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Exact inference for adaptive group
sequential designs
Ping Gao,a Lingyun Liub and Cyrus Mehtab,c*†

Methods for controlling the type-1 error of an adaptive group sequential trial were developed in seminal papers
by Cui, Hung, and Wang (Biometrics, 1999), Lehmacher and Wassmer (Biometrics, 1999), and Müller and
Schäfer (Biometrics, 2001). However, corresponding solutions for the equally important and related problem
of parameter estimation at the end of the adaptive trial have not been completely satisfactory. In this paper,
a method is provided for computing a two-sided confidence interval having exact coverage, along with a point
estimate that is median unbiased for the primary efficacy parameter in a two-arm adaptive group sequential
design. The possible adaptations are not only confined to sample size alterations but also include data-dependent
changes in the number and spacing of interim looks and changes in the error spending function. The procedure
is based on mapping the final test statistic obtained in the modified trial into a corresponding backward image
in the original trial. This is an advance on previously available methods, which either produced conservative
coverage and no point estimates or provided exact coverage for one-sided intervals only. Copyright © 2013 John
Wiley & Sons, Ltd.

Keywords: estimation in adaptive design; exact adaptive confidence intervals; adaptive median unbiased
estimates; group sequential estimation

1. Introduction

Group sequential designs are widely used in randomized clinical trials intended to demonstrate the effi-
cacy and safety of new medical compounds. In a classical two-arm group sequential trial, key design
parameters such as the number and spacing of the interim looks, the corresponding early stopping bound-
aries, and the maximum sample size are pre-specified. They may only be altered through a blinded
analysis of the accumulating data, that is, by examining the data pooled over both treatment arms. Pos-
sible reasons for such design alterations might be slow patient accrual, unanticipated variability in the
data, new results from external sources, or a combination of such factors, none of which require the data
of the trial to be unblinded. In contrast, an adaptive group sequential trial permits data-dependent alter-
ations of the key design parameters. It is thus permissible to alter the sample size, skip or add interim
looks, alter the error spending function, or even alter the inclusion/exclusion criteria of the remainder of
the trial after examining the interim data, unblinded by treatment arm. A recent survey was conducted by
the Adaptive Design Scientific Working Group of the Drug Information Association [1] to document the
perception and use of adaptive designs in industry and academia. Nine pharmaceutical/biotechnology
companies, six contract research organizations, and one academic institution responded to the survey.
Between them, they identified 51 confirmatory trials involving sample size re-estimation, 30 of them
based on an unblinded analysis of accumulating data. Given that only 20% of the organizations con-
tacted actually responded to the survey, it may be conjectured that unblinded sample size re-estimation
is an important recent innovation influencing the practice of clinical trials. The primary motivation for
unblinded sample size re-estimation and related adaptive modifications is the uncertainty regarding the
efficacy of the new treatment relative to the control. Often, this efficacy parameter is chosen on the basis
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of limited data from small pilot studies, making it desirable to consider a midcourse correction to the
sample size at an interim analysis when a substantial amount of data are available for inspection from
the trial itself. Mehta and Pocock [2], and Mehta [3] present several case studies of actual trials in which
provision was made for such adaptive modifications.

Data-dependent modifications to an ongoing trial raise operational and statistical concerns. Opera-
tional issues, such a who may have access to the unblinded data, how such unblinded access could lead
to operational biases, and the regulatory implications of such biases are discussed in The Guidance for
Industry on Adaptive Design for Clinical Trials published by the Food and Drug Administration [4] and
are outside the scope of this paper. The two major statistical problems for an adaptive group sequen-
tial trial are hypothesis testing and parameter estimation. Specifically, how can we prevent inflation of
the type-1 error, and how can we obtain valid p-values, confidence intervals, and point estimates in an
adaptive group sequential trial?

Cui, Hung, and Wang [5], and Lehmacher and Wassmer [6] showed that the type-1 error of an adap-
tive group sequential trial can be preserved by combining the independent data from the different stages
of the trial with pre-specified weights. This approach is, however, only applicable for sample size alter-
ations. A more general approach that permits, among other options, changes in the sample size, the
number of interim looks, the spacing of interim looks, the error spending function, and subgroup selec-
tion, was proposed by Müller and Schäfer [7]. Their method is based on the principle of preserving
the type-1 errors of the original and altered trials, conditional on the data obtained up to the time of
the adaptation.

So far, no satisfactory method has been published for the related problem of parameter estimation.
Cui, Hung, and Wang [5], and Müller and Schäfer [7] did not address this question. Lehmacher and
Wassmer [6] proposed extending Jennison and Turnbull’s [8] repeated confidence intervals method
by applying it to the inverse-normal weighted statistic. Repeated confidence intervals do not exhaust
the entire type-1 error and hence produce conservative coverage of the efficacy parameter (see [9]
page 198, Table 9.3 and discussion). The simulation results in Section 5 demonstrate that the cover-
age of the Lehmacher and Wassmer [6] method is far in excess of what was requested. Mehta, Bauer,
Brannath, and Posch [10] also proposed an approach on the basis of extending Jennison and Turn-
bull’s [8] repeated confidence intervals. Their solution, on the basis of a generalization of the hypothesis
testing procedure of Müller and Schäfer [7], is applicable to a broader class of adaptive changes than
the method of Lehmacher and Wassmer [6]. However, their approach too produces conservative cov-
erage and, moreover, has only been developed for one-sided confidence bounds. Furthermore, neither
of the two proposed methods can provide a valid point estimate for the efficacy parameter. More
recently, Brannath, Mehta, and Posch [11] proposed a one-sided lower confidence bound for the effi-
cacy parameter, on the basis of extending the stagewise adjusted confidence intervals of Tsiatis, Rosner,
and Mehta [12]. They were able to prove that their method provides exact coverage for the special case
in which the adaptive alteration occurs at the penultimate look and is followed by the final analysis.
For all other cases, a formal proof of exact coverage relied on a monotonicity assumption that they
were unable to demonstrate mathematically. Nevertheless, they were able to claim near-exact cover-
age of the lower confidence bound and median unbiasedness of the point estimate through extensive
simulation experiments. Brannath, Mehta, and Posch [11] did not provide a method for two-sided
confidence intervals.

