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Abstract: The problem of the propagation of a hydraulically driven fracture in a fully saturated, 
permeable, and porous medium is investigated. Fluid driven fracture propagation in porous media 
is a coupled problem with four unknown fields: the flow of the fracturing fluid within the fracture, 
the flow of the pore fluid within the pores, the porous medium deformation, and the fracture 
configuration. The corresponding governing equations are the mass balance of the fracturing 
fluid, mass balance of the pore fluid, equilibrium of the porous medium, and fracture initiation 
and propagation criteria. In this work, the recently co-developed Abaqus fully-coupled hydraulic 
fracturing modeling capabilities are evaluated by assessing their consistency, convergence, and 
accuracy qualities. The Abaqus “coupled pressure/deformation cohesive elements” and “coupled 
pressure/deformation extended finite elements (XFEM)” are used to model the propagation of the 
fracture and the flow of the fracturing fluid, while the porous medium deformation and pore-fluid 
flow are modeled with coupled “pore-pressure/deformation” continuum finite elements. The 
propagation of a vertical planar fluid-driven fracture with constant height and vertically uniform 
width within a prismatic-shaped reservoir (KGD model), and the propagation of a horizontal, 
circle-shaped, planar, fluid-driven fracture within a cylindrical reservoir (“Penny-Shaped” 
model) are simulated in both two and three dimensions. The Abaqus numerical solution obtained 
with each modeling technique (cohesive and XFEM) is compared with asymptotic analytical 
solutions for both the KGD and Penny-shaped models in the toughness/storage dominated and 
viscosity/storage dominated propagation regimes. Both methods are found to accurately 
reproduce the analytical solutions, and converge monotonically as the mesh is refined. This 
validation of the newly developed hydraulic fracturing capabilities within Abaqus provides 
confidence in its ability and readiness to simulate fluid driven fracturing applications for the oil 
and gas industry including injection, stimulation, and drilling operations. 
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1. Introduction 

Hydraulic fracturing is a fundamental problem in Petroleum Engineering and plays a critical role 
in many applications within the oil and natural gas industry. The process can be generally defined 
as the intentional (or unintentional) initiation and propagation of a fracture due to the 
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pressurization of fluid that flows within the fracture. Examples of applications include (a) the 
stimulation of rock formations with poor or damaged permeability to increase conductivity 
between the reservoir and the producing wells, (b) improvement of produced water re-injection 
(PWRI) where water is injected to replace produced fluids and maintain reservoir pressure or 
provide enhanced oil recovery, (c) cuttings reinjection (CRI) where a slurry of drill cuttings is 
injected into a formation to mitigate the cost and risk of surface disposal, (d) in-situ stress 
measurement by balancing the fracturing fluid pressure in a hydraulically opened fracture with the 
geostatic stresses, and (e) wellbore integrity analysis of drilling operations to avoid propagating 
near-wellbore fractures that could result in drilling fluid losses to the formation and an inability to 
effectively clean the wellbore. 

Knowledge of the fracture dimensions (length/width/height), fracture geometry, and wellbore 
pressure is crucial for both the design and integrity of hydraulic fracturing field operations. For 
stimulation, PWRI and CRI, one of the fundamental questions is whether or not fracture 
containment is achieved. This means that the injection fluid and fracture are confined to a target 
interval or “pay” zone for PWRI and stimulation, or a dedicated disposal domain for CRI. Other 
important considerations include predictions of the injection rate, pressure, or injected volume 
required to initiate fractures, inject under matrix conditions, or minimize the potential for inducing 
fractures while drilling. 

Currently, there are no reliable techniques to measure fracture geometries during or after the 
hydraulic fracturing process. Furthermore, direct solutions of the underlying differential equations 
representing the different physical processes occurring during fracturing are difficult to construct, 
even in their most simplified forms. Therefore, the development of a numerical simulator with 
accurate predictive capability is of paramount importance. 

The computational modelling of hydraulic fracturing of porous media is a challenging endeavor. 
The difficulty originates primarily from the strong non-linear coupling between the governing 
equations, as the process involves at least the interaction between four different phenomena: (i) the 
flow of the fracturing fluid within the fracture, (ii) the flow of the pore fluid and seepage of 
fracturing fluid within the pores, (iii) the deformation of a porous medium induced by both the 
hydraulic pressurization of the fracture and the compression/expansion and transport of pore fluid 
within the pores, and (iv) the fracture propagation which is an inherently an irreversible and 
singular process. Additionally, fracture propagation typically occurs in heterogeneous formations 
consisting of multiple layers of different rock types, subjected to in-situ confining stresses with 
non-uniform magnitudes and orientations. Furthermore, fracturing fluids typically exhibit 
nonlinear rheologies and the leakoff of these fluids from the fracture into the surrounding rock is 
often history dependent. 

There are a number of commercial hydraulic fracture simulators used in the oil and natural gas 
industry for rapid design, analysis and prediction of fracture size, treating pressures, and flows 
(Clearly 1980, Meyer 1989, Warpinski 1994). These simulators rely in strong simplifying 
assumptions to render the problem solvable in realistic times: 

 Fractures are assumed to be planar and symmetric with respect to the wellbore 

 Fracture geometries are represented with few geometric parameters 
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 The formation is assumed to be unbounded and modeled using linear elasticity theory 
resulting in an integral equation relating fracture opening and fluid pressure 

 The fracture propagation is modeled within the framework of linear elastic fracture 
mechanics without any consideration of pore fluid pressure effects 

 Leakage of fracturing fluid from the fracture into the rock is modeled as one dimensional 
and decoupled from the porous medium deformation. 

