The Use of Coatings to Improve the Physical and Analytical Reliability of Process Monitors Used for Ammonia, Mercury and Hydrogen Sulfide Service

Gary Barone, Marty Higgins, David Smith SilcoTek Corporation

Overview

- Sampling & Test Reliability
- Coating Materials
- Corrosion Testing
- Hydrophobicity comparison
- Chemical Inertness
- Conclusion

Why Customers Need Reliability

- Reduce cost:
 - Lost time from re-testing
 - Improve product yields
 - Improve accuracy in grading feedstock
 - Emissions compliance
- Avoid false negatives and improve sample transfer
 - Sample stable from field to lab.
- Immediate response during process changes creates savings

Factors Contributing to Poor Sampling Reliability

- Durability/Wear
- Corrosion
- Moisture
- Design
 - Installation

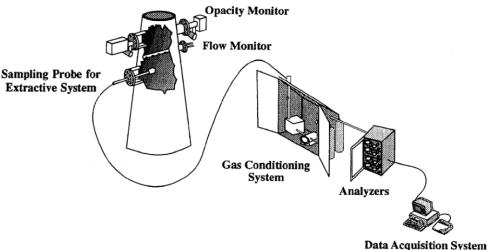


Figure 1: A typical continuous emission monitoring system (CEMS) (U.S. EPA Image)⁴

- Chemical & Material Compatibility/Inertness
- Instrument Compatibility
- Inertness / Adsorption

Using Coatings

- Most analytical pathways are stainless steel
 - Great structurally
 - Good corrosion resistance
 - Poor chemical properties for analytical chemists
- Coatings are now commonly used to improve the chemical properties.
- Need also to address corrosion and wear in harsh environments

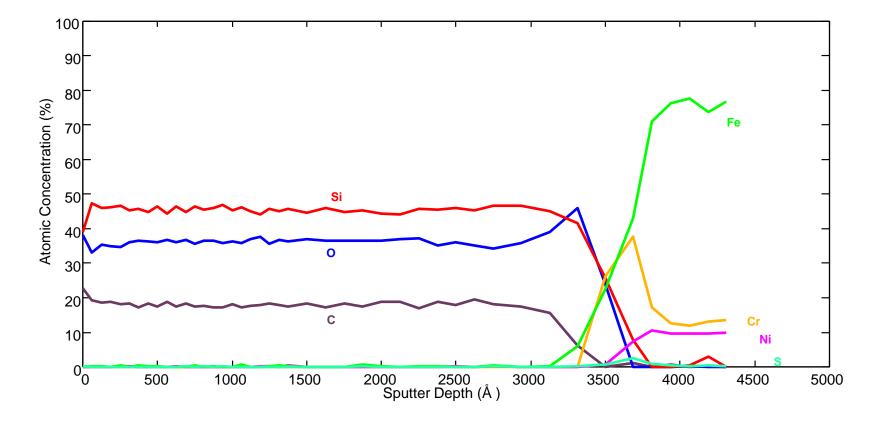
Selecting Coatings

- Fluoropolymers
 - Very inert
 - Very corrosion resistant
 - Broad pH applicability
 - Poor adhesion
 - Poor wear resistance
 - Good to 260°C

- Silicon based (Sulfinert[®]; SilcoNert[™])
 - Very inert
 - Great adhesion
 - No carryover
 - Good corrosion resistance
 - Limited pH range
 - Susceptible to steam cleaning
 - Poor wear resistance
 - Good to 450°C

New Coating

- Carboxysilane (Dursan[™])
 - Good inertness
 - Great adhesion
 - No carryover
 - Good corrosion resistance
 - Broad pH applicability
 - Steam cleaning, no problem
 - Good wear resistance
 - Tested to 450°C so far
 - Still accumulating application data



Coating/Material Properties

Property	SilcoNert 2000	Dursan	PTFE, PFA	
Max Temperature	450°C	450°C	260°C	
Min Temperature	-196°C	-100°C	-240°C	
Low pH limit	0	0	0	
High pH limit	7	14	14	
Thickness	0.12um to 0.5um	0.5um to 1.5um	25um	
Adhesion	Very Good	Very Good	Poor	
Wear resistance	90% of Stainless	2 times 316 Stainless	10% of SS (est.)	
Moisture contact	87°	104-140°	125°	
Inertness vs. SS	Very Good	Very Good	Very Good	

Composition of Dursan[™]

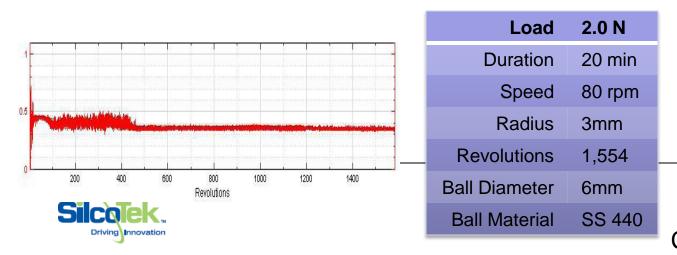
Improving wear resistance

- Equipment and sample conditions can present physical challenges
 - Valve cycling
 - Particulate in sample streams
 - Cleaning needs
- Existing coatings that are applied to improve chemical inertness and control corrosion can be removed easily in challenging environments