The present paper provides a method for obtaining median-unbiased point estimates and exact
two-sided confidence intervals for adaptive group sequential designs. We are not aware of published
inference methods that have these operating characteristics. Our method generalizes the stagewise
adjusted confidence intervals developed by Tsiatis, Rosner, and Mehta [12] for classical group sequen-
tial designs, and the hypothesis tests developed by Müller and Schäfer [7] for adaptive group sequential
designs, and combines these two ideas in a novel manner to produce what we refer to as backward
image confidence intervals (BWCI). Section 2 is a brief review of classical group sequential infer-
ence. Section 3 describes the Müller and Schäfer [7] method for performing valid hypothesis tests
in an adaptive setting. The main results of this paper are presented in Section 4 where the back-
ward image method for computing p-values point estimates and confidence intervals is developed.
Section 5 presents extensive simulation results that demonstrate median unbiasedness and exact cov-
erage. Section 6 illustrates the method through a worked example of a clinical trial of deep brain
stimulation for Parkinson’s disease. This example was first provided by Müller and Schäfer [7]. We
conclude with some final remarks in Section 7. Proofs of various technical propositions are given in
Appendices A.1 to A.7.
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2. Inference for the classical group sequential design

Consider a two-arm randomized clinical trial comparing a new treatment to an active control. The treat-
ment effect is captured by a single parameter � that might denote the difference of means for two normal
distributions, the difference of proportions for two binomial distributions, the log hazard ratio for two
survival distributions, or more generally, the coefficient of the treatment effect in a regression model.
The accumulating data are captured by the efficient score statistic

W.t/D O�t

where O� is the maximum likelihood estimate of � and

t D Œse. O�/��2

is the Fisher information for � obtained from the available data. Because t depends on unknown parame-
ters, it is replaced, in practice, by its large sample estimate. Furthermore, as is well known (e.g., Jennison
and Turnbull, [8]), W.t/ converges in distribution to a Brownian motion with drift � . That is,

W.t/
D
�! B.t/C � t (1)

where B.t/�N.0; t/ and for any t2 > t1, covfB.t1/; B.t2/g D t1.
We shall be interested in testing the null hypothesis H0 W � D 0 versus the one-sided alternative � > 0

and will assume throughout that a positive value of � indicates a better prognosis for the treatment arm
relative to the control arm. The following group sequential trial will be employed to testH0. Analyses are
planned at information times t .1/1 ; t

.1/
2 ; : : : t

.1/
K1

with corresponding critical values c.1/1 ; c
.1/
2 ; : : : c

.1/
K1

. (The

superscript .1/ is employed in anticipation of the next section where we will distinguish between interim
analyses before and after a trial modification by superscripts .1/ and .2/, respectively.) The trial is termi-

nated, and null hypothesisH0 is rejected at the first information time, t .1/j say, such thatW
�
t
.1/
j

�
> c.1/j .

If W
�
t
.1/
j

�
< c

.1/
j for all j D 1; 2; : : : K1, then H0 is retained. For a one-sided level-˛ test of H0, the

critical values, c.1/1 ; c
.1/
2 ; : : : c

.1/
K1

, must satisfy the relationship

P0

 
K1[
iD1

h
W
�
t
.1/
i

�
> c.1/i

i!
D ˛ ; (2)

where Pı.:/ represents probability under the assumption that � D ı. The recursive integration algo-
rithm of Armitage, McPherson, and Rowe [13] combined with the ˛-spending methodology of Lan and
DeMets [14] may be used to find the critical values, c.1/1 ; c

.1/
2 ; : : : c

.1/
K1

, that satisfy (2). Group sequential
clinical trials of normal, binomial, and time-to-event endpoints are important special cases of this general
formulation.

Suppose that the trial is terminated at information time t .1/I with W
�
t
.1/
I

�
D x

.1/
I . We have thus

observed the event

A
�
t
.1/
I ; x

.1/
I

�
D

I�1\
iD1

h
W
�
t
.1/
i

�
< c

.1/
i

i
\
h
W
�
t
.1/
I

�
D x

.1/
I

i
:

To test the null hypothesisHı W � D ı versus the one-sided alternative � > ı, we must identify all events

that are at least as extreme as A
�
t
.1/
I ; x

.1/
I

�
and sum their probabilities under Hı . On the basis of the

stagewise ordering of events ([9], page 179), an event A
�
t
.1/
J ; x

.1/
J

�
is at least as extreme as an event

A
�
t
.1/
I ; x

.1/
I

�
if either J < I or J D I and x.1/J > x

.1/
I . The one-sided p-value of the observed event

A
�
t
.1/
I ; x

.1/
I

�
for the test of Hı is thus

fı

�
t
.1/
I ; x

.1/
I

�
D Pı

 
I�1[
iD1

h
W
�
t
.1/
i

�
> c.1/i

i
[
h
W
�
t
.1/
I

�
> x.1/I

i!
; (3)
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andHı is rejected at level ˛ if and only if fı
�
t
.1/
I ; x

.1/
I

�
6 ˛. This is a valid level-˛ test ofHı because,

as proven in Appendix A.1, fı
�
t
.1/
I ; x

.1/
I

�
satisfies the defining property of a p-value,

Pı

n
fı

�
t
.1/
I ; x

.1/
I

�
6 p

o
D p; (4)

for any ı and any p 2 .0; 1/. Note that in equation (4), we are treating
�
t
.1/
I ; x

.1/
I

�
as a random variable

that assumes different values in hypothetical repetitions of the group sequential trial.

Equation (3) shows that, for a fixed outcome
�
t
.1/
I ; x

.1/
I

�
, fı

�
t
.1/
I ; x

.1/
I

�
is a monotone increasing

function of ı. Thus, for any p 2 .0; 1/, there exists a unique ıp , such that fıp
�
t
.1/
I ; x

.1/
I

�
D p. There-

fore, in hypothetical repetitions of the group sequential trial where
�
t
.1/
I ; x

.1/
I

�
is treated as a random

variable,

P� .� 6 ıp/D P�
n
f�

�
t
.1/
I ; x

.1/
I

�
6 fıp

�
t
.1/
I ; x

.1/
I

�o
D P�

n
f�

�
t
.1/
I ; x

.1/
I

�
6 p

o
D p :

The first equality in the expression arises from the monotonicity of fı
�
t
.1/
I ; x

.1/
I

�
with respect to ı for

any fixed
�
t
.1/
I ; x

.1/
I

�
. It follows that the interval .ı˛=2; ı1�˛=2/ is a 100�.1�˛/% confidence interval for

� . A median-unbiased point estimate for � is given by ı0:5. These results, presented initially by Tsiatis,
Rosner, and Mehta [12], pertain only to classical group sequential trials. In this paper, we will extend
them to the adaptive setting.