Although these simulators are useful in predicting broad trends and upper/lower bounds in 
operational parameters, their reliability and accuracy are restricted to unrealistic scenarios intrinsic 
simplistic assumptions apply, i.e., situations where some of the coupling between the many 
different processes involved can be neglected, and with strong symmetry in confinement stresses 
and geology. 

The accurate modelling of the hydraulic fracturing process under realistic geologies, wellbore 
configurations, confining stress states, and operational conditions calls for a more advanced, 
multi-physics numerical simulator that incorporates the complex coupling between the injected 
fluid, the pore fluid, the rock deformation, and the fracture configuration, thus overcoming the 
limitations of currently available commercial simulation tools. 

To this end, fully-coupled hydraulic fracturing simulation capabilities that leverage (i) the existing 
Abaqus non-linear soil consolidation analysis solver, (ii) Abaqus cohesive elements for modelling 
interface decohesion, and (iii) Abaqus extended finite element method (XFEM) for modelling 
propagating discontinuities, are being co-developed between ExxonMobil Upstream Research 
Company and Dassault Systemes Simulia Corporation. 

Specifically, two new element classes have been integrated into the existing Abaqus/Standard 
coupled pore fluid diffusion and solid stress porous media analysis solver: 

i. A coupled pressure/deformation cohesive element that models the progressive damage of 
normal mechanical strength and normal hydraulic conductivity as well as the flow of 
fracturing fluid within the opening fracture. 

ii. An enriched version of the continuum coupled pore fluid diffusion/stress elements 
capable of activating arbitrarily oriented discontinuities in both displacements and pore 
pressures while simultaneously modelling the fracturing fluid flow along the fracture. 

This work describes and validates these two new formulations for hydraulic fracturing modeling 
by assessing consistency, accuracy and convergence qualities. The propagation of a fluid-driven 
vertical planar fracture of uniform width and constant height within a prismatic-shaped rock 
formation (Khristianovich-Geertsma-de Klerk, or KGD model) and the propagation of a 
horizontal, circle-shaped, planar, fluid-driven fracture within a cylindrical reservoir (radial or 
“Penny-Shaped” model) are simulated for both two and three dimensions (Clearly 1980, Geertsma 
1969, Yew 1997). The numerical solution obtained with each new modeling technique (cohesive 
and XFEM) are then compared with available asymptotic analytical solutions for both the KGD 
and Penny-shaped models in the toughness/storage dominated and viscosity/storage dominated 
propagation regimes. Finally, the consistency, accuracy and convergence attributes are assessed 
for both methods. 
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Section 2 describes the governing equations for each of the coupled processes as well as the 
constitutive and kinetic relations assumed for the porous medium, pore fluid and fracturing fluid, 
including: 

i. Equilibrium equation for the porous medium 

ii. Constitutive equation for the porous medium (Biot’s theory of poroelasticity) 

iii. Continuity equation for the pore fluid 

iv. Continuity equation for the fracturing fluid 

v. Momentum equation for the pore fluid (Darcy’s Law) 

vi. Momentum equation for the fracturing (Lubrication Equation) 

Section 3 details the procedures employed by both formulations (cohesive and extended finite 
element methods) and the fracture initiation and propagation criteria. Section 4 defines the test 
models (KGD plane-strain and the Penny-Shaped models) and the model set-up and assumptions 
used within Abaqus, while Section 5 presents numerical results and assesses accuracy and 
convergence by comparing the main solution variables obtained with meshes of different 
resolutions with available asymptotic analytical solutions. Finally, some concluding remarks are 
summarized in Section 6. 

2. Governing Equations 

As stated in the introduction, hydraulic fracturing involves the interaction between four different 
phenomena: 

i. Porous medium deformation 

ii. Pore fluid flow 

iii. Fracturing fluid flow 

iv. Fracture propagation 

The equations and constitutive relation governing these coupled processes, i.e., Biot’s theory of 
poroelasticity for porous media, Darcy’s Law for pore fluid flow, Reynold’s lubrication theory for 
fracturing fluid flow and the cohesive zone model to characterize fracturing (Abaqus 2013, 
Charlez 1997)) are summarized in what follows. 

2.1 Porous Media Deformation 

Porous media can be modelled as an isotropic, poroelastic material undergoing quasistatic 
deformation. The equilibrium equation enforced by Abaqus, when body forces are neglected is, 

,ߪ ൌ 0      (1) 

while the poroelastic constitutive relation, assuming small strains, is given by, 
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in which ߙ is Biot’s coefficient, ܩ and ܭ are the dry elastic shear and bulk moduli, ܧ is the dry 
Young’s modulus, and ߥ is the dry Poisson’s ratio. Abaqus is formulated in terms of Terzaghi 
effective stresses ߪ′, defined for fully saturated media as (Abaqus 2013, Charlez 1997) 

ߪ
ᇱ ൌ ߪ   ߜ

In terms of the latter, the constitutive relation takes the form 
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Defining effective strains as 
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the constitutive relation simplifies to	
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This identity is identical to the constitutive relation for linear elastic materials, but expressed in 
terms of Terzaghi effective stresses ߪ′ and effective strains ߝ′. Abaqus internally translates total 
stresses and strains into Terzaghi effective stresses and strains to leverage this equivalence 
(Abaqus 2013).  

