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Abstract

The development of molecularly targeted therapies for certain types of cancers has led to the
consideration of population enrichment designs that explicitly factor-in the possibility that the
experimental compound might differentially benefit different biomarker subgroups. In such
designs, enrollment would initially be open to a broad patient population with the option to
restrict future enrollment, following an interim analysis, to only those biomarker subgroups that
appeared to be benefiting from the experimental therapy. While this strategy could greatly
improve the chances of success for the trial, it poses several statistical and logistical design
challenges. Since late-stage oncology trials are typically event driven, one faces a complex trade-off
between power, sample size, number of events and study duration. This trade-off is further
compounded by the importance of maintaining statistical independence of the data before and
after the interim analysis and of optimizing the timing of the interim analysis. This paper presents
statistical methodology that ensures strong control of type-1 error for such population enrichment
designs, based on generalizations of the conditional error rate approaches of Müller and Schäfer [8]
and Irle and Schäfer [12]. The special difficulties encountered with time-to-event endpoints are
addressed by our methods. The crucial role of simulation for guiding the choice of design
parameters is emphasized. Although motivated by oncology, the methods are applicable as well to
population enrichment designs in other therapeutic areas.

Keywords: Subgroup selection, targeted therapies, adaptive design, clinical trial, conditional error
function, multiple comparisons, survival endpoints, precision medicine, predictive biomarker
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1 Introduction

This paper presents a method for designing two-stage adaptive trials that permit biomarker driven
population enrichment at the interim analysis. The approach is applicable to situations where a single
binary biomarker partitions the population into two subgroups. The focus is on oncology though the
methods can also be applied in other therapeutic areas. Nearly 60% of oncology trials fail in phase 3
testing [1]. A major cause of this attrition is inability to identify the appropriate population with the
greatest potential to benefit from the test drug. Treatment effects can differ greatly between subsets
of patients with different genomic characteristics for tumors in the same disease class. For example, in
several recent trials of metastatic colorectal cancer, the benefit of anti-EGFR antibodies was shown to
be limited to patients with KRAS wild-type tumors [2]. Table 1 displays several targeted therapeutic
agents that were approved in the United States for specific subgroups of patients. In many of these

Table 1: Oncology Products Approved in the U.S. for Selected Populations

Compound Target Indication
Crizotinib (Xalkori r© ) ALK ALK-rearranged non-small cell lung cancer
Vemurafenib (Zelboraf r©) BRAF BRAF mutant advanced melanoma
Trametinib (Mekinist r©) MEK BRAF mutant advanced melanoma
Trastuzumab (Herceptin r©) Her 2 Her 2 expressing breast cancer
Lapatinib (Tykerb r©) Her 2 Her 2 expressing metastatic gastric cancer
Rituximab (Rituxan r©) CD20 CD20(+) B-cell lymphomas
Cetuximab (Erbitux r©) EGFR KRASwt, EGFR(+) metastatic colorectal cancer
Panitumumab (Vectibix r©) EGFR KRASwt, EGFR(+) metastatic colorectal cancer

cases the investigation of tumor sensitivity to the new therapeutic agent was obtained retrospectively
from prospective trials in which patients were randomized to the treatment or control arms without
regard to biomarker status. For regulatory approval, however, it is necessary to demonstrate the
efficacy of the new agent in the targeted population through a confirmatory phase 3 trial.

The dilemma for the investigator planning a phase 3 confirmatory trial for a targeted therapy is
whether to open enrollment to all patients regardless of biomarker status or to restrict enrollment to
a targeted subgroup based on a biological understanding of the mechanism of action. Restricting
enrollment to the targeted subgroup without sufficient empirical evidence of lack of efficacy in the
non-targeted subgroup may deny a large segment of the population access to a potentially beneficial
treatment. On the other hand by running a large trial in a heterogeneous population the treatment
effect may be diluted, resulting in an underpowered study. One way to resolve this dilemma is to
start out by enrolling all patients, regardless of biomarker status. At a suitable time point an interim
analysis is performed and a decision is taken to either continue enrollment to both subgroups,
continue enrollment to the targeted subgroup only (population enrichment), or terminate the trial for
futility. In the phase 2 setting, the data obtained at the end of such a trial can inform the investigator
concerning a follow-on phase 3 trial. If the evidence suggests that the biomarker is predictive of
treatment effect, that would justify investing in the development of a validated companion diagnostic
test, a regulatory requirement, and launching a phase 3 trial in the targeted subgroup only.

In this paper we will develop statistical methodology for designing two-stage adaptive population
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enrichment trials of the type described above. We will focus on oncology trials with time-to-event
endpoints. The methods are, however, also applicable to other therapeutic areas. The population F
is partitioned into two non-intersecting subgroups S and S on the basis of a single binary biomarker.
The primary endpoint is a time-to-event endpoint such as progression free survival (PFS) or overall
survival (OS). This ensures that the conclusions obtained from the phase 2 setting are relevant for the
follow-on phase 3 trial where the primary efficacy endpoint is also time-to-event. Data dependent
adaptations of two-stage time-to-event trials can be problematic because decisions made at the
interim analysis could affect the total number of events contributed to the final analysis by the
stage 1 recruits (some of whom are still censored at the end of stage 1). This problem was first
observed by Bauer and Posch [3] in the context of adaptive time-to-event trials with sample size
re-estimation. Our method will, however, permit full utilization of all available interim data
(complete as well censored observations) for the decision to either continue with the full population or
the targeted subgroup. It is based on a generalization of the conditional error rate approaches of
Müller and Schäfer [8] and Irle and Schäfer [12], and guarantees strong control of type-1 error.

Alternative approaches that are applicable to subgroup selection in time-to-event trials have been
proposed by Brannath et. al. [4], Jenkins, Stone and Jennison [5] and Friede, Parsons and
Stallard [6]. Jenkins et. al. [5] were the first to develop a suitable design for time-to-event endpoints
where it is permissible to utilize all available information from the first stage, including early outcome
information such as early tumor response or PFS in patients who are still censored for their OS
outcome. They combined the data from the two stages with pre-specified weights, in the manner of
Bauer and Köhne [7] to control the error due to subgroup selection at the interim, and utilized Simes
test to control the error due to multiple testing among subgroups. Friede et. al. [6] improved on this
approach by applying the conditional rejection probability (CRP) principle of Müller and Schäfer [8]
for the subgroup selection problem and utilized a more powerful intersection hypothesis test due to
Spiessens and Debois [9] for the multiple testing problem. Their final test statistic, however, is also
constructed by combining the data from the two stages with pre-specified weights.