3. Adaptive alteration of statistical information

At any look L < K1, with W
�
t
.1/
L

�
D x

.1/
L , it is possible to alter the number and spacing of the future

looks on the basis of an examination of the data already obtained. Suppose it is decided to takeK2 future
looks, at information times t .2/1 ; t

.2/
2 ; : : : t

.2/
K2

. Let c.2/1 ; c
.2/
2 ; : : : c

.2/
K2

be corresponding critical values, so
selected that

P0

8<
:

K1[
jDLC1

W
�
t
.1/
j

�
> c.1/j jW

�
t
.1/
L

�
D x

.1/
L

9=
;D P0

8<
:
K2[
jD1

W
�
t
.2/
j

�
> c.2/j jW

�
t
.1/
L

�
D x

.1/
L

9=
; : (5)

We will continue to monitor the accumulating data and will reject H0 at the first information time

t
.2/
I > t

.1/
L such that W

�
t
.2/
I

�
> c.2/I . If W

�
t
.2/
i

�
< c

.2/
i for all i D 1; 2; : : : K2, then we will retain

H0 and set t .2/I D t
.2/
K2

. Müller and Schäfer [7] have shown that, despite this data-driven modification
of the trial, the unconditional probability that such a procedure will reject H0 remains ˛. Equation (5)
is referred to by Müller and Schäfer [7] as the principle of preserving the conditional rejection (CRP)
probability (the CRP principle). It is based on the intuitive notion that if the future course of a trial is
altered in such a way that the type-1 error conditional on the data observed so far remains the same
for the original and altered trials, then the unconditional type-1 error of the original and altered trials
is also preserved. Note that because W.t/ has independent increments, its stochastic behavior beyond

look L depends only on x.1/L and not on earlier realizations of W
�
t
.1/
i

�
. Also, it is not necessary to pre-

specify K2 or the modified information times t .2/1 ; t
.2/
2 ; : : : t

.2/
K2

. These modified design parameters can

be chosen after examining the data that have accumulated up to and including information time t .1/L . The

corresponding critical values c.2/1 ; c
.2/
2 ; : : : c

.2/
K2

in equation (5) are evaluated by recursive integration.
The setting in which the trial design is altered at the penultimate look, L D K1 � 1, with a single

future look at K2 D 1, is an important special case. It covers, for example, two-stage designs (K1 D 2/,
still the most common class of phase 3 designs with a sample size adaptation. It is possible to study the
statistical properties of these designs in greater detail because, unlike the general case, closed-form for-
mulae are available for the necessary computations. Suppose the sample size is modified at information

time t .1/K1�1, with W
�
t
.1/
K1�1

�
D x

.1/
K1�1

, and a single future analysis at information time t .2/1 is proposed.
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To test H0 at level ˛, we must preserve the conditional type-1 error of the altered test. This is achieved
by finding the value of c.2/1 that satisfies the CRP condition

P0

n
W
�
t
.1/
K1

�
> c.1/K1 jW

�
t
.1/
K1�1

�
D x

.1/
K1�1

o
D P0

n
W
�
t
.2/
1

�
> c.2/1 jW

�
t
.1/
K1�1

�
D x

.1/
K1�1

o
: (6)

We can invoke the results in Gao, Ware, and Mehta [15] to obtain

c
.2/
1 D

2
64
q
t
.2/
1 � t

.1/
K1�1q

t
.1/
K1
� t

.1/
K1�1

�
c
.1/
K1�1

� x
.1/
K1�1

�
C x

.1/
K1�1

3
75 : (7)

4. P-value, confidence interval, and point estimate for �

If the trial terminates at some information time t .1/I without an adaptive alteration, the classical p-value,
confidence interval, and point estimate are computed as described in Section 2. So let us suppose that

at information time t .1/L , with W
�
t
.1/
L

�
D x

.1/
L < c

.1/
L , there is an adaptive alteration such that there

are potentially K2 future analyses at information times t .2/1 ; t
.2/
2 ; : : : t

.2/
K2

having corresponding critical

values c.2/1 ; c
.2/
2 ; : : : c

.2/
K2

that satisfy the CRP condition (5). Suppose the trial terminates at information

time t .2/I with observed statistic x.2/I . We will then have observed the event

A
�
x
.1/
L
; t
.2/
I
; x
.2/
I

�
D

L�1\
iD1

h
W
�
t
.1/

i

�
< c

.1/

i

i
\
h
W
�
t
.1/
L

�
D x

.1/
L

i I�1\
iD1

h
W
�
t
.2/

i

�
< c

.2/

i

�i
\
h
W
�
t
.2/
I

�
D x

.2/
I

i
:

To test the null hypothesisHı , we must compute the p-value or probability of obtaining an event at least

as extreme as A
�
x
.1/
L ; t

.2/
I ; x

.2/
I

�
under Hı . We next describe how to identify events that are at least as

extreme as A
�
x
.1/
L ; t

.2/
I ; x

.2/
I

�
. Consider, for instance, an alternative event

A
�
Qx
.1/

QL
; Qt
.2/

QI
; Qx
.2/
I

�
D

QL�1\
iD1

h
W
�
t
.1/

i

�
< c

.1/

i

i
\
h
W
�
t
.1/

QL

�
D Qx

.1/

QL

i QI�1\
iD1

h
W
�
Qt
.2/

i

�
< Qc

.2/

i

�i
\
h
W
�
Qt
.2/

QI

�
D Qx

.2/

QI

i

in which QL ¤ L; Qx
.1/

QL
¤ x

.1/
L ; Qt

.2/
i ¤ t

.2/
i ; Qc

.2/
i ¤ c

.2/
i ; QI ¤ I and Qx.2/

QI
¤ x

.2/
I . It is not obvi-

ous whether A
�
Qx
.1/

QL
; Qt
.2/

QI
; Qx
.2/
I

�
is less extreme, as extreme, or more extreme than the observed event

A
�
x
.1/
L ; t

.2/
I ; x

.2/
I

�
in terms of deviations from the null hypothesisHı . Stagewise ordering is not directly

applicable in this setting because the number, spacing, and critical values of the analysis time points after
adaptation differ between the two events. For a meaningful comparison, we need to measure the extreme-
ness of each event with a common yardstick. This is achieved by transforming the event that was actually
obtained in the adaptive trial into an equivalent event that might have been obtained in the original trial

had there been no adaptation. To this end, we compute
�
t
.1/
Jı
; x
.1/
Jı

�
, the backward image of the observed

outcome
�
t
.2/
I ; x

.2/
I

�
, such that

Pı

8<
:
I�1[
iD1

h
W
�
t
.2/

i

�
> c.2/

i

i
[
h
W
�
t
.2/
I

�
> x.2/I

i
jx
.1/
L

9=
;DPı

8<
:
Jı�1[
iDLC1

h
W
�
t
.1/

i

�
> c.1/

i

i
[
h
W
�
t
.1/
Jı

�
> x.1/Jı

i
jx
.1/
L

9=
; :