2.2 Pore Fluid Flow 

The continuity equation for the pore fluid is, assuming small volumetric strains, given by 

1
ܯ
ሶ  ሶߝߙ  ,ݒ ൌ 0 

where ݒ is the pore fluid seepage velocity, and ܯ and ߙ are Biot’s modulus and Biot’s 
coefficient, respectively. These two poroelastic constants are defined by the identities 
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where ܭ is the pore fluid bulk modulus, ܭ௦ is the porous medium solid grain bulk modulus, and 
߶ is the initial porosity. In Abaqus, the two compressibilities ܭ௦ and ܭ are specified using the 
*POROUS BULK MODULI keyword. Pore fluid is assumed to flow through an interconnected pore 
network according to Darcy’s law 

ݒ ൌ െ
݇
ߤ
, ൌ െ

ത݇
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in which ݇ is the permeability, ߤ is the pore fluid viscosity, ത݇ is the hydraulic conductivity and ߛ is 
the pore fluid specific weight. Combining with the continuity equation, the pore fluid diffusion 
equation is obtained 
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Within Abaqus, the hydraulic conductivity and specific weight are specified through the 
*PERMEABILITY keyword. 

2.3 Fracturing Fluid Flow 

Longitudinal fluid flow within the fracture is governed by Reynold’s lubrication theory defined by 
the continuity equation 

ሶ݃ 
ݍ߲
ݏ߲

 ்ݒ  ݒ ൌ 0 

and the momentum equation for incompressible flow and Newtonian fluids through narrow 
parallel plates (i.e., Poiseuille flow) 

ݍ ൌ െ
݃ଷ

ߤ12

߲
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where ݃ is the fracture gap (Figure 1), ݍ ൌ ݒ ∙ ݃ is the fracturing fluid flow (per unit width) 
across the fracture, ்ݒ and ݒ are the normal flow velocities of fracturing fluid leaking through the 
top and bottom faces of the fracture into the porous medium, ߤ is the fracturing fluid viscosity, 
and  is the fracturing fluid pressure along the fracture surface parameterized with the curvilinear 
coordinate, ݏ. 

 

Figure 1: Fracture aperture, width and fracturing fluid flow 

Abaqus computes the normal fracturing fluid velocities as 

்ݒ ൌ ்ܿ൫ െ  																																																																										൯்
ݒ ൌ ܿ൫ െ  (4ሻ																																																																				൯

where ் and  are the pore fluid pressures on the top and bottom surface of the fracture and ்ܿ 
and ܿ are the so-called “leakoff coefficients”. This simple leakoff model simulates a layer of 
filtrate that might accumulate and reduce the effective normal permeability of the fracture 
surfaces. 

Inserting the Poiseuille flow equation and the simplified leakoff model into the continuity equation 
for the fracturing fluid yields the final form:  
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Abaqus specifies the fracturing flow viscosity and leakoff coefficients with the *GAPFLOW and the 
*LEAKOFF keywords, respectively. 

2.4 Fracture Initiation and Propagation 

Fracturing can be conceptualized as the transition between two limiting states: the undamaged 
state with continuous displacements and non-zero tractions in all directions and the fully damaged 
state characterized by the presence of a displacement discontinuity along a material interface with 
zero tractions in the direction normal to the interface. In Abaqus, this transition process is modeled 
as a progressive degradation of cohesive strength along a zero-thickness interface whose 
orientation and extent is either predefined (cohesive element method) or calculated during the 
simulation (extended finite element method). The gradual loss of strength in the interface with 
increasing separation is defined with an interface traction/interface separation relation or cohesive 
law (Abaqus 2013, Ortiz 1999). 

For the purpose of this study, a traction-separation cohesive law with linear softening (Figure 2) is 
assumed, defined by the cohesive energy ܩ (area under the softening part of the traction 
separation curve) and the cohesive strength ܰ. For the cohesive element procedure, it is also 
required to define the traction-separation behavior prior to damage initiation, which is assumed to 
be linear with initial stiffness ܭ. The cohesive traction of the interface thus evolves from a 
maximum tensile strength ܰ at damage initiation, down to zero when the interface is fully 
damaged and free to open beyond the total separation ଵ݃. If the interface is unloaded prior to 
complete damage, the traction is assumed to ramp down linearly with a damaged stiffness ܭ. The 
interface effective tractions are therefore given by 

ܶ ൌ 0										݃ܭ  ݃  ݃ 

 

Figure 2: Cohesive law for Cohesive and XFEM procedures 

Upon damage initiation, the fracture is pressurized by instantaneously applying the fracturing fluid 
pressure,	, calculated from the fracturing fluid equations in Equation 5. The total tractions 
resisted by (and acting on) the interface elements are therefore given by 
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ܶ ൌ ݃ܭ െ 0										  ݃  ݃ 
As stated in Section 2.1, the Abaqus porous media analysis solver is formulated in terms of 
Terzaghi effective stresses. Therefore, the cohesive strength ܰ defining the onset of interface 
decohesion must be understood in terms of an effective strength (and not total strength). 

3. Cohesive Element and Extended Finite Element Methods 

The evolution of a fracture is modelled in Abaqus through zero-thickness interface elements with 
separation resisted by gradually decreasing tensile tractions. For the cohesive element procedure, 
these interface elements are defined a priori and placed between continuum element faces, 
whereas in the extended finite element method (XFEM), they are inserted and oriented 
automatically during the course of the simulation within existing continuum elements. 