Our paper differs from the preceding ones in terms of the hypotheses being tested. The previous
methods tested null hypotheses of no treatment effect in population F and subgroup S. In contrast
we will be testing null hypotheses of no treatment effect in subgroups S and S. We believe that this
is the appropriate family of hypotheses for which control of type-1 error is required. In oncology trials
of targeted therapies there is an a priori assumption that the biomarker is predictive of treatment
efficacy. That is, there is considerable treatment efficacy in subgroup S but little or none in subgroup
S. This assumption typically has a strong biological basis and may be supported by pre-clinical
studies, phase 1 testing, or retrospective analysis of completed trials. As pointed out by Buyse et.
al. [10], although the predictive potential of a putative biomarker can be suggested by these methods,
the ultimate proof that a biomarker is truly predictive comes from a randomized clinical trial. The
direct way to verify predictivity in such a trial is to perform tests of hypothesis in S and S rather
than in F and S. This is discussed further and supported by simulations in Section 5.

The remainder of this paper consists of four sections. In Section 2 we describe the basic statistical
principle underlying our method. In Section 3 we illustrate this principle through a numerical
example. Section 4 consists of an extensive simulation study. Section 5 contains some final
conclusions.
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2 The Statistical Methodology

Our goal is to construct a two-stage design in which an experimental arm (E) is compared to a control
arm (C) with respect to a time-to-event endpoint, say survival. Patients arriving in staggered fashion
from some population F are screened and stratified on the basis of a binary biomarker into subgroup
S or subgroup S, and then randomized to one of the two treatment arms. Let θS and θS denote the
negative log hazard ratio of E relative to C in subgroups S and S, respectively. We shall be interested
in testing the null hypotheses HS : θS ≤ 0 and HS : θS ≤ 0 against one-sided alternatives, with strong
control of the family wise error rate (FWER). At an interim analysis the data are unblinded and a
decision is taken to either continue with F for the remainder of the trial, drop S and continue with S
for the remainder of the trial, or terminate the trial for futility. We are not considering the option of
dropping S and continuing with S for the remainder of the trial. The underlying belief, supported by
biological, pre-clinical and retrospective clinical evidence, is that treatment E is targeted at subgroup
S. Therefore, if the interim data support this assumption, we wish to maximize the power to reject
HS by enriching the remainder of the trial with subgroup S patients only. We shall compare this
adaptive strategy with the a non-adaptive strategy in which there is no interim analysis but a
multiplicity adjusted test of HS is performed at the end of the study. We next show how to achieve
strong control of the FWER in the presence of multiple testing and possible subgroup selection.

2.1 Closed Testing with the Conditional Error Rate Approach

We first consider the problem of testing HS and HS simultaneously at FWER equal to α, without
any interim analysis. To adjust for multiplicity we apply the closed testing principle of Marcus et.
al. [11]. This implies that the three hypotheses HS , HS and H{S,S} = HS ∩HS must each be
controlled at level α. It is convenient to formulate this requirement in terms of the decision functions
ϕS , ϕS and ϕ{S,S} such that: ϕS = 1 if HS is rejected and 0 otherwise; ϕS = 1 if HS is rejected and 0
otherwise; ϕ{S,S} = 1 if H{S,S} is rejected and 0 otherwise. We require

E0(ϕS) = E0(ϕS) = E0(ϕ{S,S}) = α (1)

where E0(.) denotes expectation under the appropriate null hypothesis. To this end let TS
kS (TS

kS
) be

the logrank score for testing the null hypothesis HS (HS) after observing kS (kS) deaths in subgroup
S (S). Then the decision functions ϕS and ϕS are indicator variables

ϕS = I(TS
kS > cS) and ϕS = I(TS

kS
> cS) (2)

for suitable critical boundaries cS and cS , respectively, that satisfy the level requirement (1). The
decision function for the intersection hypothesis is the indicator variable

ϕ{S,S} = I
(
(TS

kS , T
S
kS

) ∈ R)
)

(3)

where R is a rejection region of the form

R =
{
(tS , tS)|(tS > dS) ∨ (tS > dS)

}
(4)

for critical boundaries dS and dS that satisfy the level requirement (1). Suppose α = 0.05. Since,
asymptotically, TS

kS ∼ N(0, kS) under HS and TS
kS

∼ N(0, kS) under HS , we have cS = 1.6448
√
kS
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and cS = 1.6448
√
kS . Again, setting dS/

√
kS = dS/

√
kS we have, by the independence of TS

kS and

TS
kS

, that dS = 1.9545
√
kS and dS = 1.9545

√
kS . We have chosen this intersection hypothesis test for

ease of exposition but other, more powerful, tests could just as well be adopted.

We next show how these tests may be extended to permit possible subgroup selection at an interim
analysis. The type-1 error of the modified design will be protected if the conditional error rates of the
tests of HS and H{S,S} in the modified design are bounded by the corresponding conditional error
rates of the original design. This is the conditional rejection probability (CRP) principle of Müller
and Schäfer [8]. To be specific, if it is decided to drop subgroup S at the interim analysis, and
possibly increase the number of events for subgroup S from kS to k̃S , we must define a new final
decision function ψS for testing HS and H{S,S} that preserves the conditional rejection probabilities

E0(ψS |X) ≤ E0(ϕS |X) (5)

and
E0(ψS |X) ≤ E0(ϕ{S,S}|X) (6)

where X is the set of all interim information on patients in S and S used for the decision on the
design modification. It may be impossible to explicitly specify the vector X, which includes observed
times-to-event as well as preliminary information correlated with time-to-event from patients who
have not yet reached the endpoint. According to Irle and Schäfer [12] it is sufficient to condition on a
random vector Y for which you can compute the conditional expectations E0(ϕS |Y ), E0(ϕ{S,S}|Y ),
and E0(ψS |Y ), and which has the property that X is stochastically independent of the decisions
functions ϕS , ϕ{S,S} and ψS given Y . The CRP principle will then require the new decision function
to satisfy

E0(ψS |Y ) ≤ E0(ϕS |Y ) (7)

and
E0(ψS |Y ) ≤ E0(ϕ{S,S}|Y ) (8)

The new decision function will be an indicator variable of the form

ψS = I(TS
k̃S ≥ c̃S)

where c̃S is defined implicitly by (7) and (8). By closed testing and the CRP principle, this decision
function will maintain the test of HS at level α.

If subgroup S is not dropped at the interim analysis, then of course ψS will not be computed and HS

will be rejected by a closed test in accordance with the decision functions ϕS , ϕS and ϕ{S,S} given by
(2) and (3). In the next section we specify what Y should be when the logrank test is applied to HS

and H{S,S}.