(8)
We show in Appendix A.2 that the backward image of any observed outcome in the adaptive trial is

unique and can easily be computed. This computation is the key to comparing outcomes after a trial
modification. It implies, as shown in Appendix A.3, that

Pı

8<
:
L[
iD1

h
W
�
t
.1/

i

�
> c.1/

i

i
[

0
@ L\
iD1

h
W
�
t
.1/
1

�
< c

.1/

i

i
\

8<
:
2
4I�1[
iD1

W
�
t
.2/

i

�
> c.2/

i

3
5[ hW �

t
.2/
I

�
> x.2/I

i9=
;
1
A
9=
; (9)

and

Pı

8<
:
Jı�1[
iD1

h
W
�
t
.1/
i

�
> c.1/i

i
[
h
W
�
t
.1/
Jı

�
> x.1/Jı

i9=
; (10)
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are equal. Now, (9) is the total probability under Hı of all the events that are at least as extreme as
the event

A
�
x
.1/
L
; t
.2/
I
; x
.2/
I

�
D

L�1\
iD1

h
W
�
t
.1/

i

�
< c

.1/

i

i
\
h
W
�
t
.1/
L

�
D x

.1/
L

i I�1\
iD1

h
W
�
t
.2/

i

�
< c

.2/

i

�i
\
h
W
�
t
.2/
I

�
D x

.2/
I

i
(11)

in the modified trial, whereas (10) is the total probability under Hı of all the events that are at least as
extreme as the corresponding event

A
�
x
.1/
L ; t

.1/
Jı
; x
.1/
Jı

�
D

L�1\
iD1

h
W
�
t
.1/

i

�
< c

.1/

i

i
\
h
W
�
t
.1/
L

�
D x

.1/
L

i Jı�1\
iDLC1

h
W
�
t
.1/

i

�
< c

.1/

i

�i
\
h
W
�
t
.1/
Jı

�
D x

.1/
Jı

i
(12)

in the original trial, in terms of stagewise ordering. Because of the equality of (9) and (10), we can say
that the events (11) and (12) are equally extreme. Therefore, we can convert the problem of computing
the probability of all events at least as extreme as the observed event in the modified trial into the equiv-
alent problem of computing the probability of all events at least as extreme as its backward image in the

unmodified trial. It follows that the one-sided p-value of the observed event A
�
x
.1/
L ; t

.2/
I ; x

.2/
I

�
can be

computed from its backward image A
�
x
.1/
L ; t

.1/
Jı
; x
.1/
Jı

�
as

fı

�
t
.1/
Jı
; x
.1/
Jı

�
D Pı

8<
:
Jı�1[
iD1

h
W
�
t
.1/
i

�
> c.1/i

i
[
h
W
�
t
.1/
Jı

�
> x.1/Jı

i9=
; : (13)

To show that this definition results in a valid level-˛ test of Hı , we must prove that, for any p 2 .0; 1/,

fı

�
t
.1/
Jı
; x
.1/
Jı

�
satisfies

Pı

n
fı

�
t
.1/
Jı
; x
.1/
Jı

�
6 p

o
D p ; (14)

the defining property of a p-value. This is proven in Appendix A.4.

Given a final outcome
�
t
.2/
I ; x

.2/
I

�
in the adaptive trial, we compute .ı˛=2; ı1�˛=2/, the 100�.1�˛/%

two-sided confidence interval for � and ı0:5 the median-unbiased point estimate for � by the following
procedure:

Find ı˛=2 and corresponding backward image
�
t
.1/
Jı˛=2

; x
.1/
Jı˛=2

�
such that

fJı˛=2

�
t
.1/
Jı˛=2

; x
.1/
Jı˛=2

�
D ˛=2 : (15)

Next, find ı1�˛=2 and corresponding backward image
�
t
.1/
Jı1�˛=2

; x
.1/
Jı1�˛=2

�
such that

fJı1�˛=2

�
t
.1/
Jı1�˛=2

; x
.1/
Jı1�˛=2

�
D 1� ˛=2 : (16)

Finally, find ı0:5 and corresponding backward image
�
t
.1/
Jı0:5

; x
.1/
Jı0:5

�
such that

fJı0:5

�
t
.1/
Jı0:5

; x
.1/
Jı0:5

�
D 0:5 : (17)

For this procedure to produce a confidence interval that has exact 100 � .1 � ˛/% coverage of � and

a point estimate that is median unbiased, it is necessary to show that the p-value fı
�
t
.1/
Jı
; x
.1/
Jı

�
gener-

ated by the backward image of the observed outcome
�
t
.2/
I ; x

.2/
I

�
is a monotone increasing function

of ı for any fixed value of
�
t
.2/
I ; x

.2/
I

�
. This is proven in Section 4.1 for a special case. We were,

however, unable to construct a mathematical proof for the general case because, unlike the classical
case discussed in Section 2, where the argument of fı.:/ does not change with ı, here, the backward

image
�
t
.1/
Jı
; x
.1/
Jı

�
is a function of ı. An operational proof of monotonicity is, however, possible. Once

the two-sided interval .ı˛=2; ı1�˛=2/ has been obtained, one may use well-established one-dimensional
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search techniques (for example the book Numerical Recipes by Press et al. [16], provided a fast routine
for initially bracketing a minimum) to ascertain if the function f� .:/ increases monotonically inside this
interval. This monotonicity check should be implemented not just for the one interval that was derived
from the data actually obtained but also for additional intervals generated by simulating the design a
large number of times over a range of values for � . If monotonicity is established for every one of these
simulated intervals and if, moreover, these intervals can be shown to cover the underlying parameter �
at the desired confidence level, one may conclude that the procedure has worked accurately for the trial
under consideration. In this sense, the proposed approach may be regarded as an operational proof of
monotonicity for a specific trial.