3.1 Cohesive Element Method 

The coupled pressure/deformation cohesive elements implemented in Abaqus (COHPE4P, COHAX4P, 
COH3D8P) are standard linear isoparametric elements with displacement and pore pressure degrees 
of freedom associated with their corner nodes, as depicted in Figure 3 (nodes 1,2,3,4). These 
elements must be inserted a priori between the faces of adjacent pressure diffusion/stress elements 
(CPE4P, CAX4P, C3D8P) in order to model the yet to open fracture. To accommodate the coupling of 
the fracturing fluid flow equations, the elements are equipped with additional pressure degrees of 
freedom (attached to the center of the element edges perpendicular to the fracture) to interpolate 
the fracturing fluid pressure after damage initiation (nodes 5 and 6, Figure 3). 

 

Figure 3: Coupled pressure/deformation cohesive elements for hydraulic fracturing 

The cohesive elements can have arbitrary undeformed geometric thickness ܪ as the instantaneous 
gap ݃ coupled in the fracturing fluid flow equation (Equation 5) is defined in Abaqus as the 
difference between the deformed and underfed thickness, i.e., ݃ ൌ ݄ െ  Prior to damage, the top .ܪ
and bottom faces of the unopened fracture are subjected to the pore fluid pressure acting towards 
increasing separation and the cohesive effective tractions resisting separation, 

ܶ ൌ ݃ܭ െ  

where ܭ is the stiffness of the cohesive element prior to failure (Figure 2). After damage 
initiation, the pore fluid is displaced by the fracturing fluid pressurizing the interface. The total 
tractions acting on the top and bottom faces of the opening fracture are then substituted by 

ܶ ൌ ݃ܭ െ  
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where ܭ is the damaging stiffness (Figure 2). A coupled cohesive element method for hydraulic 
fracturing similar to the formulation just outlined is described by Boone, 1990 and Carrier, 2012. 

3.2 Extended Finite element method (XFEM) 

The Extended Finite Element Method (XFEM) is implemented within Abaqus using the so called 
“phantom node” approach (Abaqus 2013, Remmers 2008, Song 2006, Sukumar 2003). In this 
implementation, each enriched pressure diffusion/stress element (CPE4P, CAX4P, C3D8P) is 
internally duplicated with the addition of corner phantom nodes, as depicted in Figure 4, in which 
original nodes are represented with full circles and corner phantom nodes with hollow circles. 
Prior to damage initiation only one copy of the element is active. Upon damage initiation the 
displacement and pore pressure degrees of freedom associated with the corner phantom nodes are 
activated and both copies of the element are allowed to deform independently, pore pressures are 
allowed to diffuse independently, and the created interface behavior is enforced with a traction-
separation cohesive law.  

 

Figure 4: Implementation of the XFEM with “corner” and “edge” phantom nodes 

In order to enable the solution of the fracturing fluid flow equations, the enriched elements also 
incorporate new “edge-phantom nodes” (depicted as red triangles in Figure 4) that interpolate the 
fracturing fluid pressure within the fracture. The pore fluid pressure	் and  at the top and 
bottom faces of the fracture are interpolated from the pore pressure degrees of freedom at the 
corner real nodes and phantom nodes. The difference with the fracturing fluid pressure  
(interpolated at the edge-phantom node) is the driving force that controls the leakage of fracturing 
fluid into the porous medium (Equation 4).  

The fracture is extended to a new element ahead of the fracture tip when the maximum effective 
principal stress at this element (interpolated to the tip) in a given iteration is equal to the cohesive 
strength ܰ. The orientation of the fracture segment to be extended into the tip element is set to the 
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direction perpendicular to the minimum principal stress of the current iteration. This fracture 
initiation/orientation criterion is defined in Abaqus through the keyword 

*DAGAMAGE INITATION, CRITERION=MAXPS, POSITION=CRACKTIP  

As in the cohesive element formulation, the fracturing fluid pressure is applied to the top and 
bottom faces of the fracture and superposed to the cohesive tractions. 

4. Benchmark Models 

In this section, the two formulations previously outlined (coupled pressure/displacement cohesive 
and extended finite elements) are applied to model the propagation of a hydraulically driven 
fracture in two different configurations: 

i. Horizontal, circle-shaped, planar, fracture within a cylindrical domain, (radial or “Penny-
Shaped” model (Clearly 1980, Charlez 1997, Yew 1997)) 

ii. Vertical, rectangle-shaped, planar fracture within a prismatic-shaped domain 
(Khristianovich-Geertsma-de Klerk, or KGD model (Charlez 1997, Geertsma 1969, Yew 
1997)). 

These models serve as benchmark examples to assess the consistency, convergence and accuracy 
of the numerical solution obtained with Abaqus. 

4.1 Fracture Propagation Regimes 

Despite the simplicity of the fracture geometry and strong symmetry in the chosen benchmark 
problems, there are no available closed-form analytical solutions for these problems when all 
coupled processes are considered in the analysis, i.e., when the formation is assumed to be porous 
and permeable with pore fluid flow and fracturing fluid is leaking into the pore space displacing 
the pore fluid. However, using the more restrictive theoretical framework resulting from assuming 
(i) an infinite domain, (ii) material fully impermeable, (iii), material linear elastic, (iv) linear-
elastic fracture mechanics, and (v) Carter’s leakoff model (Howard 1957, Charlez 1997), 
approximate analytical solutions exist in the form of regular asymptotic expansions (Bunger 2005, 
Detournay 2006, Garagash 2006, Hu 2010, Garagash 2011, Peirce 2008, Savitski 2002). The 
governing equations then simplify to (i) the equilibrium equation for the linear elastic material, 
that for an infinite domain can be represented as an singular integral equation relating fracture 
opening and fluid pressure, (ii) the local and global mass balance equations for the fracturing fluid, 
and (iii) the fracture propagation criterion, also expressible as a singular integral equation relating 
fracturing pressure and fracture toughness. A non-dimensional analysis of this reduced system of 
equations uncovers the presence of two pairs of competing physical processes. The first pair 
consists of competing dissipative mechanisms: (a) energy dissipated due to fluid viscosity and (b) 
energy dissipated due to fracture propagation; the second pair consists of competing components 
of fluid balance: (a) fluid storage within the fracture and (b) fluid leakage from the fracture into 
the surrounding material. Depending on which of the two dissipative mechanisms and which of 
the two storage mechanisms dominate, four primary limiting regimes of propagation emerge: 

 Viscosity dominated and storage dominated propagation regime (ܯ). 