2.2 Application to Logrank Tests

At the calendar time of the interim analysis a subset S′ ⊆ S of patients has been randomized, of
whom a subset of patients S′

dead has already died, while its complement S′
risk consists of patients in S′

still at risk. We define subsets S′
, S

′
risk and S′

dead similarly. Our method permits the use of all
available information in S′ and S′, including even the information about early outcomes like PFS or
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tumor regression in S′
risk and S′

risk, for the interim decision making. Without this flexibility one would
be hard pressed to make an informed decision to drop S in settings where survival events are slow to
arrive. It is necessary, however, to specify the following quantities prior to unblinding the interim
data.

1. We must specify kS and kS , the total number of events to be obtained from subgroups S and S,
respectively, at the time of the final analysis under the original design. In the phase 2 setting
realistic choices for kS and kS are typically dictated by the sample size a sponsor is prepared to
commit to the trial. Their impact on power and study duration is best evaluated by simulation
under a range of scenarios for the alternative hypotheses, as shown in Section 4.

2. We must specify kS
′
, the contribution from the subset S′ to kS . We shall see shortly that this

specification is needed to ensure that the conditioning event Y in (7) and (8) will be properly
defined even if recruitment to S is stopped after the interim analysis. Ideally kS

′
should be so

chosen that the arrival of the last of the kS
′
events in S′ is closely aligned in calendar time with

the arrival of the last of the kS events in S. While this requirement is not essential for
preservation of type-1 error, adherence to it will minimize unused events from S for the final
analysis if this subgroup is retained after the interim analysis. We can use the blinded data
available prior to the interim analysis to achieve this alignment as nearly as possible. The
Appendix shows how.

Having fixed the values of kS , kS and kS
′
, we can compute the conditioning event Y needed to

evaluate the conditional expectations (7) and (8) of the new decision function ψS . This conditioning
event consists of two logrank statistics, one computed from subset S′ and the other computed from
subset S′.

The Conditioning Event from S′: The conditioning event is TS′
kS , the logrank statistic calculated

from patients belonging to subset S′ at the time of the arrival of the kSth event from subgroup
S. This implies, of course, that the conditioning event is not observed at the time of the interim
analysis but rather at the time of the pre-planned final analysis for HS under the original
design. Let S′′ = S \ S′ denote the subset of patients in S that are enrolled after the interim
analysis. Let kS′

be the contribution from patients in subset S′ to the kS events required from
subgroup S. Then kS′′

= kS − kS′
is the contribution from patients in subset S′′ to the kS

events required from subgroup S. We shall require this variable for the evaluation of the
conditional rejection probabilities defined by (7) and (8).

The Conditioning Event from S
′: Let S′′ = S \ S′ denote the subset of patients in S that are

enrolled after the interim analysis under the original design. We have pre-specified that the
total number of events required from S is kS with the first kS

′
of these events to be contributed

from subset S′. Therefore the number of events to be contributed from subset S′′ must be

kS
′′

= kS − kS
′
. (9)

Note that, since kS and kS
′
are pre-specified, kS

′′
is well defined even if recruitment to subgroup

S is stopped after the interim analysis. The conditioning event is TS
′

(kS
′
,kS

′′
)
, a logrank statistic

computed from patients belonging to subset S′ ⊆ S as follows:
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• If S is dropped at the interim analysis, TS
′

(kS
′
,kS

′′
)
, is computed at the calendar time that

kS
′
events have arrived from S

′ ⊆ S

• If S is not dropped at the interim analysis, TS
′

(kS
′
,kS

′′
)
, is computed at the later of the two

calendar times when either kS
′
events have arrived from S

′ or kS events have arrived from
S, with only the first kS

′
events from S

′ contributing to the calculation of the statistic

The statistic TS
′

(kS
′
,kS

′′
)

is well defined and can be computed whether or not recruitment to

subgroup S is halted after the interim analysis. In either case it assumes the value TS
′

kS
′ . The

notation TS
′

(kS
′
,kS

′′
)

has been used because kS
′′

represents the additional events that would arrive

from subset S′′ if recruitment to S continuew after the interim. We shall see that this variable,
whose value can be evaluated by equation (9), is required for the evaluation of the conditional
rejection probabilities defined by (7) and (8). It is also important to point out that if
recruitment to S continues after the interim analysis, the test of HS at the time of the final
analysis may not be able to avail of all available events; for example, by the time that kS events
have arrived from subgroup S, the pre-specified quota of kS

′
events from subset S′ ⊆ S may be

exceeded. The additional events in S′ cannot be used. Hence the importance of trying to
estimate in advance the value of kS

′
such that, on average, the calendar time by which all kS

′

events have arrived from subset S′ will coincide with the calendar time by which all kS events
have arrived from subgroup S.

The conditioning event Y is thus the pair of logrank statistics (TS′
kS , T

S
′

(kS
′
,kS

′′
)
). Suppose the trial is

modified at the interim analysis, by discontinuing enrollment to subgroup S, and possibly increasing
the number of events in S from kS to k̃S for the final analysis. In order to preserve the type-1 error
the new critical value c̃S for the test of HS must satisfy the CRP conditions (7) and (8). In terms of
logrank statistics these conditions reduce to

P0(TS
k̃S > c̃S |TS′

k̃S ) ≤ min
{
P0(TS

kS > cS |TS′
kS ), P0

(
(TS

kS , T
S
kS

) ∈ R|TS′
kS , T

S
′

(kS
′
,kS

′′
)

)}
(10)

where the subscript P0(.) denotes probability under the appropriate null hypothesis and TS
k̃S is the

logrank statistic computed at the time of the final analysis, when k̃S events have arrived from
patients in subgroup S.

The evaluation of the conditional probabilities in (10) utilizes Theorem 1 of Irle and Schäfer [12]
which, in this setting, implies that under the null hypothesis HS(

TS′
kS

TS
kS − TS′

kS

)
is asymptotically

N
[(

0
0

)
,

(
kS′

/4 0
0 kS′′

/4

)]
(11)

and under the null hypothesis HS ⎛⎝ TS
′

kS

TS
kS

− TS
′

(kS
′
,kS

′′
)

⎞⎠
7



is asymptotically

N
[(

0
0

)
,

(
kS

′
/4 0

0 kS
′′
/4

)]
. (12)

Equation (11) ensures stochastic independence of the TS′
kS and TS

kS − TS′
kS at information time kS .

Similarly equation (12) ensures stochastic independence of TS
′

kS
and TS

kS
− TS

′

kS
at information time kS .