In Section 5, we provide an operational proof of monotonicity by the aforementioned approach for
three different adaptive group sequential designs. Each design is simulated 100,000 times, with each of
five distinct values of � . The monotonicity check was successful in every one of these 100; 000�5�3D
1; 500; 000 intervals, and furthermore, median unbiasedness and exact 100 � .1 � ˛/% coverage up to
Monte Carlo accuracy were obtained for each value of � in each design. Although these do not con-
stitute a mathematical proof, they provide a practical way to verify that the procedure produces a valid
confidence interval and point estimate for any specific adaptive clinical trial under consideration. Under
the monotonicity assumption, it follows that

P� .� 6 ı˛=2/D P�
n
f�

�
t
.1/
J�
; x
.1/
J�

�
6 fJı˛=2

�
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Jı˛=2

�o
D P�

n
f�

�
t
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6 ˛=2/

o
D ˛=2 ;

P� .� 6 ı1�˛=2/D P�
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t
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�
t
.1/
J�
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.1/
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�
6 1� ˛=2/

o
D 1� ˛=2;

and therefore, P� .ı˛=2 6 � 6 ı1�˛=2/D 1� ˛.

4.1. Adaptation at look K1 � 1 with K2 D 1

For the special case that the adaptation occurs at the penultimate look and is followed by a single further
analysis, the confidence interval based on the backward image is available in closed form and guarantees
exact coverage. The point estimate is likewise guaranteed to be median unbiased. To see this, suppose we
observe x.1/K1�1 at the penultimate look. After the adaptation at the penultimate look, suppose we observe

x
.2/
1 at t .2/1 . Then, the backward image of

�
t
.2/
1 ; x

.2/
1

�
satisfies the following equation:
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: (18)

By the property of independent increments, the equation can be rewritten as
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Note that W
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t
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�
� W
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�
is normally distributed with mean ı
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and variance
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. Therefore, the backward image satisfies the following equation:
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(20)

5. Simulation experiments

We evaluated the operating characteristics of the backward image method for estimating � by repeatedly
simulating a number of adaptive group sequential designs. In this section, we report the results of three
such simulation experiments. (Several additional simulation experiments were performed with similar
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conclusions.) Each experiment involved simulating an adaptive group sequential design with five dif-
ferent values � . We simulated the adaptive group sequential trial 100,000 with each value of � , thereby
producing 100,000 confidence intervals whose coverage of � we then assessed. All the simulations
utilized normally distributed data with mean � and � D 1 (assumed known).

5.1. First simulation experiment

In this simulation experiment, the original trial is designed for up to four equally spaced looks with the
Lan and DeMets [14] O’Brien–Fleming-type error spending function (LD(OF) error spending function).
The total sample size of 480 subjects provides slightly over 90% power to detect ı D 0:3with a one-sided
level-0.025 group sequential test. At look 1, with 120 subjects enrolled, the conditional power under the
estimated value of � is evaluated, and if it falls between 30% and 90%, the so-called ‘promising zone’
[2], the sample size is increased by the amount necessary to boost the conditional power up to 90%,
subject to a cap of 1000 subjects. The trial then proceeds with the new sample size, up to three additional
equally spaced looks, and new stopping boundaries derived from the LD(OF) error spending function.
The ˛ error of the new stopping boundaries for the adaptive extension is derived from equation (5) so as
to preserve the unconditional type-1 error of the trial despite the data-dependent adaptation. This trial is
simulated 100,000 times with a fixed value of � . At the end of each simulation, the point estimate of � ,
ı0:5, and the corresponding 95% two-sided confidence interval, .ı0:025; ı0:975/, are computed. If the trial
crosses the stopping boundary at look 1, there is no adaptation, and the classical stagewise adjusted point
and interval estimates are obtained as described in Section 2. If, however, there is a sample size adap-
tation at look 1, the point and interval estimates for � are computed by the backward image method by
using equations (15), (16), and (17). Simulation results for � D�0:15; 0; 0:15; 0:3 and 0:45 are presented
in Table I. Column 1 contains the true value of � that was used in the simulations. Column 2 contains
the median of the 100,000 ı0:5 estimates and demonstrates that ı0:5 is indeed a median-unbiased point
estimate for � . Column 3 contains the proportion of the 100,000 confidence intervals that contain the
true value of � . These intervals demonstrate 95% coverage up to Monte Carlo accuracy. Columns 4 and
5 display the proportion of intervals that exclude the true value of � from below and above, respectively.

5.2. Second simulation experiment

In this simulation experiment, the original trial is designed for up to three equally spaced looks with
the LD(OF) error spending function. The total sample size of 390 subjects provides about 90% power
to detect ı D 0:3 with a one-sided level-0.05 group sequential test. If the trial does not cross an early
stopping boundary at look 1 or look 2, then at look 2, with 240 subjects enrolled, the conditional power
under the estimated value of � is evaluated, and if it falls in the promising zone, here specified to be
between 20% and 90%, the sample size is increased by the amount necessary to boost the conditional
power up to 90%, subject to a cap of 780 subjects. The trial then proceeds with the new sample size
for up to three additional equally spaced looks with new stopping boundaries derived from the Lan and
DeMets [14] Pocock-type error spending function (the LD(PK) error spending function). This trial was
simulated 100,000 times with different values of � . The median of the 100,000 point estimates for � and
the coverage proportion of the corresponding 90% confidence intervals for � are reported in Table II. It is
seen that the point estimates are median unbiased and the confidence intervals have exact 90% coverage
up to Monte Carlo accuracy.

Table I. Results from 100,000 simulations of a 4-look LD(OF) group sequential design (GSD) with adap-
tation at look 1 to a 3-look LD(OF) GSD, demonstrating that the point estimate is median unbiased and the
two-sided 95% confidence intervals provide exact coverage of the true value of � up to Monte Carlo accuracy.

Median of 100,000 Proportion intervals
Proportion of intervals that exclude �

True value of � point estimates containing � From below From above

-0.15 -0.14971 0.94893 0.02568 0.02539
0.0 0.000363 0.94976 0.02486 0.02538
0.15 0.149574 0.94939 0.02484 0.02577
0.3 0.30028 0.95111 0.02442 0.02447
0.45 0.44996 0.95017 0.02489 0.02494
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Table II. Results from 100,000 simulations of a 3-look LD(OF) group sequential design (GSD) with adap-
tation at look 2 to a 3-look LD(PK) GSD demonstrating that the point estimate is median unbiased and the
two-sided 90% confidence intervals provide exact coverage of the true value of � up to Monte Carlo accuracy.