Wear Resistance Comparison

Pin on Disc; 2.0N	316 SS	Silco	Dursan
Wear rate (x10 ⁻⁵ mm ³ /N m)	13.810	15.344	6.129
Improvement Factor over		0.9 X	2 X
Stainless Steel			

CSM Instruments Tribometer 18-343 used to measure surface wear resistance



Wear and Friction Data

 Pin on Disc in accordance with ASTM G133

	Avg. Coeff. Friction	Wear Rate (x10 ⁻⁵ mm ³ /Nm)
Uncoated SS	0.589	13.810
Carboxysilane on SS	0.378	6.129

Courtesy of Nanovea Inc.

Challenge of Corrosion

- Samples can contain corrosives that quickly attack stainless
 - Hydrochloric acid (HCI)
 - Sulfuric acid (H_2SO_4)
 - Saltwater
- Physical loss of equipment due to corrosion
 - Maintenance
 - Replacement cycles
- Chemical inertness suffers with corrosion
- Silicon coatings susceptible to caustics

Comparative Corrosion Resistance

• 3M HCl; 24hr; 22°C

ASTM G31	316L SS	Silco	Dursan	
MPY	67.93	14.85	5.14	
Improvement Factor		4.6	13.2	
over 316L stainless				

Acid Corrosion Resistance

• ASTM G31 Guidelines: <u>6M HCl</u>; 24hr; 23°C

	316L SS	a-Silicon	Carboxysilane
MPY	181.98	4.32	0.44
Improvement Factor over 316L stainless		42	411

Comparative Corrosion Resistance

• 10% H₂SO₄; 24hr; 22°C

ASTM G31	316L SS	Silco	Dursan	
MPY	22.35	2.52	2.42	
Improvement Factor		8.9	9.9	
over 316L stainless				

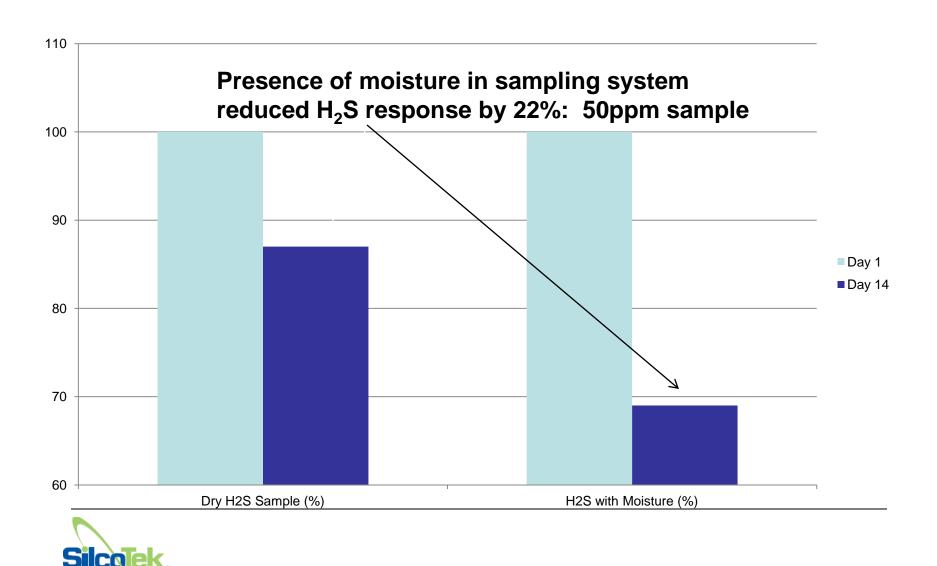
Exposure to Caustics

• 1M KOH; 24hr; 22°C

ASTM G31	316L SS	Silco	Dursan	
MPY	0 3.40		0.01	
Improvement Factor	Infinite		261	
Over Silicon				

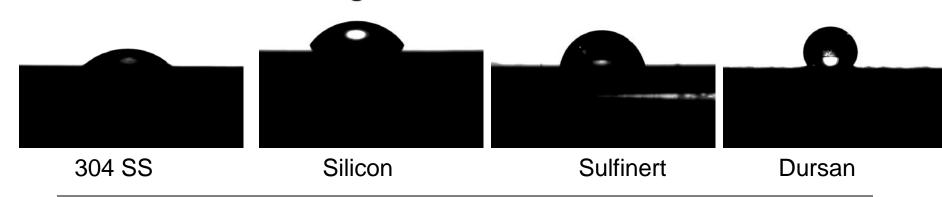
Challenges of Moisture

- Adsorption of active compounds into entrained water
- Formation of acids within the sample system
- Formation of adsorptive rust particles in the sample system.
- Sticks to steel need parts to shed water