It is this stochastic independence that permits interim decisions to be based on all available stage 1
data without influencing the final number of events to be realized from the stage 1 recruits. An
alternative way to preserve stochastic independence is to actually pre-specify the final number of
events to be realized from the stage 1 recruits prior to unblinding the interim data. This was the
approach advocated by Jenkins et. al. [5].

Our procedure requires any modification of the pattern of patient recruitment to be independent of
the unblinded interim data. Otherwise it would be possible to inflate the type-1 error. To see why,
consider the following extreme example constructed by a referee for the simpler case of a single
hypothesis HS . Suppose the interim data can predict perfectly the value of TS′

kS . Then we can
forecast at the time of the interim analysis itself whether the event TS′

kS > cS will occur or the event
TS′

kS ≤ cS will occur. If TS′
kS > cS is forecast, we can simply stop all further recruitment, set k̃S = kS ,

wait for additional events to arrive from the S′ cohort until kS′
= kS = k̃S , and perform the final

analysis with the test statistic TS
k̃S = TS

kS = TS′
kS . In this situation kS′′

= 0. The critical limit c̃S will
be obtained from the CRP condition

P0(TS
k̃S > c̃S |TS′

k̃S ) ≤ P0(TS
kS > cS |TS′

kS ) (13)

resulting in c̃S = cS , because this obviously fulfills the above inequality. At the end of the study we
will reject HS because, as forecast in advance, TS′

kS > cS . On the other hand if TS′
kS ≤ cS is forecast,

we will continue recruiting patients from the S′′ cohort and possibly increase the information time of
the final analysis from kS to k̃S . The overall type-1 error of our adaptive strategy is therefore

P0(TS′
kS > cS is forecast ) × P0(rej HS |TS′

kS > cS is forecast ) +

P0(TS′
kS ≤ cS is forecast ) × P0(rej HS |TS′

kS ≤ cS is forecast ) =

α× 1 + (1 − α) × P0(rej HS |TS′
kS ≤ cS) > α .

This type of adaptation, however, violates the requirement that the CRP on the right hand side of
(13) must be computed under the initial (unmodified) design. By setting TS

kS = TS′
kS , the right

hand side of (13) produces a conditional rejection probability under an already modified design.
(Modified by altering the recruitment process such that we will no longer be recruiting any patients
from the S′′ cohort.) To calculate the CRP under the initial design we should continue recruiting
patients from the S′′ cohort under the original pattern of patient recruitment until the pre-specified
kS events have arrived. Modifications of the original recruitment pattern are permitted as long as
they are independent of the observed interim data. Since the right hand side of (13) is computed by
the formula 1 − Φ[(cS − TS′

kS (obs))/kS′′
], the only way to systematically bias the CRP is to control the

individual components kS′
and kS′′

of kS = kS′
+ kS′′

. If, however, changes in the pattern of
recruitment are made independently of the unblinded interim data, such control cannot be imposed
on the CRP. In practice this independence requirement is automatically satisfied since decisions that
affect the rate of recruitment are made by the trial sponsor and not by the indpendent data
monitoring committee responsible for implementing the adaptive changes. The sponsor makes
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decisions that affect the recruitment process such as opening or closing of clinical sites, limiting the
percentage of patients enrolled from specific geographic regions, or modifying the inclusion/exclusion
criteria without access to unblinded interim data. These decisions are influenced by operational
considerations and are not affected by the unblinded interim results.

Finally, Irle and Schäfer [12] (Remark 1, page 344) implies that TS
k̃S − TS′

k̃S and TS′′
k̃S are asymptotically

equivalent. The implication is that events from cohort S′ that arrive between information times kS

and k̃S do not contribute to the calculation of the revised critical cut-off c̃. This loss of information is
one of the trade-offs from having a procedure that permits the use of all available data for interim
decision making. An recent paper by Magirr, Jaki, Koenig and Posch [14] attempts to recover this
lost information under a conservative assumption that guarantees type 1 error conrol.

3 Example: Non-Small Cell Lung Cancer Trial

In this section we present a numerical example of a Phase 2 trial to illustrate the methods discussed
in Section 2. While the trial itself is hypothetical the design inputs are realistic, being based on a
collaboration with oncologists at a major pharmaceutical company [15]. The numerical results in this
example were obtained by simulating the trial once with the design inputs given below.

We consider a clinical trial comparing an experimental drug (Treatment E) to standard of care
(Treatment C) for second line therapy in patients with metastatic non-small cell lung cancer (NSLC).
The primary endpoint is progression free survival (PFS). The median PFS for the control arm is
estimated from historical data to be 5 months. The experimental drug is targeted at an epidermal
growth factor receptor (EGFR) that partitions the patient population into subgroup S (EGFR
positive) and subgroup S (EGFR negative). There is increasing evidence that NSLC patients with
EGFR mutations have higher response rates and longer survival [13]. Thus the prior belief is that the
hazard ratio for treatment E versus treatment C is between 0.5 and 0.6 in subgroup S, whereas in
subgroup S it is not expected to be any lower than 0.8.

The sample size allocated to this trial is 160 patients, a standard commitment for a phase 2 trial in
this disease class. Patients are expected to arrive at the rate of 15 per month with approximately two
patients from subgroup S arriving for each patient from subgroup S. Randomization to treatment E
or C will be stratified by EGFR status. The interim analysis will be performed after 80 patients have
been recruited into the trial. However, despite the 2:1 ratio of patients in S relative to S, we will
require an equal number, 40 patients, to be recruited from each subgroup for the interim analysis.
While this is not essential for the statistical methodology, it is a way to ensure that there will be an
adequate number of events available from subgroup S for the interim decision making. Operationally
this means that after 40 patients have been recruited from subgroup S, further enrollment will be
restricted, temporarily, to subgroup S. Additional arrivals from subgroup S will be classified as
screen failures. This will continue until the requisite number of 40 patients have arrived from
subgroup S, at which time the interim analysis will be performed. After a thorough examination of
all the data, unblinded by treatment, one of three decisions will be taken:

• Recruit the remaining 80 patients in equal numbers from each subgroup so that 40 patients are
enrolled from subgroup S and 40 are enrolled from subgroup S

• Drop subgroup S and recruit the remaining 80 patients from subgroup S only

9



• Terminate the trial for futility

Figure 1 is a schematic representation of the design. In this figure nS′
0 and nS

′
0 denote the number of

Figure 1: Schematic Representation of Adaptive Population Enrichment Design

patients recruited from subsets S′ and S′, respectively, by the time of the interim analysis. By design
nS′

0 = nS
′

0 = n0. In our example, n0 = 40. The corresponding number of events arriving from subsets
S′ and S′ by the time of the interim analysis are denoted by kS′

0 and kS
′

0 , respectively.