Median of 100,000 Proportion intervals
Proportion of intervals that exclude �

True value of � point estimates containing � From below From above

-0.15 -0.14972 0.90007 0.05022 0.04971
0.0 0.00027 0.90073 0.04920 0.05007
0.15 0.14986 0.89866 0.04955 0.05179
0.3 0.2999 0.90087 0.04940 0.04973
0.45 0.44963 0.89929 0.05083 0.04988

5.3. Third simulation experiment—comparison with Lehmacher and Wassmer

An alternative two-sided confidence interval was proposed by Lehmacher and Wassmer [6] on the
basis of extending the repeated confidence intervals of Jennison and Turnbull [8]. It is well known that
these repeated confidence intervals provide conservative coverage for classical group sequential designs
because of the possibility that the trial might stop early and not exhaust all the available ˛. It would
therefore be instructive to assess the extent to which these repeated confidence intervals are conserva-
tive in the adaptive setting. Accordingly, we created a design with three equally spaced looks derived
from the LD(OF) spending function and a planned adaptation at the end of look 1. The total sample
size of 480 subjects has 90.44% power to detect � D 0:3 with a one-sided test operating at significance
level ˛ D 0:025. If the trial does not cross the early stopping boundary at look 1 then, with 160 subjects
enrolled, the conditional power under the estimated value of � is evaluated, and if it falls in the promising
zone, here specified to be between 30% and 90.44%, the sample size is increased by the amount neces-
sary to boost the conditional power up to 90%, subject to a cap of 960 subjects. The trial then proceeds
with the new sample size for up to two additional equally spaced looks with new stopping boundaries
derived from the LD(OF) error spending function. This trial was simulated 100,000 times with different
underlying values of � . Table III compares the actual coverage of � by 100,000 95% confidence intervals
obtained by the backward image method (BWCI) and the repeated confidence intervals method (RCI)
due to Lehmacher and Wassmer [6]. The median of the 100,000 point estimates generated by the BWCI
method and by the stagewise adjusted confidence interval method (SWCI) due to Brannath, Mehta, and
Posch [11] methods is also reported. No corresponding method for obtaining a point estimate from the
RCI method was developed by Lehmacher and Wassmer [6]; hence, none is reported.

As expected, the BWCI method produces median-unbiased point estimates and 95% confidence inter-
vals with exact coverage up to Monte Carlo accuracy. The SWCI method also produces median-unbiased
point estimates but does not provide two-sided confidence intervals. The RCI method does not provide
valid point estimates and produces confidence intervals with increasingly conservative coverage as �
increases. The reason for the increase in conservatism is that as � increases, the probability of stopping
early and hence of not exhausting the entire ˛ increases.

It is also informative to examine the extent of the one-sided coverage by the three methods. This is
shown in Table IV. The BWCI interval excludes the true value for � with 0.025 probability symmetri-

Table III. Comparison of the coverage of 100,000 simulated 95% backward image confidence intervals
(BWCI), stagewise adjusted confidence intervals (SWCI), and repeated confidence intervals (RCI). The
underlying design is a 3-look LD(OF) group sequential design (GSD) with adaptation at look 1 to a 2-look
LD(OF) GSD.

Median of 100,000 Point Estimates Actual Coverage of 95% CIs

True value of � BWCI SWCI RCI BWCI SWCI RCI

-0.15 -0.15027 -0.149794 NA 0.95062 NA 0.95771
0.0 0.000118 -0.000421 NA 0.95014 NA 0.95213
0.15 0.150858 0.149064 NA 0.95016 NA 0.95017
0.3 0.300286 0.301016 NA 0.95062 NA 0.97597
0.45 0.449971 0.451704 NA 0.94936 NA 0.9875
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Table IV. Comparing the backward image confidence intervals (BWCI), stagewise adjusted confidence inter-
vals (SWCI), and repeated confidence intervals (RCI) in terms of the probability that the lower and upper
bounds, respectively, of a 95% confidence interval will exclude � . The underlying design, a 3-look LD(OF)
group sequential design (GSD) with adaptation at look 1 to a 2-look LD(OF) GSD, is simulated 100,000 times.

Probability of low CL > � Probability of up CL < �

True value of � BWCI SWCI RCI BWCI SWCI RCI

-0.15 0.02505 0.0256 0.01905 0.02529 NA 0.02324
0.0 0.02462 0.0251 0.02448 0.02524 NA 0.02339
0.15 0.02473 0.0256 0.02585 0.02511 NA 0.02238
0.3 0.02411 0.0253 0.00654 0.02527 NA 0.01749
0.45 0.02470 0.0259 0.00075 0.02594 NA 0.01050

CL, control limit.

cally from below and above, whereas the RCI method is both extremely asymmetric as well as extremely
conservative. The SWCI method excludes the true value for � with probability 0.025 from below but is
not applicable for exclusion from above.

6. Deep brain stimulation for Parkinson’s disease

We illustrate our estimation methods with a clinical trial of Parkinson’s disease. This example was first
introduced by Müller and Schäfer [7] to illustrate their method for adaptive sample size re-estimation
and was subsequently used by Brannath, Mehta, and Posch [11] to obtain a one-sided lower confidence
bound for the treatment effect. Patients were randomized to either the experimental arm (deep-brain stim-
ulation) or the control arm (standard of care) in equal proportions. The primary endpoint was the quality
of life as measured by the 39-item Parkinson’s Disease Questionnaire (the PDQ-39). The investigators
wished to design the trial to have 90% power to detect an improvement of � D 6 points in PDQ-39 with
a one-sided level-0.05 test of significance. The standard deviation was assumed to be � D 17. Because
the actual conduct of this trial has not been reported, all the design and monitoring assumptions in the
remainder of this section are hypothetical and are used mainly to illustrate the estimation procedure.