Challenges of Moisture

- Benefits of coating that help release water faster
 - Components less susceptible to corrosion
 - Faster cycle times
 - Increased accuracy
 - Eliminate moisture/sample interaction


Impact of Moisture

Measuring Hydrophobicity

Kruss K100 Tensiometer Testing on 304 SS 1⁄4" OD tubing	DI Water	304 SS	Silicon	Sulfinert	Dursan	PTFE
	Advancing	36.0	53.6	87.3	105.5	125.4
	Receding	5.3	19.6	51.5	85.3	84

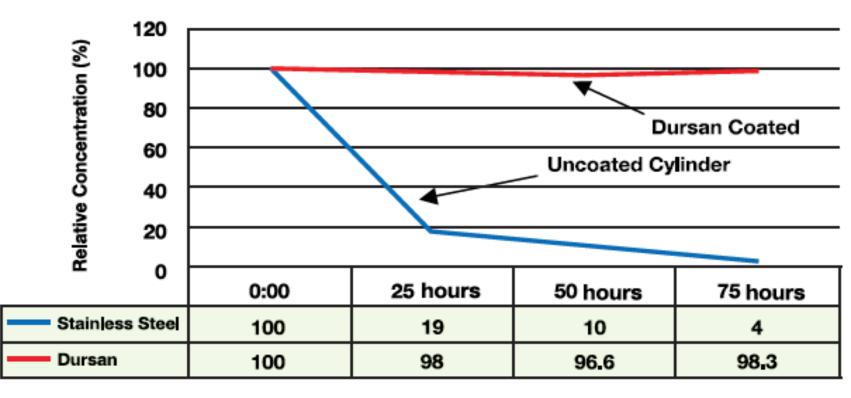
DI Water Contact Angle Illustrations (advancing) on flat surfaces

Chemical Inertness

- Stainless Steel:
 - Adsorbs sulfur compounds
 - Causes loss of mercury
 - Demonstrates poor transportability (tailing) of polar organics such as alcohols
- Passivation when sulfur sampling shown effective at low temperatures, smooth surfaces¹
 - Not effective with H₂S in heated sample lines¹
 - ¹ Biela, B., Moore, R., Benesch, R., Talbert, B., Jacksier., "The Do's and Don'ts in the Analysis of sulfur for Polyolefin Producers", presented as paper 081 at the Gulf Coast Conference, (2003)

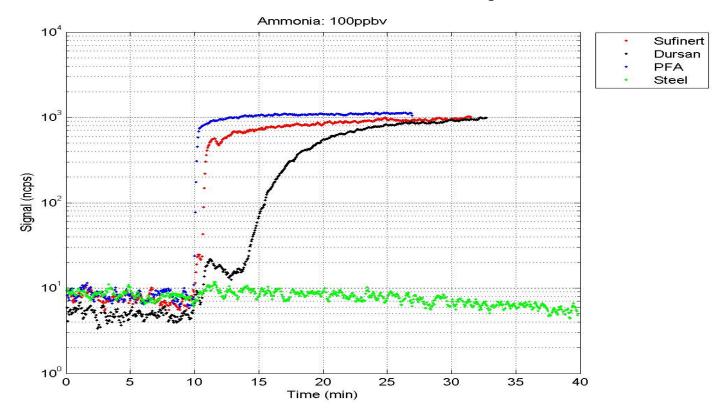
Chemical Inertness

 SilcoNert[™] and Fluoropolymers: Great inertness for sulfurs, mercury & ammonia, down to single digit ppb


- Dursan[™]: Good for H2S (10ppm) and OK for Ammonia.
 - Improvements to target replacing Silco coatings for inertness and corrosive applications!

Hydrogen Sulfide

H₂S Stability: Dursan vs. Stainless Steel


50ppmv, 300cc cylinder

Ammonia Adsorption

100PPV, 500sccm, 1.8m tubing, min

- Measured PTR-MS signals of ammonia (m17). At t=10min the gas stream was switched in a way
- that it passed additionally the different 1.8m long lines. The PFA line seems to be best for Ammonia, while
- the steel line completely adsorbs the 100ppbv of Ammonia in the sample gas for hours. All lines were 1.8 m,
- not heated (30°C), sample gas flow was 500 sccm (std. ml/min) of 100 ppb of ammonia in N2.

Conclusion

- Consider multiple design factors to maximize system performance and reliability
 - Surface Energy (moisture resistance)
 - Surface Roughness
 - Corrosion resistance
 - Wear resistance and other physical related factors
 - Surface interaction/inertness
- Review system design, balance target system performance and environment with material capability