Prior to unblinding the interim data it is necessary to specify the number of events kS , kS and kS
′
to

be obtained from subgroup S, subgroup S and subset S′ ⊆ S, respectively. These choices will impact
the power and study duration. If we choose large values for kS and kS , the power will increase but
the study duration will be prolonged. For this example we set kS = kS = 70 as the initial design
specification. If it is decided at the interim analysis to stop additional recruitment of patients from
subgroup S, we will recruit the remaining 80 patients from subgroup S, thereby ending up with a
total of 120 patients belonging to subgroup S for the final analysis. In that case we will also increase
the total number of events required for the final analysis, from kS = 70 to k̃S = 110. We shall obtain
the operating characteristics of this design, including estimates of average study duration, by
simulation in Section 4.

It remains only to specify a value for kS
′
, the commitment of events from patients belonging to subset

S
′ ⊆ S, at the time of the final analysis under the original design. This quantity must be estimated

prior to unblinding the interim data. Assuming exponential survival, the hazard rate for the control
arm is ln(2)/5 = 0.139 in subgroup S. If we assume that the hazard ratio is HRS = 0.8 for subgroup
S, then the hazard rate for the experimental arm is 0.8 ∗ 0.139 = 0.111. With these estimates, and
the further assumption that patients are recruited from subgroup S at the rate of 10/month, we can
obtain a reasonable estimate for kS

′
. Calculations based on uniform enrollment and exponential

survival show that if we set kS
′
= 37 then, on average, kS

′
and kS will be aligned in calendar time.

That is, the arrival of the 37th event from subset S′ will coincide on average with the arrival of the
70th event from subgroup S. The details of this calculation are given in the Appendix. Although the
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calculation depends on an assumption about the hazard ratio in subgroup S, we can show that the
estimate of kS

′
is very robust to misspecification of the hazard ratio. For example, kS

′
would not

change even if we assumed that HRS = 0.5, and under HRS = 1.0 we would get kS
′
= 38.

At the time of the interim analysis, when 40 patients have been enrolled from each of the two
subgroups, let kS

0 denote the number of events obtained from subgroup S and kS
0 denote the number

of events obtained from subgroup S. Let TS
kS
0

and TS

kS
0

be the corresponding logrank statistics

generated by the interim data from subgroups S and S, respectively. At this point all the data are
inspected, including data on tumor regression available from patients for whom the PFS event has not
yet arrived. Suppose that, on the basis of this exhaustive data inspection, it is decided to stop further
recruitment of patients belonging to subgroup S, enroll all the remaining 80 patients from subgroup
S, and increase the number of events required for the final analysis from kS = 70 to k̃S = 110. In
order to prevent inflation of type-1 error resulting from this adaptive population enrichment, it is
necessary to change the critical cut-off for the final analysis from cS to c̃S . The new cut off can be
computed by application of the Müller and Schäfer CRP principle. If the adaptive decisions had
been made solely on the basis of the observed values of the logrank statistics TS

kS
0

and TS

kS
0

, without

inspecting any other features of the interim data, then the CRP principle would imply that

P0(TS
k̃S > c̃S |TS

kS
0
) ≤ min

{
P0(TS

kS > cS |TS
kS
0
), P0

(
(TS

kS , T
S
kS

) ∈ R|TS
kS
0
, TS

kS
0

)}
(14)

and the conditional probabilities on the right hand side of (14) could be evaluated immediately, using
the independent increments structure of the sequentially computed logrank statistics. Since, however,
we wish to have the additional flexibility to examine all the available data, and not merely base the
adaptive decision on TS

kS
0

and TS

kS
0

, the value of c̃S must be obtained as the solution to (10). But the

conditioning events on the right hand side of (10) are TS′
kS and TS

′

(kS
′
,kS

′′
)
, statistics whose values are

not yet observable. The evaluation of these statistics must therefore be postponed until the time of
the planned final analyses when they can be observed, and the corresponding conditional probabilities
can be evaluated.

After the interim analysis the trial only recruits patients from subgroup S. However, the arrival of
events from patients in subgroup S, subset S′ and subset S′ continue to be monitored. We extract
the following statistics from the emerging patient data:

1. When kS = 70 events have arrived from subgroup S we record the value of the conditioning
event, T kS′

kS , and note the value of kS′
, the contribution to these 70 events from the patients in

subset S′. For the current example we have observed TS′
kS = 3.9654 and kS′

= 33. We can now
compute P0(TS

kS > cS |TS′
kS ) since, by equation (11), TS

kS − TS′
kS is independent of TS′

kS and has
variance kS′′

= 70 − 33 = 37. Recall that cS = 1.6448
√

70. Thus

P0(TS
kS > cS |TS′

kS ) = 1 − Φ(
1.6448

√
70 − 3.9654√
37

) = 0.05365.

Next, for computing the intersection hypothesis, we require P0(TS
kS > dS |TS′

kS ). Recall that
dS = 1.9545

√
70. Thus

P0(TS
kS > dS |TS′

kS ) = 1 − Φ(
1.9545

√
70 − 3.9654√
37

) = 0.02085.
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2. When kS
′
= 37 events have arrived from subset S′ we record the value of the conditioning event

TS
′

(kS
′
,kS

′′
)
. We have observed TS

′

(kS
′
,kS

′′
)
= 5.1934. We can now compute P0(TS

kS
> dS |TS

′

(kS
′
,kS

′′
)
)

since, by equation (12), TS
kS

− TS
′

(kS
′
,kS

′′
)

is independent of TS
′

(kS
′
,kS

′′
)

and, by equation (9), has

variance kS
′′

= 80 − 37 = 33. Recall that dS = 1.9545
√

70. Thus

P0(TS
kS
> dS |TS

′

(kS
′
,kS

′′
)
) = 1 − Φ(

1.9545
√

70 − 5.1934√
33

) = 0.02604. (15)

It follows that the conditional rejection probability of the intersection hypothesis is

P0

(
(TS

kS , T
S
kS

) ∈ R|TS′
kS , T

S
′

(kS
′
,kS

′′
)

)
= P0(TS

kS > dS |TS′
kS ) + P0(TS

kS
> dS |TS

′

(kS
′
,kS

′′
)
) − P0(TS

kS > dS |TS′
kS )P0(TS

kS
> dS |TS

′

(kS
′
,kS

′′
)
)

= 0.02085 + 0.02604 − 0.02085 × 0.02604
= 0.04635

3. When k̃S = 110 events have arrived from subset S we perform the final analysis. We have now
observed k̃S′

= 39, TS′
k̃S = 5.8742 and TS

k̃S = 13.4888. By equation (10) the critical cut-off for the
final analysis, c̃S , must satisfy

P0(TS
k̃S > c̃S |TS′

k̃S = 5.8742) = min(0.05365, 0.04635) = 0.04635.

