

Comparison of Surface Composition on Stability of Mercury Transfer and Holding

Gary Barone, Marty Higgins SilcoTek[™] Corporation

Outline

- Need for inert system components
- Mercury emissions, environmental impact, regulations, and sampling
- Mercury loss during holding
- Mercury loss during transfer
- Conclusion

Inert System components

- System loss must be addressed
- Several alternatives exist:
 - -Stainless steel
 - -Coatings such as silicon and Teflon®
- Focus on silicon based coating versus Stainless Steel

Chemical Vapor Deposition Process: Creating silicon based coatings

- Thermal decomposition of silanes
- Functionalizing silicon surface
- Process
 - Clean (caustic surfactant; ultrasonic)
 - Vacuum
 - 400°C
 - Applied in vessel or oven chamber
- Total 3D coverage, not line-of-sight

Coating Cross Section

SEM micrograph of the silicon coating over a 316L stainless steel substrate

Substrate

Sample 24, Side 2, field width = 285 micrometers

Auger Depth Profile

Silicon penetration into surface provides adhesion

Coating Appearances

Common Coated Components Sampling Systems **Transfer Tubing** Valves **Particle Filters Tube Fittings and Adaptors** Sample Cylinders; Outage Tubes Analyzer components **Continuous Mercury Monitoring** Systems.(CMMS)

Mercury:

Silcolek. Driving Innovation

- Significant impact to human health and environment
- Effects nerve, brain, heart, kidney, lung, and immune systems.
- Coal powered plants emit 48 tons of mercury per year
- Monitoring levels in ocean and lakes
- Levels in consumed fish species
- Being discovered in natural gas wells
- Natural emissions from volcano's

Mercury Regulations

- Coal fired plants required to monitor Hg emissions
- Portland Cement Kilns
- Natural Gas sampling

Coal Stack Emissions: A Complex Mix

- Stack mercury emissions exist in 3 forms
 - -Elemental mercury (Hg)
 - -2⁺ Oxidation state (Hg⁺⁺)
 - -Attached to particulate matter
- Hg⁺⁺ reacts with stack compounds and stainless steel surfaces making analysis unreliable

Mercury in oil and gas wells

- Common in many geographic areas
- Mercury damages aluminum heat exchangers, pump vanes, pipeline equipment
- Cumulative effect so monitor very low levels (0.01ug/m3)

Improve Sampling and Storage

- Problem: Steel surfaces result in loss
- Improved by sound analytical design
 - -Heat trace tube
 - -Short tube runs
 - Eliminate dips/pockets
 - Maintain target flow
- Electropolished Surfaces
 - Reduce surface area for adsorption
- Coated stainless steel
 - Eliminate adsorptive effects of SS tubing & containers

Mercury Adsorption by Stainless Steel

- 10 ug/m³ Hg Standard
 - Spectra Gases Inc.
- 1 Gallon Sample Cylinder 1800psi DOT rated
 - Swagelok Corp
- NIST Traceable
- Nominal Temp. 70° F
- Test Cycle Day 0,7,19,50
- Direct Interface Gas Sampling
- Atomic Absorption Detector
- Silicon Regulator and Tube

Mercury 50 Day Stability

Average Mercury Response Comparison of Stainless Steel vs. Silicon Functionalized Surfaces Concentration (ug/m³) Average Mercury Days after fill

◆ Untreated cylinders (n=2) ■ Functionalized cylinders (n=2)

Comparison of Hg Stability

Test	Ava response	Loss vs.	Avg	Loss vs.
Day	304 SS	Dayo		Duy
	cylinders		Functionalized	
	ug/m3		Silicon ug/m3	
0	5.65	-	6.45	-
7	3.25	42%	6.1	5%
19	2.05	64%	6	7%
50	1	82%	5.8	10%

Current Applications

- Mercury, Sulfurs and Moisture
 Inert and Corrosion Resistant
- Coal Fired Power Plants
 Improve CMMS performance
- Natural Gas; LPG
 - Detect trace Mercury and H₂S levels
- Moisture
 - Eliminate effects on sampling systems

Mercury Transfer

- 20 foot tubing sections

 -316L Seamless Stainless Steel
 Silicon Coated stainless steel
 EP 316L Stainless Steel
 Silicon Coated Stainless steel
- 10ug/m3 Hg Standard
- Direct interface Atomic Absorption
- 4 liters/minute flow, makeup gas, air (Fast Residence of ~0.01 seconds)

Transfer Data

Tubing	Certified Concentration ug/m3	Analyzed ug/m3
EP Si costod	10.0	10.0
	10.0	10.0
316L Si coated		
Seamless	10.0	9.9
316 L EP	10.0	9.9
316L Seamless	10.0	10.0

Conclusion

- Silicon surfaces improve mercury CMMS
- Reduce mercury losses by 70% in static containment systems
- Moisture dry down performance improved by 50%
- Provide corrosion resistance

Acknowledgements

Spectra Gases

O'Brien Corporation