 Toughness dominated and storage dominated propagation regime (ܭ). 
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 Viscosity dominated and leak-off dominated (ܯ෩).  

 Toughness dominated and leak-off dominated regime (ܭ෩).  

These four fracture propagation regimes can be conceptualized in a rectangular parametric space 
where each limiting regime corresponds to each of the vertices of the rectangle with one 
dissipation mechanism dominating and the other being neglected, and one component of fluid 
global balance dominating with the other also neglected (Figure 5).  

 
Figure 5: Parametric diagram representing the four limiting propagation regimes of 

hydraulically driven fractures 

This work analyzes each benchmark problem in both the toughness/storage-dominated (near-ܭ) 
and the viscosity/storage-dominated (near-ܯ) propagation regimes. The near-ܭ and the near-ܯ 
asymptotic solutions (small time solutions in the toughness and viscosity regimes) are used to 
compare to Abaqus numerical solutions for each formulation (cohesive element method and 
XFEM) with material parameters, loads, and boundary conditions that reproduce each of these 
propagation regimes.  

In order to render the Abaqus solution comparable with the asymptotic solutions, the model 
dimensions and material properties are selected such that the more restrictive conditions for which 
these solutions apply are adequately recreated. Specifically, the dimensions of the domain of 
analysis are much bigger than the fracture aperture and length, the permeability is defined to 
minimize the influence of poroelastic effects ahead of the fracture tip, and cohesive properties are 
selected to ensure a small cohesive zone relative to the size of the fracture.  

4.2 Radial (Penny-Shaped) Model 

The first benchmark problem consists of an axisymmetric, penny-shaped, hydraulically-driven 
fracture propagating in a cylindrically shaped poroelastic formation as illustrated in Figure 6.  
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Figure 6: Cylindrical domain with a horizontal, circular-shaped, hydraulically driven 
fracture 

The domain of analysis is characterized by the inner radius ܴ, outer radius ܴଵ, and height ܪ. The 
porous medium is characterized by Young’s modulus ܧ, Poisson ratio ߥ, fracture toughness ܭூ, 
porosity ߶, Biot’s coefficient ߙ, Biot’s modulus	ܯ, and hydraulic conductivity ത݇. An 
incompressible Newtonian fluid with viscosity ߤ is injected at a constant rate ܳ at the center of 
the fracture from a vertical wellbore. The fracture aperture ݓሺݎ, ,ݎሺ ሻ, the net pressureݐ  ሻݐ
(defined as the difference between the fracturing fluid pressure ሺݎ,  ሻ and the confining stressݐ
 .ሻ are the sought quantitiesݐܴሺ	), and the fracture radiusߪ

4.3 Plane Strain (KGD) Model 

The second benchmark problem considers a hydraulically-driven vertical fracture propagating in a 
poroelastic prismatic-shaped formation of length L, depth R and height H as illustrated in Figure 
7. 
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ܴ1 

 ܪ

ܴሺݐሻ

,ݎሺݓ ሻݐ
,ݎሺ ሻݐ

ߪ ߪ

ߪ
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Figure 7: Prismatic domain with a planar vertical, hydraulically driven fracture 

Again, the porous medium is characterized by Young’s modulus ܧ, Poisson ratio ߥ and fracture 
toughness ܭூ, porosity ߶, Biot’s coefficient ߙ, Biot’s modulus ܯ, and hydraulic conductivity ത݇ 
with an incompressible Newtonian fluid with viscosity ߤ injected along a vertical wellbore at a 
constant rate per unit of vertical length ܳ. The unknowns of the problem are the fracture aperture 
,ݎሺݓ ,ݎሺ ሻ, the net pressureݐ ሻݐ ൌ ,ݎሺ ሻݐ െ  .ሻݐܴሺ	, and the fracture radiusߪ

4.4 Model Setup 

4.4.1 Geometry and Mesh for the Radial (Penny-Shaped) Fracture Model 

For each propagation regime (toughness/storage and viscosity/storage dominated) and modeling 
procedure (cohesive element method and XFEM) two models are constructed: (a) 2D 
axisymmetric model (Figure 8) and (b) 3D model (Figure 9). Both models are expected to render 
similar solutions. Due to the axial symmetry of the problem only one quarter of the 3D cylindrical 
domain is considered. 

 ܮ ܴ

 ܪ

ܴሺݐሻ

,ݎሺݓ  ሻݐ

,ݎሺ  ߪ ߪ ሻݐ
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Figure 8: Axisymmetric and plane strain model meshes, cohesive element and 
XFEM procedures 

 

Figure 9: 3D model meshes, cohesive element and XFEM procedures 

The formation is discretized with linear coupled pore fluid diffusion/stress elements (CAX4P for the 
axisymmetric model, and C3D8P for the 3D model). For the cohesive element method, coupled 
pressure/deformation cohesive elements (COHAX4P for the axisymmetric model, and COH3D8P for 
the 3D model) are inserted along the horizontal mid-plane of the domain in which the fracture is 
expected to propagate. Continuum elements and cohesive elements are connected with shared 
nodes. 