By equation (12), TS
k̃S − TS′

k̃S is independent of TS′
k̃S and has variance

k̃S′′
= kS̃ − kS′

= 110 − 39 = 71. It follows that c̃S must satisfy

1 − Φ(
c̃S − 5.8742√

71
) = 0.04635

whereupon c̃ = 20.0415. Thus HS will be rejected if TS
k̃S > 20.0415. Expressing this condition

on the standardized Wald statistic scale, HS is rejected if ZS
k̃S > 20.0415/

√
110 = 1.9109, or

equivalently, if the final p-value is less than 0.028. In fact we obtained TS
k̃S = 13.4888 which

corresponds to 1.286 on the Wald statistic scale, or to a p-value of 0.0992. Hence HS cannot be
rejected.

4 Simulation Guided Design

Suppose we are still at the design phase of the NSCLC clinical trial described in Section 3. We
assume that patients arrive at the rate of 15/month and the ratio of arrivals from subgroup S relative
to arrivals from subgroup S is 2:1. The primary endpoint is PFS and the median PFS on the control
arm is 5 months. The total sample size is 160 subjects, and we have decided to take an interim look
after 40 subjects have been randomized to each of the two subgroups. We have pre-specified that
kS = kS = 70 and kS

′
= 37. We wish to evaluate the operating characteristics of this study by

simulation. Let HRS = exp(−θS) and HRS = exp(−θS) be the hazard ratios of the experimental arm
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relative to the control arm in subgroups S and S, respectively We shall be interested in investigating
scenarios in which HRS is small (0.5 to 0.6) and HRS is large (0.8 to 1). This is the setting in which
the biomarker would be regarded as predictive. We shall also be interested in investigating scenarios
in which HRS = HRS for hazard ratios lower than 0.6. This is the setting in which the new therapy is
effective independent of biomarker status. The performance of the design in these two settings will
depend on decision rules for continuing with both subgroups, continuing with subgroup S only, or
terminating the trial for futility after the interim analysis.

The interim decision rules can be quite complex. As already shown, the statistical methodology
supports the utilization of all available data including the data in the censored observations. For
illustrative purposes, however, we shall use simple decision rules, based on conditional power, that are
easy to simulate. (More complex decision rules based on stochastic models of tumor regression and
PFS are under development but outside the scope of this paper.) Let CPS and CPS denote the
conditional power, under the original design, to reject HS and HS . Then

1. If ĤRS , the estimate of the hazard ratio for treatment versus control in subgroup S, is less than
A, terminate the trial for futility

2. If CPS > B and CPS < C, stop further enrollment to subgroup S and enroll all remaining
patients to subgroup S

3. Otherwise continue to the end of the trial with both subgroups

We have simulated the operating characteristics of this design for a range of decision parameters A,B
and C. For each choice of these decision parameters we investigated scenarios with HRS = (0.5, 0.6)
and HRS = (0.5, 0.55, . . . 1.0). Each scenarios is simulated 100,000 times. The procedure described in
Section 2 is used to control the family wise error rate at one-sided level α = 0.05. Figure 2 displays
simulation results for power versus HRS , given HRS = 0.5, under three decision rules for (CPS ,CPS)
and no futility stopping. In Figure 2(a) subgroup S is dropped after the interim look if CPS < 0.5. In
Figure 2(b), subgroup S is dropped after the interim look if CPS < 0.5 and CPS > 0.5. In
Figure 2(c), subgroup S is never dropped; one performs closed tests for both HS and HS at the end
of the trial. Thus Figures 2(a) and 2(b) depict adaptive population enrichment designs with different
decision rules for dropping subgroup S, whereas Figure 2(c) depicts a non-adaptive design in which
both subgroups are retained to the end. Figure 2(d) compares all three designs by superimposing
them onto a single plot.

The plots in Figure 2 provide valuable insights for the design of the follow-on phase 3 design. To be
specific, we assume that the phase 2 outcome will be used to guide the design of the follow-on phase 3
trial in the following manner:

Win S, Win S. This phase 2 outcome is depicted by the red lines in Figure 2 and represents the
situation in which both HS and HS are rejected. In this case we would conclude that the new
therapy is effective indpendent of biomarker status and would open the enrollment to both
subgroups in the follow-on phase 3 trial.

Win S, Lose S. This phase 2 outcome is depicted by the green lines in Figure 2 and represents the
situation in which HS is rejected but HS is accepted. In this case we would conclude that the
biomarker is predictive and would restrict the enrollment to subgroup S in the follow-on
phase 3 trial.
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Other For all other phase 2 outcomes the follow-on phase 3 trial will be postponed pending further
investigation. The outcome where HS is rejected but HS is accepted implies that the biological
basis for biomarker predictivity is in question. The outcome where both HS and HS are
accepted implies that the drug may be ineffective. In either case further investigation is
necessary.

Suppose that, in truth, HRS = 0.5. Then the plots in Figures 2(a) – 2(d) provide the following
insights.

• For values of HRS close to 0.5, the probability of rejecting both HS and HS , thereby concluding
that new therapy is effective indpendent of biomarker status (red lines), exceeds the probability
of rejecting HS only, thereby concluding that the biomarker is predictive (green lines). This is
desirable since, in this setting, one would want to include both subgroups in the follow-on
phase 3 trial.

• However, even at HRS = HRS = 0.5, the probability of concluding that the new therapy is
effective indpendent of biomarker status is only about 58% under the decision rule of
Figure 2(a), while the corresponding probability of concluding that the biomarker is predictive
is almost 33%. This means that there is about a one in three chance of concluding, falsely, that
the biomarker is predictive when in fact the new therapy is effective in both subgroups, thereby
depriving future patients belonging to subgroup S of a beneficial treatment. This risk
diminishes under the decision rules implemented in Figure 2(b) and Figure 2(c).

• For larger values of HRS , the reverse is true. Now the probability of concluding that the
biomarker is predictive increases rapidly with HRS and reaches 90% in 2(a), 85% in 2(b) and
80% in 2(c), while the probability of concluding that the new therapy is effective in both
subgroups declines to below 5%. This underscores the desirability of having a strong a priori
biological basis for assuming that the biomarker is predictive. If indeed that is the case, there is
a high probability that the phase 2 trial will provide the necessary empirical evidence.

• Figures 2(a), 2(b) and 2(c) depict the performance of three different decision rules for dropping
S. In order to compare these three decision rules, Figure 2(d) superimposes all three figures
onto a single plot.

