des2:Total Events	Des2:Sample Size
0	0	0	0	0
0.674	0.034	0.022	0.056	1.348
1.348	0.131	0.086	0.217	2.695
2.021	0.284	0.189	0.474	4.043
2.695	0.489	0.33	0.819	5.39
3.369	0.751	0.511	1.262	7.475
4.043	1.113	0.763	1.876	10.17
4.716	1.572	1.086	2.658	12.865
5.39	2.119	1.475	3.594	15.56
6.064	2.745	1.926	4.671	18.383
6.738	3.482	2.461	5.943	22.426
7.411	4.345	3.092	7.437	26.468
8.085	5.324	3.813	9.138	31.022
8.759	6.531	4.7	11.232	39.107
9.433	8.018	5.791	13.808	47.192
10.106	9.756	7.072	16.828	55.277
10.78	11.722	8.531	20.253	63.362
11.454	13.892	10.157	24.049	71.448

Export Data in Excel and Plot

Home Data		Design Analysis		Select Ins	ert Delete Got						
Variable			Data		Edit						
ibrary 4	Des2:E	Events(Treat.)						1			
۹ 🛄 🍓 💾		Time	Des2:Events(Des2:Events(Des2:TotalEv	Des2:Sample	var	var	var	var	^
× 🦲 🔬 🔡	1	0	0	0	0	0					
🖃 🏠 Root	2	0.673762555	0.0337833037	0.021983988	0.0557672917	1.34752511					
🗄 🧫 Wbk1	3	1.34752511	0.130654313	0.0860336228	0.216687936	2.69505022					
Des2	4	2.02128766	0.284393985	0.189433997	0.473827982	4.04257533					
🔛 Des	5	2.69505022	0.489396336	0.329645422	0.819041758	5.39010044					
🦾 💟 Des	6	3.36881277	0.7508884	0.510945442	1.26183384	7.47525109					
CaseD	7	4.04257533	1.11288079	0.76316265	1.87604344	10.1703013					
	8	4.71633788	1.57202477	1.08607079	2.65809556	12.8653515					
	9	5.39010044	2.11874335	1.47510749	3.59385084	15.5604018					
	10	6.06386299	2.74471671	1.92620632	4.67092303	18.383178					
	11	6.73762555	3.48158469	2.4610645	5.94264919	22.4257533					
	12	7.4113881	4.34506786	3.09185651	7.43692438	26.4683286					
	13	8.08515066	5.32435273	3.81346474	9.13781748	31.0218079					
	14	8.75891321	6.53121971	4.70031885	11.2315386	39.1069585					
	15	9.43267577	8.01762441	5.79084252	13.8084669	47.1921092					
	16	10.1064383	9.75601061	7.07189096	16.8279016	55.2772599					
	17	10.7802009	11.7215386	8.53116774	20.2527063	63.3624105					
	18	11.4539634	13.8918171	10.15717	24.0489872	71.4475612					
	19	12.127726	16.2466625	11.9391375	28.1858	79.5327118					
	< 20	40.0044005	40 7070005	40.007004	20.0240045	07 0470000			1	>	Ĭ

East: A Very Versatile and Useful Tool for Trial Design and Monitoring

At Design Stage Offers:

- Sample size calculations for group sequential design based on design assumptions and accrual information
- A variety of options for spending function boundaries (including user defined) for both efficacy and futility
- Ability to perform simulations to evaluate design operating characteristics under different assumptions and stopping boundaries to select most appropriate for study

Note: this is NOT a comprehensive list!

East: A Very Versatile and Useful Tool for Trial Design and Monitoring (2)

During Study Conduct Offers:

- Event monitoring based on actual accrual and different assumptions for treatment effect
- Calculate alpha at interim and final look based on information fraction to preserve overall Type I error

Note: this is NOT a comprehensive list!

Q& A

THANK YOU!