Coupled pressure/deformation 
cohesive elements (COHAX4P) 

Coupled pressure/deformation 
continuum elements (CAX4P) enriched 

Coupled pressure/deformation 
continuum elements (C3D8P) enriched 

Coupled pressure/deformation 
cohesive elements (COH3D8P) 
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For the XFEM model, an equivalent mesh is used where the layer of cohesive elements is replaced 
by a set of enriched coupled pore fluid diffusion/stress elements (CAX4P and C3D8P), as depicted in 
Figures 8 and 9. To declare a set of continuum elements as enriched in which a fluid-driven 
fracture may propagate the following keyword is required:  

*ENRICHMENT NAME=enrichmentname, TYPE=PROPAGATION CRACK, ELSET=elsetname 

The dimensions of the analysis domain are chosen large enough to minimize boundary effects 
(Table 1). 

Table 1: Penny-Shaped fracture model dimensions 

Dimension Value  
Inner radius ܴ ൌ 0.01݉  
Outer radius ܴଵ ൌ 45݉  
Height ܪ ൌ 30݉  
Angle 90°  

In order to analyze the convergence of the two modeling procedures as the mesh is refined, three 
meshes of decreasing element size are recreated for the 2D axisymmetric and 3D continuum cases 
(Figures 10 and 11). To minimize model size, only the elements in the vicinity of the fracture 
plane are refined. These elements are generated by subdividing elements in the parent (coarse) 
mesh into four (axisymmetric model) or eight (3D model) child elements. The compatibility of 
displacements and pore fluid pressures on the nodes lying at the intersection between coarse and 
fine regions of the resultant meshes are enforced with multi point constraints (*MPC, LINEAR, and 
*MPC, BILINEAR). This refinement technique is chosen to minimize element distortion. Table 3 
lists the number of elements and nodes for the respective meshes.  
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Figure 10: Meshes of different resolution used for the 2D penny-shaped and planar 
fracture models (axisymmetric and plane strain) 

 

Coarse 

Intermediate 

Fine 

COH
E

XFEM 
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Figure 11: Meshes of different resolution used for the Penny-shaped fracture 
model 

4.4.2 Geometry and Mesh for the Planar (KGK) Fracture Model 

For the second benchmark problem (planar fracture geometry) two pairs of models are also 
constructed: (a) 2D plane-strain model with nodal coordinates and element connectivity identical 
to the axisymmetric model (Figures 8 and 10) and (b) 3D model as depicted in Figure 12. As in 
the case of the penny-shaped mesh, the formation is discretized with linear coupled pore fluid 
diffusion/stress elements (CPE4P for the plane strain model and C3D8P for the 3D model), while the 
fracture plane is modeled with either plane strain (COH2D4P) or 3D (COH3D8P) coupled 
pressure/deformation cohesive elements (i.e. cohesive element method), or the enriched version of 
the coupled pore fluid diffusion/stress continuum elements (i.e. XFEM). 

Table 2 summarizes the planar fracture model dimensions chosen to minimize boundary effects. 

Table 2: Planar fracture model dimensions 

Dimension Value  
Width ܴ ൌ 45݉  
Height ܪ ൌ 45݉  
Length ܮ ൌ 60݉  

 

Coarse 

Intermediate 

Fine 

COH
E

XFEM 
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Figure 13 details the sequence of meshes of different resolution constructed to analyze 
convergence for this second benchmark model.  

 

Figure 12: 3D mesh for the KGD model, cohesive procedures 

 

Figure 13: Meshes of different resolution used for the KGD fracture model 

Coupled pressure/deformation 
cohesive elements (COH3D8P) 

Coupled pressure/deformation 
continuum elements (C3D8P) enriched 
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Table 3: Number of elements and nodes for each mesh 

Model Mesh Elements Nodes 

2D  
Coarse 2745 2898 
Intermediate 3330 3577 
Fine 4500 4931 

3D 
Coarse 54900 60858 
Intermediate 82800 95137 
FIne 194400 230291 

4.4.3 Material Properties 

The poroelastic material parameters used for all simulations are summarized in Table 4.  

Table 4: Poroelastic material parameters 

Parameter Value  
Young modulus ܧ ൌ   ܽܲܩ17
Poisson’s ratio ߥ ൌ 0.2  
Biot coefficient ߙ ൌ 0.75  
Porosity ߶ ൌ 0.2  
Pore fluid specific weight ߛ ൌ 0.0098

ெ


  

Hydraulic conductivity ത݇ ൌ 9.8 ൈ 10ିଽ


௦
  

Biot modulus ܯ ൌ   ܽܲܯ68.7

 
To define the cohesive behavior of the material, a traction-separation law with linear softening is 
used (*DAMAGE EVOLUTION, TYPE=ENERY, SOFTENING=LINEAR) defined by a cohesive energy 

ܩ ൌ 120	ܲܽ ∙ ݉. Fracture toughness can be estimated as ܭூ ൌ ටܩ
ா

ଵିఔమ
ൌ  The .݉√ܽܲܯ1.46

quadratic nominal stress fracture initiation criterion (*DAMAGE INITIATION, CRITERION=QUADS) 
with a cohesive strength of ܶ ൌ  is used in all simulations. For the cohesive element ܽܲܯ1.25
method, the elastic stiffness prior to failure (*ELASTIC, TYPE=TRACTION) is defined as 100 times 
the Young’s modulus of the material. 