The trial is designed initially with a maximum sample size of 282 subjects and up to three equally
spaced analyses by using stopping boundaries derived from the �.�4/ error spending function proposed
by Hwang, Shih, and DeCani [17]. Such a design would call for monitoring the data after enrolling
n
.1/
1 D 94, n.1/2 D 188, and n.1/3 D 282 subjects, respectively. The corresponding stopping bound-

aries for the Wald statistic, Z
�
n
.1/
i

�
D O�i

q
n
.1/
i =.2 O�i /; i D 1; 2; 3; are b.1/1 D 2:794, b.1/2 D 2:289,

and b.1/3 D 1:680. It is convenient to use the Wald statistic rather than the score statistic for this
example because it has a more familiar interpretation as a standardized treatment effect. Also, most
software packages monitor data on the Wald scale. The two statistics are linked by the relationship

W
�
t
.j /
i

�
D

q
n
.1/
i Z

�
n
.j /
i

�
=2� .

Suppose that at the first interim analysis, when 94 subjects have been evaluated, the estimate of � is
Oı.1/ D 4:5 with estimated standard deviation O� D 20 so that Z.1/1 D 1:091. At this point, it is decided
to increase the sample size because, if in truth, � D 4:5 and � D 20, the conditional power is only
about 60%, whereas we would prefer to proceed with at least 80% conditional power. It is permissible
to use any decision rule to increase the sample size for the remainder of the trial. However, to protect
the type-1 error in the face of a data-dependant sample size alteration, we must preserve the conditional
type-1 error of the original and adapted trials as depicted by equation (5). The conditional type-1 error
of the original design is

P0

(
3[
iD2

h
Z
�
n
.1/
i

�
> b.1/i jZ

.1/
1 D 1:091

i)
D 0:1033

Therefore, 0.1033 is the amount of type-1 error permissible for the adaptive extension of the trial con-
ditional on Z.1/1 D 1:0901. Now, it is convenient for design and monitoring purposes to think of this

4000
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Table V. Comparison of estimates generated by different methods.

lccc Method Low CL Up CL Estimate

BWCI 1.43237 9.5224 5.53591
Mehta 2008 1.191284 NA 4.314697
Brannath 2009 1.43224 NA 5.53607

CL, control limit; BWCI, backward image confidence intervals.

adaptive extension as a separate secondary trial with an unconditional type-1 error of 0.1033. This fol-
lows from the independent increments structure of the score statistic. One can then use standard group
sequential software to design the secondary trial with a type-1 error of 0.1033. After a thorough exami-
nation of all available efficacy and safety data, it is decided to enroll 300 subjects to the secondary trial,
thereby increasing the total sample size of the combined trial by 40%—from 282 subjects to 394 sub-
jects. It is further decided to monitor the secondary trial up to three times at n.2/1 D 100, n.2/2 D 200, and

n
.2/
3 D 300. The corresponding stopping boundaries must satisfy the CRP requirement

P0

(
3[
iD1

h
Z
�
n
.2/
i

�
> b.2/i

)
D 0:1033 ; (21)

for the adaptive procedure to preserve the unconditional type-1 error at level 0.05. It is decided to gen-
erate stopping boundaries that satisfy (21) with the �.�2/ error spending function. Thereby, we obtain
b
.2/
1 D 2:162; b

.2/
2 D 1:781 and b.2/3 D 1:351. Such a design has 84% power to reject H0 if � D 4:5 and

� D 17.
Suppose that the secondary trial proceeds to the second look after the recruitment of n.2/2 D 200 sub-

jects and a treatment effect of Oı.2/2 D 6:6 and a standard deviation of O� .2/2 D 19:5 are obtained. This leads

to ´.2/2 D .6:6
p
200/=.2 � 19:5// D 2:393. Because ´.2/2 exceeds the critical value b.2/2 D 1:781, the

trial is stopped with rejection of the null hypothesis � D 0. By applying the backward image estimation
method discussed in Section 4 the two-sided 90% confidence interval for � is .1:43237; 9:5224/, and the
median-unbiased estimate is 5.53591.

It is instructive to compare these estimates with those produced by the alternative approaches refer-
enced in this article. Accordingly, Table V compares the BWCI results with those produced by the SWCI
method of Brannath et al. [11] and the RCI method of Mehta et al. [10]. The RCI method of Lehmacher
and Wassmer [11] cannot be used because it is only applicable for adaptations of the statistical informa-
tion, whereas in this example, we have also altered the number of future looks and the error spending
function at the time of the interim analysis. The BWCI and Brannath et al. [11] results are extremely
similar, suggesting that the two methods might represent different ways of performing the same under-
lying computation. We could not prove that this is the case, but it is plausible. Intuitively, the Brannath
et al. [11] method computes the conditional error probability of the unmodified design by looking ahead
from the look L at which the adaptive change occurs, whereas the BWCI method begins with the results
of the modified design and searches backward for the conditional error probability of the unmodified
design. The comparisons are limited to the lower confidence bound and the point estimate because only
the BWCI method produces a two-sided confidence interval. The Mehta et al. [10] result differs from
the other two. Because it has been derived by the RCI principle, we may conclude, on the basis of the
simulation results discussed in Section 5 and displayed in Tables (III) and (IV), that it has produced a
conservative lower confidence bound and a negatively biased point estimate.

7. Concluding remarks

We have presented a new method for computing confidence intervals and point estimates for an adaptive
group sequential trial. The confidence intervals are shown to produce exact coverage, and the point esti-
mates are median unbiased. These results close an important gap that previously existed for inference
on adaptive group sequential designs. Hypothesis tests that control the type-1 error have been available
for over a decade (Cui, Hung, and Wang [5]; Lehmacher and Wassmer [6]; Müller and Schäfer [7]).
The development of procedures to produce valid confidence intervals and point estimates proved to be
much more challenging. The first methods to guarantee two-sided coverage (Lehmacher and Wassmer
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[6]; Mehta, Bauer, Posch, and Brannath [10]) were shown to be conservative and did not produce valid
point estimates. Subsequently, Brannath, Mehta, and Posch [11] proposed a procedure that does pro-
duce exact coverage and valid point estimates. However, it only produces one-sided intervals. Like the
procedure presented here, the method of Brannath, Mehta, and Posch [11] depends for its validity on a
monotonicity property. This property was difficult to verify in a one-sided setting because one end of the
interval extends to infinity. In contrast, the two-sided interval discussed here provides a bounded region
within which it is possible to verify monotonicity with standard search procedures. This has enabled
us to provide an operational proof that the intervals have exact coverage and the point estimates are
median unbiased.