– It is seen that as we move from Figure 2(a) to Figure 2(c), the red and green lines shift in
such a way that the probability of concluding that the biomarker is predictive declines
while the probability of concluding that the new therapy is effective indpendent of
biomarker status increases. The point where the red and green lines intersect shifts from
HRS = 0.565 to HRS = 0.675.

– The black lines in Figures 2(d) show that the probability of rejecting HS is always at least
80% for all values of HRS and all decision rules for dropping S. This shows that the
typical phase 2 sample size limit of 160 patients will suffice to show efficacy in subgroup S,
if HRS = 0.5, regardless of the value of HRS .

– Furthermore at S = 1 the probability to reject HS declines by about 13% between the
adaptive design depicted by the dashed black line (corresponding to the decision rule of
Figure 2(a)) and the non-adaptive design depicted by the dotted black line (corresponding
to the decision rule of Figure 2(c)).
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Thus Figure 2 has shown that the choice of decision rule has a major impact on the operating
characteristics of the design and will clearly depend on the investigator’s prior assumptions about the
predictivity of the biomarker.

The operating characteristics in Figure 2 assume that there is no early stopping for futility. The
impact on power of imposing an early stopping decision rule is shown in Figure 3 where we compare
the decision rules to drop S if CPS < 0.5 and CPS > 0.5, with and without early futility stopping,
simulating each scenario 100,000 times. In these simulations the criterion for early futility stopping is
ĤRS > 1.2. Power losses between 3% and 6% are observed. It may be necessary, however, to impose
futility stopping despite these power losses in order to avoid unnecessary prolongation of the trial if
the treatments are ineffective. Table 2 displays the impact of futility stopping on study duration and
FWER. In this table the trial was simulated 1,000,000 times under the global null hypothesis
HRS = HRS = 1. We utilized the decision rule (CPS < 0.5,CPS > 0.5) for dropping S at the interim
analysis. The trial was stopped for futility if ĤRS > 1.2 at the interim analysis. A very slight

Table 2: Type-1 Error and Study Duration with and without Futility Stopping

Futility Criterion FWER Study Duration Starting Seed
No Futility Stopping 0.051580 25.7 months 47513
Stop if ĤRS > 1.2 0.040358 19.34 months 48106

Based on 1,000,000 simulated trials

inflation of FWER (α = 0.05158) was obtained in the absence of a futility boundary. This was
entirely due to the small trial size whereby the conditions for asymptotic convergence of the logrank
statistic to the standard normal distribution were not fulfilled. The conservatism induced by the
futility stopping rule resulted in a lowering of the FWER to α = 0.040358. The presence of futility
stopping reduced the average study duration from 25.7 months to 19.3 months.

5 Discussion

We have proposed a design that could be useful for testing new targeted agents in subgroups classified
by biomarker status. We identified a simple but realistic setting in which a single biomarker partitions
the patient population into two subgroups and there is a biological basis, possibly supported by
limited empirical evidence, for supposing that the new agent targets just one of the two subgroups.
This setting is specific to the oncology therapeutic area where there already exists a strong biological
basis for assuming that the biomarker is predictive of treatment response. If this assumption can be
validated at phase 2, the phase 3 trial can focus on a smaller, more homogeneous population, with a
higher probability of success. In addition, success at phase 2 justifies the allocation of resources for
the development of a validated companion diagnostic test to classify patients by biomarker status for
inclusion in the phase 3 trial. The existence of a companion diagnostic is a regulatory requirement for
phase 3 testing in oncology. However, since the proposed adaptive methodology ensures strong control
of type-1 error it could, in principle, also be utilized in the confirmatory phase 3 setting. Even if the
phase 2 trial has demonstrated that the biomarker is predictive for subgroup S, it might nevertheless
be prudent to open phase 3 enrollment initially to both subgroups, thereby confirming its predictivity
in a large well-controlled trial before eliminating the S subgroup from further consideration.
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While the proposed approach will permit full utilization of all available interim data (complete as well
as censored) for the enrichment decision, it is not true that all available data can be used at the time
of the final analysis. Suppose subgroup S is retained after the interim analysis. In this case the final
analysis for the test of HS cannot be performed until all kS events have arrived from subgroup S and
all kS

′
events have arrived from subset S′ ⊆ S. Although, on average, the arrival of these two sets of

events is aligned in calendar time (as per the Appendix), in fact one set of events will arrive before
the other, resulting in some inefficiency due to unused events. For example, in Section 3 we have set
kS

′
= 37 and kS = 70 . Therefore if the 37th event from S

′ arrives ahead of the 70th event from S
any additional events from S

′ that arrive while waiting for the full quota of 70 events from S cannot
be used for the hypothesis test. Another important limitation is that while the value of kS may be
increased after the interim analysis, it cannot be decreased even if the interim results are highly
promising for subgroup S. The only time that kS may be decreased is if the trial is terminated for
futility after the interim analysis.

The duration of the phase 2 trial depends crucially on the distribution of patients between subgroup
S and subgroup S. The smaller the proportion of patients in subgroup S, the longer the expected
trial duration. This is because a sufficient number of events must arrive from subgroup S in order to
make an informed interim decision, and also have sufficient power to reject HS at the time of the final
analysis. For the simulations in Section 4 we assumed that 33% of the patients belonged to subgroup
S. With this assumption Table 2 showed that if patients enroll at the rate of 15/month, the average
study duration is about 26 months without futility stopping and 19 months with futility stopping. If,
instead, only 20% of patients belong to subgroup S, the average study duration will be prolonged to
33 months without futility stopping and 27 months with futility stopping. There would not, however,
be any loss of power since the number events is not being reduced.

In Section 1 we argued that it is more appropriate to test (HS , HS), rather than (HF , HS), when
there is a strong a priori belief that the biomarker is predictive of treatment effect. It would be
desirable to investigate this conjecture empirically. Accordingly we simulated the performance of our
procedure (MDSI procedure) with that of Jenkins, Stone and Jennison [5] (JSJ procedure) for
rejecting HS and HF . All hypothesis tests were designed for strong control of one-sided type-1 error
at α = 0.05. For the MDSI procedure we tested HF only if both HS and HS were rejected, thus
ensuring strong control at α = 0.05 for all three null hypotheses. We observed, however, under a
variety of scenarios that HF was always rejected whenenever HS and HS were both rejected. Thus
the test of HF entailed no further loss of power once HS and HS had both been rejected. The
comparison between the JSJ and MDSI adaptive procedures cannot, however, be made under
identical starting conditions because, independent of the different adaptive approaches (conditional
error rate versus combination p-values), they utilize different closed tests for the multiplicity
adjustments. Nevertheless we attempted to make the comparison as fair as possible by:

• assuming that patients from S and S would enroll in equal proportions

• utilizing the same interim decision rules for dropping subgroup S

Patients arrived at the rate of 5 per month. As in Sections 3 and 4, we pre-specified sample sizes of 80
patients per arm with kS = kS = 70 and kS

′
= 37. An interim analysis was performed after enrolling

40 patients per arm, and subgroup S was dropped if CPS < 0.5 and CPS > 0.5. (Under this decision
rule the population is enriched about 50% of the time.) If S was dropped at the interim analysis, the
sample size for subgroup S was increased to 120 patients and kS = 70 was increased to k̃S = 120. The
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results for 100,000 simulated trials under HRS = 0.5 and HRS ranging between 0.5 and 1 are
displayed in Figure 4. As anticipated, the MDSI method performs better in the predictive setting
(values of HRS closer to 1) while the JSJ method performs better when the new therapy is effective
indpendent of biomarker status (values of HRS closer to 0.5). For example, if (HRS = 0.5,HRS = 1),
it is clearly undesirable to reject HF since the new agent does not work in the S subgroup, which
constitutes half the population. Yet the JSJ method rejects HF about 30% of the time, compared to
only 3% of the time for the MDSI method. On the other hand it is clearly desirable to reject HS

alone, which MDSI does with 83% probability compared to a corresponding probability of 56% for
JSJ. In contrast, when both HRS and HRS equal 0.5 (the new therapy is effective indpendent of
biomarker status), the JSJ method is preferred, since it has a higher probability for rejecting HF

(75% for JSJ; 61% for MDSI) and a lower probability for rejecting HS alone (23% for JSJ; 28% for
MDSI). Similar qualitative results were obtained over a wide range of interim decision rules thereby
confirming that, in situations where the biomarker is believed to be predictive, it is dersirable to
formulate the hypothesis testing framework in terms of (HS , HS) rather than (HF , HS).

We focused the numerical example and the simulations on metastatic non-small cell lung cancer
because design inputs like sample size, baseline hazard rate, clinically meaningful hazard ratios and
rates of enrollment are fairly well established for this disease. Thus the results presented in Sections 3
and 4 are realistic even though the trial itself is hypothetical. Additionally, since metastatic NSCLC
is characterized by short PFS and OFS, it is possible to observe a sufficient number of primary
endpoints in order to make an informed decision on dropping or retaining the non-targeted subgroup
at the time of the interim analysis. The methodology is applicable more generally, however, to all
types of advanced cancers where sufficient data relevant to the decision to drop subgroup S are
available at the interim analysis.

We have not exploited fully the freedom to use all relevant data for interim decision making, relying
instead on relatively simple decision rules based on conditional power. However, the methodology of
this paper has paved the way for utlizing more sophisticated interim decision rules through the use of
mixture models that capture the relationship between tumor response and PFS or OS [16]. These
models can then be combined with more sophisticated Bayesian decision rules such as those of Thall
et. al. [16] [17] or Glimm and Di Scala [18]. This is currently a work in progress.

An extension of the statistical methodology to more than one interim analysis, possibly permitting
early efficacy stopping based on group sequential boundaries, can be achieved by repeated application
of the distribution theory of Irle and Schäfer [12] as implemented in equations (11) and (12). This
may not be so useful for phase 2 trials, given their small sample sizes. In the phase 3 setting,
however, the approach could play an important role. Another natural extension is to the problem of
more than two subgroups. Multiple subgroups could arise either because more than one biomarker is
being targeted or because the biomarker is not binary. For example the biomarker may be measuring
the expression of a specific tumor antigen on a continuous scale. The classification of the biomarker
levels into just two categories based on a single cut-point may not be realistic. It may also be
necessary to find optimal values for the cut-points. All these problems require further investigation.
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Appendix

This appendix shows how one may estimate the value of kS
′
such that, on average, the arrival of the

kS
′
th event from subset S′ coincides in calendar time with the arrival of the kSth event from

subgroup S. We assume that patient enrollment occurs at a uniform rate of a patients per unit of
time for subgroup S and a patients per unit of time for subgroup S. Since S is the targeted subgroup
we expect that a < a. Thus, as explained in Section 3, there will be a pause in further enrollment
from S

′ after n0 patients have been enrolled from this subset, while we wait for n0 patients to be
enrolled from subset S′. Thus enrollment of patients from subset S′ is halted at calendar time
t1 = n0/a and the enrolled patients are followed up to calendar time t2 = n0/a at which point the
interim analysis is performed. We assume that the survival distributions are exponential with hazard
rates λ1 and λ2 for the control and treatment arms, respectively. Then, the expected number of
events from subset S′ and treatment i at the time of the interim analysis is

ES
′

0i =
∫ t1

x=0
adx

∫ t2−x

s=0
λie

−λisds ,

and the expected number of patients still at risk of failure from subset S′ and treatment i is
0.5n0 − ES

′
0i . At any calendar time l > t2, the expected number of events from subgroup S and

treatment i will be

Eli = (0.5n0 − ES
′

0i )(1 − e−λi(l−t2)) +
∫ Sa

x=0
adx

∫ l−x

s=0
λie

−λisds .

The first term is the contribution of new events between time t2 and l from the (0.5n0 −ES
′

0i ) patients
of subset S′ expected to still be at risk at time t2. The second term is the contribution of events from
newly enrolled patients after the interim analysis; that is, the patients enrolled from subset S′′. Thus
ES

′
0 = ES

′
01 + ES

′
02 is the expected total number of events that have arrived from subset S′ by calendar

time t2, when the interim analysis occurs, and El = El1 + El2 is the expected total number of
additional events that arrive from subsets S′ and S′′ between calendar time t2 and calendar time l.
Thus ES

′
0 + El is the total number of events from subgroup S by calendar time l. Let l∗ be the

solution to
ES

′
0 + El∗ = kS

Thus l∗ is the calendar time at which the pre-specified kS events from subgroup S are expected to
arrive. If we set

kS
′
= ES

′
0 + (n0 − ES

′
0 )(1 − eλl∗)

then, on average, the kS
′
th event from subset S′ and the kSth event from subgroup S will both be

aligned at calendar time l∗.
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Figure 2: Power versus HRS for Various Decision Rules, given HRS = 0.5
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Figure 3: Power versus HRS under decision rule to drop S if CPS < 0.5 and CPS .0.5 with and without
futility stopping. (Stopping for futility occurs if ĤRS > 1.2)
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Figure 4: Comparing JSJ and MDSI for rejecting HF and HS when HRS = 0.5 and 0.5 ≤ HRS ≤ 1
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