The fracturing fluid is modeled as a Newtonian fluid (*GAPFLOW, TYPE=NEWTONIAN) with viscosity 
equal to ߤ ൌ ߤ for the viscosity/storage dominated propagation regime and ݁ݏ݅ܲܿ	100 ൌ
 .for the toughness/storage dominated regime ݁ݏ݅ܲܿ	0.1

4.4.4 Initial Conditions, Boundary Conditions and Loads 

The following initial conditions are specified for all solid sections with poroelastic constitutive 
behavior (Table 5): 

Table 5: Initial conditions 

Pore fluid Initial saturation ݏ 1.0 
Pore fluid initial pressure  0.0 
Rock initial void ratio ݁ 0.25 
Initial principal in-situ stresses ሺߪଵ

, ଶߪ
, ଷߪ

ሻ ሺ0.0, 0.0, 0.0ሻ 

The media is assumed to be initially fully saturated and with no confinement stresses. Abaqus 
requires an explicit specification of the set of cohesive elements or enriched elements where the 
fracturing fluid flow equations will be initially solved. These initial conditions are specified 
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through the keyword *INITIAL CONDITIONS, TYPE=INITIALGAP, and *INITIAL CONDITIONS, 
TYPE=ENRICHMENT, respectively. Only the set of elements containing the nodes where the fluid is 
injected are needed to meet this requirement (Figure 14).  

 

Figure 14: Initial set of cohesive elements and initial enrichment required to define 
the initial solution domain for the fracturing fluid flow equations  

The displacements in the normal direction to all boundary surfaces and symmetry planes are 
constrained. Additionally, pore fluid pressures are fixed to the uniform value  ൌ 0 on all model 
boundaries. For the XFEM model, the corner phantom nodes on the symmetry surfaces and 
boundary surfaces are constrained to move within these surfaces (Figure 15). This special type of 
boundary condition is enforced with the keyboard *BOUNDARY, PHANTOM=NODE. 

 

Figure 15: Displacement boundary conditions on corner phantom nodes  

In all cases, fracturing fluid is injected at a constant rate ܳ ൌ 0.001
య

௦
 and injection is simulated 

for 40	ݏ. As explained in the previous section, the fracturing fluid pressure degrees of freedom are 
associated with the mid-edge nodes of the cohesive elements and the edge phantom nodes of the 
enriched elements. Therefore, concentrated fracturing fluid flow must be applied directly to these 
mid-edge (*CFLOW) and phantom edge nodes (*CFLOW, PHANTOM=EDGE), as depicted in Figure 16.  

 

Cohesive Element Model XFEM model 

Corner phantom 
nodes constrained 

Corner phantom 
nodes unconstrained 
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Figure 16: Injection rate applied to cohesive edge mid-node and enriched edge-
phantom node 

5. Results 

The results obtained for each benchmark problem and modeling procedures (cohesive and XFEM) 
will now be presented. The numerical solutions obtained from Abaqus for the temporal and spatial 
distributions of fracturing fluid pressure and aperture are compared with the small-time asymptotic 
analytical solutions (Bunger 2005, Detournay 2006, Garagash 2006, Hu 2010, Garagash 2011, 
Peirce 2008, Savitski 2002) for both the viscosity-storage and toughness-storage propagating 
regimes. 

5.1 Radial (Penny-shaped) Fracture Model 

Figures 17, 18, 19, and 20 display the variations of injection pressure ሺܴ,  ሻ, fracture mouthݐ
opening ݓሺܴ, ݎ ሻ in time (evaluated at the inner radiusݐ ൌ ܴ ൌ 0.01݉), fracturing fluid pressure 
distribution ൫ݎ, ,ݎሺݓ ൯ and fracture apertureݐ ݐ ሻ (evaluated at the final timeݐ ൌ ݐ ൌ  (ܿ݁ݏ	40
along the crack surface. These 2D axisymmetric results (cohesive element and extended finite 
element procedures) are obtained for the toughness-storage dominated propagation regime (ܭ-
vertex) using the three different mesh resolutions depicted in 10. Similarly, Figures 21, 22, 23, and 
24 depict the evolution and distribution of the same variables obtained for the viscosity-storage 
dominated propagation regime (ܯ-vertex). In all of these figures, the results are compared with 
the asymptotic analytical solutions. Good agreement between the Abaqus cohesive element 
method solution, the XFEM solution, and the analytical solution is found for all meshes, both 
methods, and ܭ-vertex and ܯ-vertex limits. The relative error between Abaqus simulations and 
analytical solutions for all variables decreases with more mesh refinement. The pressure 
distribution along the fracture is nearly uniform for the ܭ-vertex regime as viscous dissipation is 
relatively negligible (Figure 19). By contrast, the flow along the fracture in the ܯ-vertex limit is 
characterized by viscous pressure loss that increases towards the crack tip. This non-uniform 
pressure distribution and gradients are captured accurately using the Abaqus procedures (Figure 
23).  