The backward image method can be generalized to handle multiple adaptations. Suppose the original
trial is modified N � 1 times, resulting in interim analyses at time points t .i/1 < t
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2 < � � � < t
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, i D
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where, for notational convenience, we have suppressed the dependence of t .i/J ; x
.i/
J on ı. The confi-

dence interval and median-unbiased estimate can now be obtained in the usual way. The details of this
generalization will be worked out and presented in a future paper.

Our method was developed for parameter estimation at the conclusion of a one-sided group-sequential
design with early efficacy stopping. The method extends easily to one-sided group sequential designs
with both an efficacy boundary and a non-binding futility boundary. We have not investigated how to
extend the method to two-sided designs. In practice, however, hypothesis tests in most clinical trials are
one sided. It is rarely of clinical interest to test the null hypothesis H0 W � D 0 against the two-sided
alternative hypothesis H1 W j� j > 0. If a positive value for � indicates good prognosis, then one is
interested in powering the trial against the one-sided alternative hypothesis HC1 W � > 0. If a negative
value for � indicates good prognosis, then one is interested in powering the trial against the one-sided
alternative hypothesis H�1 W � < 0. Thus, even if a study protocol specifies that a two-sided level-˛
test will be performed, the actual power calculations are based on a one-sided test at level-˛=2. On the
other hand, it is of clinical interest to bound the value of � within a two-sided confidence � after the
trial concludes. Finally, the entire development in this paper was expressed in terms of score statistics
and so is applicable to all types of efficacy endpoints including normal, binomial, and survival endpoints
and model-based endpoints derived from contrasts of regression parameters and estimated by maximum
likelihood methods.

Appendix

A.1. Distribution of fı
�
t
.1/
I ; x

.1/
I

�
for a nonadaptive trial

Suppose the treatment parameter � has the value ı. Suppose that the trial terminates at look I and�
t
.1/
I ; x

.1/
I

�
is the test statistic at the end of the trial. In hypothetical repetitions of the trial,

�
t
.1/
I ; x

.1/
I

�
is a random variable. We wish to show that Pı

n
fı

�
t
.1/
I ; x

.1/
I

�
6 p

o
D p for any p 2 .0; 1/.

For any ı and any j D 1; 2; : : : K1, define

aj .ı/D Pı

(
j[
iD1

h
W
�
t
.1/
i

�
> c.1/i

i)

Let a0.ı/ D 0 and aK1C1.ı/ D 1. Then, because the events in the aforementioned probability expres-

sion are nested such that
nSj

iD1

h
W
�
t
.1/
i > c

.1/
i

io
�
nSjC1

iD1

h
W
�
t
.1/
i > c

.1/
i

io
, it follows that a0.ı/ <
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a1.ı/ � � � < aK1.ı/ < aK1C1.ı/. Thus, for any p 2 .0; 1/, there exists a unique Lı 2 f1; 2; : : : K1g such

that aLı�1.ı/ < p < aLıC1.ı/, and there exists a unique x.1/Lı such that

Pı

8<
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Lı�1[
iD1

h
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�
t
.1/
i

�
> c.1/i

i
[
h
W
�
t
.1/
Lı

�
> x.1/Lı

i9=
;D p :

Because of the stagewise ordering, the event fı
�
t
.1/
I ; x

.1/
I

�
6 p occurs if and only if the trial terminates

at look I < Lı or at look I D Lı with x.1/I > x
.1/
Lı

, that is, if and only if the event

Lı�1[
iD1

h
W
�
t
.1/
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�
> c.1/i

i
[
h
W
�
t
.1/
Lı

�
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i

occurs. Thus,
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n
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D Pı
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�
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�
> c.1/i

i
[
h
W
�
t
.1/
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�
> x.1/Lı

i9=
;D p :

A.2. Uniqueness of the backward image

The backward image
�
t
.1/
Jı
; x
.1/
Jı

�
of the observed outcome

�
t
.2/
I ; x

.2/
I

�
satisfies the following equation.

Pı
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iD1

h
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�
t
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i
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(A1)

Let us denote the left-hand side of (A1) by ˛�.ı/, that is,

˛�.ı/D Pı

(
I�1[
iD1

h
W
�
t
.2/
i

�
> c.2/i

i
[
h
W
�
t
.2/
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�
> x.2/I

i
jx
.1/
L

)
:

Also, let us define the conditional rejection probabilities ˛J .ı/ as

˛J .ı/D Pı

(
J[

iDLC1

h
W
�
t
.1/
i

�
> c.1/i

i
jx
.1/
L

)
; (A2)

for J D LC 1;LC 2; : : : K1. Let ˛L.ı/D 0 and ˛K1C1 D 1. Note that 0D ˛L.ı/ < ˛LC1.ı/ < : : : <
˛K1.ı/ < ˛K1C1.ı/, which implies that there must exist a unique Jı with LC 1 6 Jı 6 K1 C 1 such
that ˛Jı�1.ı/ < ˛

�.ı/ < ˛Jı . Then, the backward image must satisfy the following equation.
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;D ˛�.ı/ : (A3)

A.3. Equivalence of equations (9) and (10)

Equation (9) can be written as
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(A4)

and equation (10) can be written as
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(A5)
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The first term of these two equations is the same. The second term of (A4) can be factored as
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(A6)

where p
�
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is the probability of a transition from the score W
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(A7)

Therefore, by (8), equations (A6) and (A7) yield the same probability.

A.4. Distribution of fı

�
t
.1/

Jı ;x
.1/
Jı

�
for an adaptive trial

Suppose the treatment parameter � has the value ı, and let
�
t
.1/
Jı
; x
.1/
Jı

�
denote the test statistic at the end

of the trial. If the trial has terminated after an adaptation,
�
t
.1/
Jı
; x
.1/
Jı

�
is the backward image of the final

test statistic that was obtained in the modified trial. Otherwise, it is the actual test statistic observed at
termination. In hypothetical repetitions of the trial,

�
t
.1/
Jı
; x
.1/
Jı

�
is a random variable. We wish to show

that Pıffı
�
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.1/
Jı
; x
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Jı

�
6 pg D p for any p 2 .0; 1/.

Case 1: An adaptation is planned at a fixed look L. Here, L may be any look between 1 and K1,
where the choice L D K1 corresponds to having planned not to modify the trial. We have shown in

Appendix A.1 that for a given ı and p, there exists a unique
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Suppose that either Jı < Lı or Jı D Lı and x.1/Jı > Lı . Then, by (13), fı
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Case 2: An adaptation is planned at a random look L. In this case,
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