XFEM 

ܳ 
Edge phantom 

ܳ 

Cohesive Element Model

Edge mid node 
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Figure 17: Time evolution of the injection pressure (ࡷ-vertex) 

 

Figure 18: Time evolution of fracture aperture near injection point (ࡷ-vertex) 

 

Figure 19: Pressure distribution along fracture at the final time (ࡷ-vertex) 
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Figure 20: Fracture aperture at the final time (ࡷ-vertex) 

 

Figure 21: Time evolution of the injection pressure (ࡹ-vertex) 

 

Figure 22: Time evolution of fracture aperture near injection point (ࡹ-vertex) 
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Figure 23: Pressure distribution along fracture at the final time (ࡹ-vertex) 

 

Figure 24: Fracture aperture at the final time (ࡹ-vertex) 

Contour plots of the maximum principal effective stresses, evaluated for the final configuration 
and final time ݐ	 ൌ ݐ ൌ  are shown in Figures 25, 26, 27, and 28. Since the stresses are ,ܿ݁ݏ	40
compressive (negative), the minimum (most negative) principal stresses must be interrogated from 
the Abaqus output database in order to obtain the maximum (compressive) principal stresses. 
Similarly, the contours plots of maximum principal stress obtained for the 3D fine mesh models 
for both procedures and both propagation regimes are displayed in Figures 29 and 30. The 
equivalence between the 2D axisymmetric and 3D Abaqus solutions is noteworthy. 
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Figure 25: Maximum effective principal stresses at the final time for the cohesive 
element method (ࡷ-Vertex propagation regime) 

 

Figure 26: Maximum effective principal stresses at the final time for the XFEM (ࡷ-
Vertex propagation regime) 

 

Figure 27: Maximum effective principal stresses at the final time for the cohesive 
element method (ࡹ-Vertex propagation regime) 
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Figure 28: Maximum effective principal stresses at the final time for the XFEM (ࡹ-
Vertex propagation regime) 

 

Figure 29: Maximum effective principal stresses for the 3D, fine mesh model, for 
both the cohesive element method (left) and XFEM (right) and the ࡷ-Vertex 

propagation regime 
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Figure 30: Maximum effective principal stresses for the 3D, fine mesh model, for 
both the cohesive element method (left) and XFEM (right) for the ࡹ-Vertex 

propagation regime 

5.2 Planar (KGD) Fracture Model 

Figures, 31 and 32 display the variations of the injection pressure ሺܴ,  ሻ and fracture mouthݐ
opening ݓሺܴ, in time (evaluated at the injection node ܴ	ሻݐ ൌ 0) obtained for the planar (KGD) 
fracture problem for each modeling technique (cohesive element method and XFEM) and each of 
the meshes described in Figure 10. In this section only the results for the toughness-storage 
dominated propagation regime (ܭ-vertex limit) are presented for brevity. As in the penny-shaped 
fracture model, good agreement is found between Abaqus and the analytical solution for both 
modeling procedures and the relative error between solutions decrease monotonically as the mesh 
is refined. Similar performance is observed for the viscosity-storage dominated propagating 
regime (ܯ-vertex limit). 

 

Figure 31: Time evolution of the injection pressure (ࡷ-vertex) 
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Figure 32: Time evolution of fracture aperture near injection point (ࡷ-vertex) 

Figures 33 and 34 show the final fracture configuration and contour plots of the maximum 
compressive effective principal stresses for each modeling technique and each mesh. Additionally, 
Figure 35 presents the corresponding contour plots for the 3D Abaqus models of the finer mesh. 
Again, it is worth noting the excellent agreement achieved between the solutions of each method 
and each element type (plane-strain and 3D).  
 

 

Figure 33: Maximum effective principal stresses at the final time for the cohesive 
element method (ࡷ-Vertex propagation regime) 

 

Figure 34 Maximum effective principal stresses at the final time for the XFEM (ࡷ-
Vertex propagation regime) 
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Figure 35: Maximum effective principal stresses for the 3D, fine mesh model, for 
both the cohesive element method (left) and XFEM (right) and the ࡷ-Vertex 

propagation regime 

6. Conclusions 

This work describes and analyzes the Abaqus hydraulic fracturing capabilities co-developed 
between ExxonMobil Upstream Research Company and Dassault Systemes Simulia Corporation. 
Two new element classes have been implemented and integrated into the Abaqus general purpose 
porous media analysis solver: 

i. a coupled pressure/deformation, cohesive element 

ii. An enriched version of the continuum coupled pore fluid diffusion/stress elements 
(XFEM) tied with dynamically inserted (and oriented) zero-thickness interface elements. 

Both elements incorporate new fracturing fluid pressure degrees of freedom to model the 
fracturing fluid flow within the opening crack. The resulting hydraulic fracturing modelling 
procedure accounts for the coupling between the deformation of the porous medium, the flow of 
pore fluid within the pore network, the flow of fracturing fluid within the opening fracture, the 
leakage of fracturing fluid into the adjacent pores, and the fracture initiation and propagation. The 
consistency, accuracy and convergence qualities of the two modelling techniques have been 
assessed by modelling two benchmark problems in 2D and 3D: 

i. propagation of a penny-shaped fracture in a cylindrically shaped formation 

ii. propagation of a vertical planar fracture in a prismatic-shaped formation, both in the 
toughness/storage dominated and viscosity/storage dominated propagation regimes 

Excellent agreement between Abaqus and asymptotic analytical solutions for these two benchmark 
problems has been found for the different modelling procedures, dimensionality (i.e. 2D and 3D), 
and propagation regimes. The Abaqus solution converges monotonically as mesh spatial 
resolution is increased. The validation exercise presented in this work lays the foundation for the 
successful development of fully coupled simulation capabilities for fluid driven fracturing 
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applications in the oil and natural gas industry including injection, stimulation, and drilling 
operations. 
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